- tutorial, check one:T9:30;T10:30;T11:30;R10:30;R11:30;R12:30.
- begin each problem on a new page \& clearly identify each question.
- use words to describe your procedures \& to interpret your results.
- put boxes around your final results.
- due on (lucky) friday 27 september in lecture.

- homework portfolios will also be graded on completeness \& presentation.
- certain problems will be designated as practice problems; and although not subject to submission, will be assumed to have been covered for purposes of examinations.
- unless otherwise stated, numbered problems refer to Boyce/DiPrima, $7^{\text {th }}$ edition.


## Section 2.4

$\# 30$ what are the possible behaviours as $t \rightarrow+\infty$ ? (Be careful, even the back of the book was a bit sloppy.)

## Section 2.5

- practice: \# 1-6, 8-10 (you needn't do all to completion, but you should see easily how to set them up.) \#23 read carefully, explain your thinking clearly.


## Section 2.6

- practice: \# 1-8, 15, 19 (good midterm problem), 22
\#16 I would write this problem as: $\left(y e^{2 x y}+x\right)+\left(b x e^{2 x y}\right) y^{\prime}$.


## Section 3.1

- practice: \# 12-14
\#16 show more than algebra, explain your steps with keywords.
\#25 explain your logic for c) part.


## Maple Exercise

- from the class webpage, download the script sheet01.mws \& run it in Maple.
- modify this script to solve a first-order ODE of your choice.
- on the plot, give the ODE \& IVs that you have plotted.

