7 Some Chromatic Numbers
Let G = (V, E) be a graph, and let x(G), w(G) denote the chromatic, clique numbers of G.

Homomorphisms: If G, H are graphs a homomorphism from G to H is amap ¢ : V(G) —
V(H) with the property that ¢(x)¢(y) is an edge of H whenever zy is an edge of G. If such
a map exists, we write G — H. Note that G — K, if and only if x(G) < K,,.

7.1 Fractional Colouring

Let Z(G) denote the collection of all independent sets in G' and let A be the V x Z(G)
incidence matrix (i.e. A, g is 1 if v is in the independent set S and 0 otherwise). Now we

can express x(G) and w(G) with the following integer programs.

X(G) =min{l"z:z € Zi(G) and Az > 1}
w(G)=min{y"1:y € ZY and y" A < 1}

Relaxing these integrality constraints yield the fractional clique number wy, and fractional

chromatic number xy, expressed as linear programs.

x(G)=min{1"z:x € ]R_IF(G) and Az > 1}
wi(G)=min{y'1:y € RY and y" A < 1}

Now, by LP duality we have the following string of inequalities

w(G) < wi(@) = xs(G) < x(G).
Note: Although linear programs can be solved in polynomial time, the size of the matrix A
is generally exponential in the size of G, so this does not allow us to compute x efficiently.
In fact, it is NP-hard to compute x((G).

Kneser Graphs: Let ([Z]) denote the set of all k element subsets of {1,...,n}. The Kneser

graph Kn(n, k) has vertex set ([Z]), with two vertices adjacent if they are disjoint.



Theorem 7.1  x¢(G) < § if and only if G — Kn(lp,Lq) for some { € Z.

Proof: "only if”: If x¢(G) < £ then there is a rational vector w € Q™ so that Y {wr:v €
I} >1foreveryveVandw'l = £. Choose an integer ¢ so that ({g)w € 719 Now, form
a sequence L of independent sets so that (¢g)w; is the number of times I appears in L. By
construction, the length of L is equal to the sum of the entries in (¢g)w which is precisely
lp. Furthermore, for every v € V we have Y {({q)w; : v € I} > {q, so v appears in > {q of
the terms of L. By possibly removing v from some terms of L, we may arrange that every

vertex appears in exactly {q terms. Now, let ¢ : V(G) — ([Z]) be given by the rule

o(v)={je{l,....lp}:veL;}

It follows that ¢ is a homomorphism from G to Kn(fp, {q) as required.

7if”: To prove this it suffices to show that x¢(Kn(p,q)) < %, since the composition of a
homomorphism and a fractional %—colouring is another fractional §—colouring. A fractional
g—colouring of Kn(p,q) is given by assigning weight % to each independent set of the form
T,={se(®):ies}. O
7.2 Circular Colouring

For t € R, a circular t-colouring of G is a map ¢ : V' — S! so that the angle between ¢(x)

and ¢(y) is > 27” whenever x and y are adjacent. The circular chromatic number of G is
X(G) = inf{t € R : G has a circular t-colouring}.

K, k: If n,k are positive integers, we let K, denote a graph consisting of n vertices in a

cyclic order, with two vertices adjacent if they have distance > k in this ordering.
Theorem 7.2

(1) xe(G)] = x(G)

(i) xe(G) < % if and only if G — Ky .



7.3 Vector Colouring

For t € R, a vector t-colouring of G is a mapping = : V — S™ with the property that

(i) - #(j) < — 1 whenever ij € E. The vector chromatic number of G is
Xo»(G) = inf{t € R : G has a vector t-colouring}.
Note: x,(G) can be computed (efficiently!) with the following SDP (here X € RYV*V)
min s
X =0
Xy =1foreveryi eV

Xi; < s whenever ij € F
Theorem 7.3 w(G) < x,(G) < x1(G) < x(G) < x(G)

Proof: w(G) < x,(G): Let x : V. — S™ be a vector t-colouring of G and choose a clique
S C V with |S| = w(G). Now we have

0< (Zx(z’)) - (Zm(z’)) —Isl+2 Y ai)ali) < 151+ 181081 - ) (~ 52 )
icS ies i,jES i#]
from which we deduce t > |S| = w(G) as desired.
Xo(G) < xy(G): It suffices to show that x,(Kn(n,k)) < % as the composition of a
homomorphism from G to Kn(n,k) with a vector t-colouring of Kn(n,k) is a vector t-

colouring of G. For every vertex S C {1,2,...,n} in we define w(S) € R™ as follows:

w(S)i_{ k—n ifieS
k ifigS
Now w assigns each vertex S a vector w(S) with ||w(S)|]* = k(n—k)*+(n—k)k* = k(n—k)n
and if S, T' are adjacent vertices, then w(S) w(T) = (2k)k(k—n)+(n—2k)(k*) = —k*n so now
setting x = mw we have that ||z(S)|| = 1 for every S and z(5) - z(T) = £ = Wl_l
whenever S and T' are adjacent, so x is a vector 7 colouring.

Xf(G) < x.(G): It suffices to show that x (K, /) < ¥ since the composition of a homo-
morphism from G to K,/ and a fractional 3-colouring of K, is a fractional 7-colouring of
G. A fractional %-colouring of K, is given by assigning weight % to each of the n intervals

of length £ in the cyclic ordering of the vertices.
X(G) < x(G): This follows immediately from Theorem 7.2. O



