General Notes for Reports

- Write-ups should be organized into short, labelled sections. You need not use exactly the same labels \& sections as in this sample. Lists can be used, but should be in sentence form.
- Correctness, clarity and conciseness of communication is very important.
- Effective communication of your ideas is an important component of the grading. Short bulleted lists, when appropriate, are encouraged.
- Have your reports proofread before submission.
- Computer figures should be annotated to be as standalone as possible. It is alright to repeat results in the text of your report.
- Adhere to page limits. Extra material may be included as an Appendix, but might not be considered in the grading.
- Most important will be how you address the main issues. What was the experiment/simulation about? What were the key results? What mathematical conclusions/observations can be drawn from the lab?

Comparing Numerical Quadratures

1) Introductory Sections

Motivation: In the Matlab demo w1simp.m, several test integrations are performed in an attempt to quantify the concepts of convergence, accuracy, and efficiency as discussed in the lecture of 06 January. Three methods are applied: a uniform discretization of Simpson's rule, and the Matlab built-in quadrature routines quad and quadl.

2) Theory Sections

Simpson's Rule: The first of the numerical quadratures involve the implementation of Simpson's rule. To approximate the integral of $f(t)$ over the interval $a \leq t \leq b$, the interval is sampled at $N+1$ (an odd integer) uniformly spaced points $t_{0}, t_{1} \ldots t_{m}, \ldots t_{N}$ where $t_{0}=a$ and $t_{N}=b$. The Simpson's rule approximate quadrature for the integral

$$
I=\int_{a}^{b} f(t) d t \approx \triangle t \sum_{m=0}^{N} c_{m} f\left(t_{m}\right) \equiv I_{\text {simp }}(N)
$$

where $\triangle t \equiv(b-a) / N$ and $t_{m}=a+m \Delta t$. The Simpson's rule coefficients are given by

$$
c_{m}= \begin{cases}1 / 3 & \text { for } m=0, N(\text { endpoints }) \\ 4 / 3 & \text { for odd } m \\ 2 / 3 & \text { for even } m\end{cases}
$$

For smooth functions $f(t)$, the error of the numerical approximation from the true integral depends on Δt as

$$
\begin{equation*}
\left|I-I_{\text {simp }}\right| \propto K \triangle t^{4}=K_{1} N^{-4} \tag{1}
\end{equation*}
$$

where under certain conditions, the constant K can be zero and the error decreases at an even faster power of Δt. Thus the accuracy, or rate of convergence, is at least Δt^{4}. The number of evaluations of the function $f(t), N+1$, is used as our measure of the numerical effort of the Simpson's rule approximation.

3) Methodology Sections

Test Quadratures: A known integral is chosen for our test quadrature

$$
I=3 \int_{0}^{\sqrt{3}} \frac{d t}{1+t^{2}}=\left.3 \arctan t\right|_{0} ^{\sqrt{3}}=\pi
$$

Based upon this exact value, the numerical error $E(N)=\left|I-I_{\operatorname{simp(N)}}\right|$ is calculated for the values $N=8,16,32,64,128$ which corresponds to a decreasing sequence of $\triangle t$-values. Anticipating a power law relation, the error, $E_{\text {simp }}(N)$, is plotted on a log-log graph.

The built-in matlab quadrature command quad takes an optional tolerance argument which can be indirectly used to control the accuracy of its numerical approximation. The default tolerance, 10^{-6}, is used, in addition to the values 10^{-8} and 10^{-10} - these smaller values of the tolerance should improve the approximation. The quad command also allows for an optional output of the number of function evaluations which is used to obtain an effective value of N for graphical comparison with the earlier Simpson's rule quadratures.

A single call to the quadl command at the default tolerance $\left(10^{-6}\right)$ gives an additional data point $E_{\text {quadl }}(N)$ where the effective N is one less than the number of function evaluations.

4) Observations \& Results Sections

Error versus Effort: The results are summarized on a log-log plot of the error values, $E(N)$.

- The \times marks show that the Simpson's rule approximation gives decreasing error for decreasing values of $\Delta t=(b-a) / N$. Furthermore, a line of slope -4 has been added to plot to indicate that the rate of error decrease is consistent with the $\triangle t^{4}$ power law (1).
- The o marks for the quad command at tolerances 10^{-6} and 10^{-8} lie very close to the Simpson's rule error values. However, at the smallest tolerance, 10^{-10}, the error actually increased from the larger tolerance of 10^{-8}.
- The \star mark records the smallest error value, $E_{\text {quadl }} \doteq 1.161 \times 10^{-12}$ obtained from only 47 function evaluations by the quadl routine.

5) Conclusions \& Discussion Sections

Conclusions: The decreasing error of the Simpson's rule approximation verifies the convergence of the quadrature through the values $N=8,16,32,64,128$. In addition, the -4 slope of the log-log plot of $E_{\text {simp }}(N)$ gives quantitative support for the $\triangle t^{4}$ accuracy (1) or rate of convergence. This means that doubling the computational effort (N) roughly decreases the error by a factor of 16 .

That the first two values of the quad routine are roughly as effective as Simpson's rule reflects the fact that quad uses a method which is an adaptive modification of the Simpson's method which seems to converge by a similar fourth-order accuracy law. The increase of the error at the smallest tolerance suggests round-off effects due to the finite-digit limit of matlab (machine $\epsilon=2.2204 \times 10^{-16}$).

With only one data point, the accuracy of the quadl routine cannot be determined. However, the effectiveness based on number of function evaluations is considerably better than the Simpson's rule based results.

Questions \& Future Work: Several open issues have been motivated by the results shown here.

- Verify that the uniform discretization of Simpson's rule also displays loss of convergence for larger values of N. Is there anyway to show that round-off effects are to blame?
- Estimate the constant K_{1} in the Simpson's rule accuracy law by finding the best-fit line through the error points (use the polyfit command).
- Investigate if the Lobatto algorithm of the quadl routine also displays a power law for the rate of convergence. How is the Lobatto algorithm different from Simpson's rule?

