- tutorial, check one:T9:30;T10:30;T11:30;R10:30;R11:30;R12:30.
- begin each problem on a new page \& clearly identify each question.
- use words to describe your procedures \& to interpret your results.
- put boxes around your final results.
- due on friday 04 september at start of lecture.

- homework portfolios will also be graded on completeness \& presentation.
- certain problems will be designated as practice problems; and although not subject to submission, will be assumed to have been covered for purposes of examinations.
- unless otherwise stated, numbered problems refer to Boyce/DiPrima, $7^{\text {th }}$ edition.

Section 3.1

- practice: \# 28, 29
\#30 identify ALL possible solutions. Be systematic in your presentation - that is, can you show that you have ALL possible solutions (just because you have found the ones in the back of the text is not a logical demonstration).

Section 3.2

- practice: \# 5-10, 13, 23-26 (there are a lot of important concepts in this section.)
\#14/15 present as one combined probem. These are conceptual (as opposed to mechanical) questions, explain your reasons \& conclusions clearly (you must be using the right keywords here).

Section 3.3

- practice: \# 17-20
\#12 again, you must clearly explain your ideas here.

Section 3.4

- practice: \# 1-4, 7-10, 17-19 (important section.)
\#21 explain your steps.
\#23 you must become efficient at solving these type of problems.

Maple/Matlab Exercise

- modify the Maple script sheet01.mws to solve the nonlinear ODE of \# 3.1.30 without any IVs.
- are you satisfied with Maple's response? Is Maple right or wrong here? A bit of both maybe?
- if you're not sure, have Matlab or Maple plot of few of these solutions.

