- tutorial, check one: \bigcirc T9:30; \bigcirc T10:30; \bigcirc T11:30; \bigcirc R10:30; \bigcirc R11:30; \bigcirc R12:30.
- begin each problem on a new page & clearly identify each question.
- use words to describe your procedures & to interpret your results.
- put boxes around your final results.
- due on (lucky) friday 27 september in lecture.

question $\#$	CONCEPT keywords & MAIN formula/result
# 2.4.30	concept
	result
# 2.5.23	
# 2.6.16	
# 3.1.16	
# 3.1.25	

- homework portfolios will also be graded on completeness & presentation.
- certain problems will be designated as practice problems; and although not subject to submission, will be assumed to have been covered for purposes of examinations.
- \bullet unless otherwise stated, numbered problems refer to Boyce/DiPrima, $7^{\rm th}$ edition.

Section 2.4

#30 what are the possible behaviours as $t \to +\infty$? (Be careful, even the back of the book was a bit sloppy.)

Section 2.5

• practice: # 1-6, 8-10 (you needn't do all to completion, but you should see easily how to set them up.)

 $\#23\,$ read carefully, explain your thinking clearly.

Section 2.6

- practice: # 1-8, 15, 19 (good midterm problem), 22
- #16 I would write this problem as: $(y e^{2xy} + x) + (bx e^{2xy})y'$.

Section 3.1

• practice: # 12-14

#16 show more than algebra, explain your steps with keywords.

#25 explain your logic for c) part.

Maple Exercise

- from the class webpage, download the script sheet01.mws & run it in Maple.
- modify this script to solve a first-order ODE of your choice.
- on the plot, give the ODE & IVs that you have plotted.