- usual lab report format.
- due in the MACM202 box the due time/date is under consideration.
- be as quantitative & systematic as possible.

Computing Tips

- make sure your W^2 and $n(1-r^2)$ formulas are coded correctly. You may discuss with other groups.
- remove the *rand('state', 1234567)* command when you no longer want to reset your random number generator.

Study #1

- page limit: 2 pages typeset + 1-2 pages annotated graphics.
- keywords: empirical distribution function, transformed data.
- from your W^2 EDF, make a table of the W^2 -values below which you find 25%, 50%, 75% of random samples of 25 (under our exponential distribution with given mean=1). Professor Stephens also recommended the 90% and 95% points, since they are two *industry standard* values for rejection.
- creative additional comments count. How many W^2 values are needed for a smooth EDF? (I've spoiled this one, since addressing this question is no longer a creative idea.)

Study #2

- page limit: 2 pages typeset + 1-2 page annotated graphics.
- keywords: expected value of ordered randoms, correlation coefficient.
- note that the EDF is for $n(1-r^2)$. Otherwise, construct a report that parallels the previous study.

Data Evaluation

- page limit: 1 page with table/chart.
- construct an informative table or chart upon which you should present an evaluation of the 12 data sets of 25 random numbers (in *data.mat*). Determine your ordering of the 12 sets on the basis of the question, "Which of the data sets are <u>least</u> likely to have come from an exponential distribution with mean 1."
- write 1-2 paragraphs discussing your decision. There is no right answer for this ordering, only an *intelligent* answer.