
2 Semidefinite Programming

Linear Programming: Let b, a1, a2, . . . , am ∈ Rn, let c ∈ Rm, and let x = (x1, x2, . . . , xm) ∈
Rm and y ∈ Rn be variables. Consider the following linear program (LP) and its dual.

LP Dual

maximize c · x minimize y · b
s.t. x1a

1 + x2a
2 + . . . xmam ≤ b s.t. y ≥ 0

y · ai = ci for every 1 ≤ i ≤ m

Define the following affine subspaces U, V ⊆ Rn:

U = {b− x1a
1 − x2a

2 . . .− xmam : x1, . . . xm ∈ R}

V = {y ∈ Rn : y · ai = ci for every 1 ≤ i ≤ m}

Here we see two (dual) ways to define an affine subspace: U is defined with generators,

while V is defined by hyperplane constraints. In the dual program, we optimize a linear

function over V ∩Rn
+, while the LP may be viewed as optimizing a function (in terms of the

generators) over U ∩ Rn
+. So, both problems are optimizations over the intersection of an

affine subspace with the cone of nonnegative points.

Theorem 2.1 (LP Duality) Assume both the LP and Dual problems are feasible. Then

both optimums exist, and furthermore, if x∗, y∗ are optimal for the LP and the Dual, then

c · x∗ = y∗ · b

Definition: We let Σn denote the vector space of symmetric n × n matrices and we let

∆n ⊆ Σn denote the cone of semidefinite matrices.

Semidefinite Programming: Fix B, A1, A2, . . . Am ∈ Σn and c ∈ Rm, and let x =

(x1, x2, . . . , xm) ∈ Rm and Y ∈ Σn be variables. We now have the following semidefinite

program (SDP) and its dual.

SDP Dual

maximize c · x minimize Y ·B
s.t. x1A

1 + x2A
2 . . . xmAm � B s.t. Y � 0

Y · Ai = ci for every 1 ≤ i ≤ m
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Define the following affine subspaces U, V ⊆ Σn:

U = {B − x1A
1 − x2A

2 . . .− xmAm : x1, x2, . . . , xm ∈ R}

V = {Y ∈ Σn : Y · Ai = ci for every 1 ≤ i ≤ m}

As before, U is defined with generators, while V is defined by hyperplane constraints. In the

dual we optimize a linear function over V ∩∆n, while the SDP may be viewed as optimizing

a function (in terms of generators) over U ∩∆n. So, we may view both of these problems as

optimizations over the intersection of an affine subspace with the cone ∆n.

Note: If we let B, A1, A2, . . . , Am be diagonal matrices with the vectors b, a1, a2, . . . , am on

the diagonal, then our SDP reduces to our LP.

Proposition 2.2 (SDP Weak Duality) If x is feasible in the SDP and Y is feasible in

its Dual

c · x ≤ Y ·B

Proof: Let X = B − x1A
1 − x2A

2 . . .− xmAm. Then X, Y � 0 so we have

0 ≤ Y ·X

= Y ·B − x1c1 − x1c2 . . .− xmcm

= Y ·B − x · c. �

Theorem 2.3 (SDP Strong Duality) Assume both the SDP and Dual are feasible. If

there is a feasible matrix X = B−x1A
1 . . .−xmAm (for the SDP) or Y (for the dual) which

is definite, then there are optimal solutions x∗ for the SDP and Y ∗ for the dual, and further

c · x∗ = Y ∗ ·B.


