
7 Some Chromatic Numbers

Let G = (V,E) be a graph, and let χ(G), ω(G) denote the chromatic, clique numbers of G.

Homomorphisms: If G,H are graphs a homomorphism from G to H is a map φ : V (G)→
V (H) with the property that φ(x)φ(y) is an edge of H whenever xy is an edge of G. If such

a map exists, we write G→ H. Note that G→ Kn if and only if χ(G) ≤ Kn.

7.1 Fractional Colouring

Let I(G) denote the collection of all independent sets in G and let A be the V × I(G)

incidence matrix (i.e. Av,S is 1 if v is in the independent set S and 0 otherwise). Now we

can express χ(G) and ω(G) with the following integer programs.

χ(G) = min{1>x : x ∈ ZI(G)
+ and Ax ≥ 1}

ω(G) = min{y>1 : y ∈ ZV
+ and y>A ≤ 1}

Relaxing these integrality constraints yield the fractional clique number ωf , and fractional

chromatic number χf , expressed as linear programs.

χf (G) = min{1>x : x ∈ RI(G)
+ and Ax ≥ 1}

ωf (G) = min{y>1 : y ∈ RV
+ and y>A ≤ 1}

Now, by LP duality we have the following string of inequalities

ω(G) ≤ ωf (G) = χf (G) ≤ χ(G).

Note: Although linear programs can be solved in polynomial time, the size of the matrix A

is generally exponential in the size of G, so this does not allow us to compute χf efficiently.

In fact, it is NP-hard to compute χf (G).

Kneser Graphs: Let
(
[n]
k

)
denote the set of all k element subsets of {1, . . . , n}. The Kneser

graph Kn(n, k) has vertex set
(
[n]
k

)
, with two vertices adjacent if they are disjoint.
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Theorem 7.1 χf (G) ≤ p
q

if and only if G→ Kn(`p, `q) for some ` ∈ Z.

Proof: ”only if”: If χf (G) ≤ p
q

then there is a rational vector w ∈ QI(G) so that
∑
{wI : v ∈

I} ≥ 1 for every v ∈ V and w>1 = p
q
. Choose an integer ` so that (`q)w ∈ ZI(G). Now, form

a sequence L of independent sets so that (`q)wI is the number of times I appears in L. By

construction, the length of L is equal to the sum of the entries in (`q)w which is precisely

`p. Furthermore, for every v ∈ V we have
∑
{(`q)wI : v ∈ I} ≥ `q, so v appears in ≥ `q of

the terms of L. By possibly removing v from some terms of L, we may arrange that every

vertex appears in exactly `q terms. Now, let φ : V (G)→
(
[`p]
`q

)
be given by the rule

φ(v) = {j ∈ {1, . . . , `p} : v ∈ Lj}

It follows that φ is a homomorphism from G to Kn(`p, `q) as required.

”if”: To prove this it suffices to show that χf (Kn(p, q)) ≤ p
q
, since the composition of a

homomorphism and a fractional p
q
-colouring is another fractional p

q
-colouring. A fractional

p
q
-colouring of Kn(p, q) is given by assigning weight 1

q
to each independent set of the form

Ti = {S ∈
(
[p]
q

)
: i ∈ S}. �

7.2 Circular Colouring

For t ∈ R, a circular t-colouring of G is a map φ : V → S1 so that the angle between φ(x)

and φ(y) is ≥ 2π
t

whenever x and y are adjacent. The circular chromatic number of G is

χc(G) = inf{t ∈ R : G has a circular t-colouring}.

Kn/k: If n, k are positive integers, we let Kn/k denote a graph consisting of n vertices in a

cyclic order, with two vertices adjacent if they have distance ≥ k in this ordering.

Theorem 7.2

(i) dχc(G)e = χ(G)

(ii) χc(G) ≤ n
k

if and only if G→ Kn/k.
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7.3 Vector Colouring

For t ∈ R, a vector t-colouring of G is a mapping x : V → Sm with the property that

x(i) · x(j) ≤ − 1
t−1

whenever ij ∈ E. The vector chromatic number of G is

χv(G) = inf{t ∈ R : G has a vector t-colouring}.

Note: χv(G) can be computed (efficiently!) with the following SDP (here X ∈ RV×V )

min s

X � 0

Xii = 1 for every i ∈ V

Xij ≤ s whenever ij ∈ E

Theorem 7.3 ω(G) ≤ χv(G) ≤ χf (G) ≤ χc(G) ≤ χ(G)

Proof: ω(G) ≤ χv(G): Let x : V → Sn be a vector t-colouring of G and choose a clique

S ⊆ V with |S| = ω(G). Now we have

0 ≤

(∑
i∈S

x(i)

)
·

(∑
i∈S

x(i)

)
= |S|+ 2

∑
i,j∈S : i 6=j

x(i) · x(j) ≤ |S|+ |S|(|S| − 1)

(
− 1

t− 1

)
from which we deduce t ≥ |S| = ω(G) as desired.

χv(G) ≤ χf (G): It suffices to show that χv(Kn(n, k)) ≤ n
k

as the composition of a

homomorphism from G to Kn(n, k) with a vector t-colouring of Kn(n, k) is a vector t-

colouring of G. For every vertex S ⊆ {1, 2, . . . , n} in we define w(S) ∈ Rn as follows:

w(S)i =

{
k − n if i ∈ S
k if i 6∈ S

Now w assigns each vertex S a vector w(S) with ||w(S)||2 = k(n−k)2+(n−k)k2 = k(n−k)n

and if S, T are adjacent vertices, then w(S)·w(T ) = (2k)k(k−n)+(n−2k)(k2) = −k2n so now

setting x = 1√
k(n−k)n

w we have that ||x(S)|| = 1 for every S and x(S) · x(T ) = −k
n−k = −1

n/k−1

whenever S and T are adjacent, so x is a vector n
k

colouring.

χf (G) ≤ χc(G): It suffices to show that χf (Kn/k) ≤ n
k

since the composition of a homo-

morphism from G to Kn/k and a fractional n
k
-colouring of Kn/k is a fractional n

k
-colouring of

G. A fractional n
k
-colouring of Kn/k is given by assigning weight 1

k
to each of the n intervals

of length k in the cyclic ordering of the vertices.

χc(G) ≤ χ(G): This follows immediately from Theorem 7.2. �


