• tutorial, check one: \bigcirc T9:30; \bigcirc T10:30; \bigcirc T11:30; \bigcirc R10:30; \bigcirc R11:30; \bigcirc R12:30.

- begin each problem on a new page & clearly identify each question.
- use words to describe your procedures & to interpret your results.
- put boxes around your final results.
- due on (lucky) friday 20 september in lecture.
- the table below is for you to summarize your results (keywords are words & formulas are equations).

question $\#$	CONCEPT keywords & MAIN formula/result
# 2.1.25	concept
	result
# 2.2.25	
# 2.3.19	
# 2.3.30	
# 2.4.22	

- homework portfolios will also be graded on completeness & presentation.
- certain problems will be designated as practice problems; and although not subject to submission, will be assumed to have been covered for purposes of examinations.
- $\bullet\,$ unless otherwise stated, numbered problems refer to Boyce/DiPrima, $7^{\rm th}$ edition.

Section 2.1

• practice: # 8-11

#25 give the solution to the IVP as well as the maximum conditions.

Section 2.2

- practice: # 5-8, 15-20 (you needn't do all to completion, but you should see easily how to set them up to the integration step.)
- #25 please find where the solution *first* attains its max value (do you see how this could have been deduced without solving IVP!).

Section 2.3

• practice: # 2,7,10

#19 math texts were not this politically correct in my day.

#30 give your answer in terms of number of earth radii (ie. in terms of ξ where $\xi = 1$ is the earth's surface.)

Section 2.4

• practice: # 4-9

#22 this is why theorems sometimes matter.

Matlab Exercise

- from the class webpage, download the script code02.m & run it in Matlab.
- modify this script to solve a first-order nonlinear IVP of your choice.
- on the plot, give the ODE & IVs that you have plotted.
- even better, choose an ODE that you can solve & plot the exact solution too.