
22 Symmetries

Finite subgroups of isometries

We have already seen various shapes in the plane with symmetry group isomorphic to Cn or

Dn. For instance, the figure below shows a handful of shapes with a small cyclic or dihedral

symmetry group. For the cyclic groups we have highlighted the rotation point. The dihedral

group Dn is indicated by n equally spaced mirror lines.

C4 C5 C6 C7 D4 D5 D6 D7

In this section we will prove that every finite subgroup of isometries of R2 is isomorphic to

either Cn or Dn for some positive integer n.

Lemma 22.1. Let y ∈ R2, let G be a finite subgroup of even isometries of R2, and assume

that every F ∈ G has y as a fixed point. Then there is a positive integer n so that

G = {Ry,θ | θ is a multiple of 2π
n
}.

Proof. Every transformation in G is an even isometry fixing y so it must be a (possibly

trivial) rotation around y. Choose the smallest positive real number θ so that Ry,θ ∈ G
(since Ry,2π = I such a number must exist). Suppose (for a contradiction) that there exists

an integer k so that kθ < 2π < (k + 1)θ. Then the rotation Ry,(k+1)θ = (Ry,θ)
k+1 is in

G, but 0 < (k + 1)θ − 2π < θ so this is a rotation by a smaller angle than θ, and this

is a contradiction. It follows that θ = 2π
n

for some positive integer n. Since G is a group

it must contain all powers of Ry, 2π
n

, so {Ry,θ | θ is a multiple of 2π
n
} ⊆ G. Suppose (for a

contradiction) that G also contains a rotation not in this set, say a rotation by the angle θ′

where j 2π
n
< θ′ < (j + 1)2π

n
. In this case G must contain the rotation Ry,θ′−j 2π

n
. However,

0 < θ′ − j 2π
n
< 2π

n
so this contradicts the choice of θ. This completes the proof.

Lemma 22.2. Let y ∈ R2, let G be a finite subgroup of isometries of R2, and assume that

every F ∈ G has y as a fixed point. Then G is isomorphic to Cn or Dn for some positive

integer n.
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Proof. Let H be the subgroup given by the intersection of G and ASO2 (the subgroup of

even isometries). By the previous lemma there exists a positive integer n so that

H = {Ry,θ | θ is a multiple of 2π
n
}.

If G = H then G is isomorphic to Cn and there is nothing left to prove. Otherwise, G must

contain a mirror ML where L is a line through y. Since G is a subgroup it must contain

ML, MLRy, 2π
n
, MLRy,2 2π

n
ML, . . . MLRy,(n−1) 2π

n

Each entry in this list is an odd isometry fixing y so it is a mirror about a line through L. It

follows that every entry in this list is its own inverse. Now, the product of two consecutive

entries in this list is

MLRy,j 2π
n
MLRy,(j+1) 2π

n
=

(
MLRy,j 2π

n
MLRy,j 2π

n

)
Ry, 2π

n
= Ry, 2π

n

so the mirror lines for consecutive mirrors in this list form an angle of π
n
. If G were to contain

a mirror not in this list, the product of this mirror with another mirror in the list would

give a rotation by an angle that is not a multiple of 2π
n

contradicting the definition of H. It

follows that G consists of H together with the above list of mirrors, and it follows that G is

isomorphic to Dn.

Theorem 22.3 (Leonardo Da Vinci1). Every finite subgroup of isometries of R2 is isomor-

phic to Cn or Dn for some n ≥ 1.

Proof. Let G be a finite subgroup of isometries of R2 and choose a point y ∈ R2. Define the

set Y = {F (y) | F ∈ G} and note that Y is finite. We claim that every isometry G ∈ G
maps each point in Y to another point in Y . To see this, let z be an arbitrary point in the

set Y and choose F ∈ G so that F (y) = z. Now G(z) = GF (y) ∈ X since GF ∈ G. It

follows that every G ∈ G satisfies G(Y ) = Y . Now let Y = {y1, . . . ,yk} and define the point

y∗ = 1
k
y1 + 1

k
y2 . . .

1
k
yk

1This theorem was discovered independently by numerous theorists, making it a formidable if not impos-

sible task to determine who proved it first. We have attributed it to Leonardo Da Vinci since he is among

the most famous people to prove it.



3

(this is known as the barycentre of y1, . . . ,yk). We claim that every G ∈ G satisfies G(y∗) =

y∗. To see this, express G as an affine orthogonal function by choosing an orthogonal matrix

A and w ∈ R2 so that G is the function x→ Ax + w. Now we compute:

G(y∗) = Ay∗ + w

= A( 1
k
y1 . . .+

1
k
yk) + w

= 1
k

(Ay1 + w) + . . .+ 1
k

(Ayk + w)

= 1
k
G(y1) + . . .+ 1

k
G(yk)

= 1
k
y1 + . . .+ 1

k
yk

= y∗

So, every function in G fixes the point y∗ and now the result follows from the Lemma 22.2.

Wallpaper

Definition. A wallpaper pattern is a pattern in the Euclidean plane with the property that

there are translations by two linearly independent vectors that are symmetries of the pattern.

A wallpaper group is the symmetry group of a wallpaper pattern. More formally, one may

define a wallpaper group to be a subgroup of isometries of R2 that contains translations by

two linearly independent vectors, but not translations by arbitrarily small vectors.

Example: When we introduced the Platonic solids, we saw that assembling equilateral

triangles (of side length 1) with three at each vertex gives a Tetrahedron, four at each vertex

gives an Octahedron, and five at each vertex gives an Icosahedron. If you put six at each

vertex you don’t get a solid—you get a tiling of the plane! One can also tile the plane with

squares and regular hexagons as shown below. All of these are wallpaper patterns.
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Example: There are many other kinds of wallpaper pattern, here are some more.

Ancient Persian pattern Artwork by M. C. Escher Maggie Benson Centre at SFU

Definition. When working with wallpaper patterns, we say that two points x and x′ are

equivalent if there is an symmetry of the pattern that maps x to x′. Similarly, we say that

two mirror lines (or glide lines) are equivalent if there is a symmetry of the pattern sending

one line to the other.

Note: By convention, when considering symmetries of a pattern such as the above artwork

by Escher, we do allow a symmetry to interchange colours.

Wallpaper Groups

To describe the wallpaper groups, we will give each one a name consisting of symbols, where

each symbol indicates a different feature. These features include points with cyclic symmetry

(Cn for some n ≥ 2), dihedral symmetry (Dm for m ≥ 2), mirror lines, and glides (as well

as one extra feature for patterns with only translations as symmetries). We will assign a

symbol to the features (given by the chart below) and then combine these symbols (in order)

to produce a name for the group. Each feature also has an associated cost (for reasons soon

to be revealed!).

Symbol Cost Feature

an n before any ∗ n−1
n

A point with Cn symmetry

∗ 1 A mirror line

an m after a ∗ m−1
2m

A point with Dm symmetry (m mirrors)

× 1 A glide

◦ 2 A wallpaper group with only translations
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Example: For the tiling of the plane by squares, the mirror lines divide the plane into

isosceles right triangles. The corners of each such triangle have two inequivalent points with

D4 symmetry (4 mirror lines) and one with D2 symmetry (2 mirror lines). This symmetry

group is called ∗442 where the ∗ indicates the presence of mirrors, and the 442 (following

the ∗) indicate all of the different types of points with dihedral symmetry.

2

4

4

6

2

3

6

2

3

∗442 ∗632 ∗632

The triangle and hexagon tilings are dual to one another and therefore have the same sym-

metry group. Here the mirror lines divide the plane into 30−60−90 triangles and each such

triangle has one point with D6 symmetry, one with D3, and one with D2. Hence these tilings

have symmetry group ∗632.

Example: The Ancient Persian pattern has no mirrors and is described by the three types

of rotation points, 6, 3, 2 so it has name 632. The M.C. Escher work has no mirror lines, two

types of 2-fold rotation point plus a glide reflection. Therefore, it has name 22×. Finally,

the bench from the Maggie Benson Centre has horizontal and vertical mirror lines dividing

the plane into small squares. At the centre of each such square is a 2-fold rotation point, and

the corners of the square have two inequivalent points with D2 symmetry. So this symmetry

group is called 2 ∗ 22.

6 3

2

2 2

2

632 22× 2 ∗ 22
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Theorem 22.4 (Magic Theorem). There are exactly 17 wallpaper groups (up to isomor-

phism). They are precisely the 17 possible names with total cost 2 as shown below.

∗632 ∗333 ∗442 ∗2222

632 333 442 2222

4∗2 3∗3 2∗22

22∗ 22×
∗∗ ∗× ××
◦

In the statement of the above theorem, we have arranged the 17 wallpaper groups in 6 rows.

Below we provide a brief description of the groups in each row.

∗632,∗442,∗333,∗2222 Mirror lines divide the plane into triangular or rectangular (pos-

sibly square!) regions and there is no point with cyclic symmetry. The corners of a

region are inequivalent points with dihedral symmetry and the group name has a ∗ for

the mirrors and a number m after the ∗ for each corner with Dm symmetry.

6

2 2 2

2 2

2

4

43

3

33

∗632 ∗442 ∗333 ∗2222

632, 442, 333, 2222 There are no mirror lines, but there are at least three inequivalent

rotation points. The group name indicates all of the different types of rotation points.

(Note: for 632, 442, and 333, you will see small triangles formed by nearby rotation

points of the three inequivalent types. This triangle will always be a 30-60-90 triangle

for 632, 45-45-90 for 442, and 60-60-60 for 333.)

6

2 2 2

2 2

2

4

43

3

33

632 442 333 2222
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4∗2,3∗3,2∗22 Mirror lines divide the plane into triangular or rectangular (possibly square!)

regions, and at the centre of each such region is a point with cyclic symmetry, say Cn.

The group name has an n for this point with Cn symmetry, then a ∗ for the mirrors,

and then an m for each inequivalent point with Dm symmetry. These dihedral points

are corners of the region, but some corners are equivalent (due to cyclic symmetries).

2

2 23

33
3

4

2

4∗2 3∗3 2∗22

22∗,22× There are two inequivalent points with C2 symmetry and in addition there is

either a mirror line or a glide line.

2

2

2

2

∗ ×

22∗ 22×

∗∗,∗×,×× There are no points with cyclic symmetry, just mirror lines and glide lines,

all of which are parallel. There are either two inequivalent mirrors, one mirror and one

glide, or no mirrors but two inequivalent glides.

∗ ×∗ ∗ × ×

∗∗ ∗× ××

◦ Here there are only translational symmetries, no mirrors, cyclic symmetries, or glides.
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identify mirrors

parallel mirrors
intersecting mirrors

no mirrors
divide R

2 into cells

rotation point in

centre of cell?

yesno

∗632
∗442
∗333
∗2222

4∗2
3∗3
2∗22

rotation point?

22∗ ∗∗

∗×

≥ 3 2 0

how many

rotation points?

632
442
333
2222

22× ××

◦

noyes


