2 Semidefinite Programming

Linear Programming: Let $b, a^{1}, a^{2}, \ldots, a^{m} \in \mathbb{R}^{n}$, let $c \in \mathbb{R}^{m}$, and let $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in$ \mathbb{R}^{m} and $y \in \mathbb{R}^{n}$ be variables. Consider the following linear program (LP) and its dual.

LP
maximize $c \cdot x$
s.t. $x_{1} a^{1}+x_{2} a^{2}+\ldots x_{m} a^{m} \leq b$

Dual minimize $y \cdot b$
s.t. $y \geq 0$

$$
y \cdot a^{i}=c_{i} \text { for every } 1 \leq i \leq m
$$

Define the following affine subspaces $U, V \subseteq \mathbb{R}^{n}$:

$$
\begin{aligned}
U & =\left\{b-x_{1} a^{1}-x_{2} a^{2} \ldots-x_{m} a^{m}: x_{1}, \ldots x_{m} \in \mathbb{R}\right\} \\
V & =\left\{y \in \mathbb{R}^{n}: y \cdot a^{i}=c_{i} \text { for every } 1 \leq i \leq m\right\}
\end{aligned}
$$

Here we see two (dual) ways to define an affine subspace: U is defined with generators, while V is defined by hyperplane constraints. In the dual program, we optimize a linear function over $V \cap \mathbb{R}_{+}^{n}$, while the LP may be viewed as optimizing a function (in terms of the generators) over $U \cap \mathbb{R}_{+}^{n}$. So, both problems are optimizations over the intersection of an affine subspace with the cone of nonnegative points.

Theorem 2.1 (LP Duality) Assume both the LP and Dual problems are feasible. Then both optimums exist, and furthermore, if x^{*}, y^{*} are optimal for the LP and the Dual, then

$$
c \cdot x^{*}=y^{*} \cdot b
$$

Definition: We let Σ_{n} denote the vector space of symmetric $n \times n$ matrices and we let $\Delta_{n} \subseteq \Sigma_{n}$ denote the cone of semidefinite matrices.

Semidefinite Programming: Fix $B, A^{1}, A^{2}, \ldots A^{m} \in \Sigma_{n}$ and $c \in \mathbb{R}^{m}$, and let $x=$ $\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$ and $Y \in \Sigma_{n}$ be variables. We now have the following semidefinite program (SDP) and its dual.

SDP

maximize $c \cdot x$
s.t. $x_{1} A^{1}+x_{2} A^{2} \ldots x_{m} A^{m} \preceq B$

Dual
minimize $Y \cdot B$
s.t. $Y \succeq 0$
$Y \cdot A^{i}=c_{i}$ for every $1 \leq i \leq m$

Define the following affine subspaces $U, V \subseteq \Sigma_{n}$:

$$
\begin{aligned}
U & =\left\{B-x_{1} A^{1}-x_{2} A^{2} \ldots-x_{m} A^{m}: x_{1}, x_{2}, \ldots, x_{m} \in \mathbb{R}\right\} \\
V & =\left\{Y \in \Sigma_{n}: Y \cdot A^{i}=c_{i} \text { for every } 1 \leq i \leq m\right\}
\end{aligned}
$$

As before, U is defined with generators, while V is defined by hyperplane constraints. In the dual we optimize a linear function over $V \cap \Delta_{n}$, while the SDP may be viewed as optimizing a function (in terms of generators) over $U \cap \Delta_{n}$. So, we may view both of these problems as optimizations over the intersection of an affine subspace with the cone Δ_{n}.

Note: If we let $B, A^{1}, A^{2}, \ldots, A^{m}$ be diagonal matrices with the vectors $b, a^{1}, a^{2}, \ldots, a^{m}$ on the diagonal, then our SDP reduces to our LP.

Proposition 2.2 (SDP Weak Duality) If x is feasible in the $S D P$ and Y is feasible in its Dual

$$
c \cdot x \leq Y \cdot B
$$

Proof: Let $X=B-x_{1} A^{1}-x_{2} A^{2} \ldots-x_{m} A^{m}$. Then $X, Y \succeq 0$ so we have

$$
\begin{aligned}
0 & \leq Y \cdot X \\
& =Y \cdot B-x_{1} c_{1}-x_{1} c_{2} \ldots-x_{m} c_{m} \\
& =Y \cdot B-x \cdot c .
\end{aligned}
$$

Theorem 2.3 (SDP Strong Duality) Assume both the SDP and Dual are feasible. If there is a feasible matrix $X=B-x_{1} A^{1} \ldots-x_{m} A^{m}$ (for the SDP) or Y (for the dual) which is definite, then there are optimal solutions x^{*} for the SDP and Y^{*} for the dual, and further

$$
c \cdot x^{*}=Y^{*} \cdot B
$$

