
20 Isometries of the Plane

We already have a theorem that gives a good analytic description of all isometries of Rn.

The isometries are precisely the set AGOn of functions of the form x → Ax + y where A

is an orthogonal matrix. Though powerful, this theorem may seem a bit opaque... what

do these isometries really look like? In this section we will investigate isometries in R2 and

come to an alternate description of these functions that gives a description making it a little

clearer what these functions are.

Fixing the origin

The isometries that fix 0 are precisely those of the form F (x) = Ax where A is an orthogonal

matrix. The set of all such isometries is GOn. We will begin our investigation of the plane

by investigating these isometries when n = 2; that is we will investigate the behaviour of

GO2, the 2× 2 orthogonal matrices.

Lemma 20.1. Every 2×2 orthogonal matrix has one of the following forms for some θ ∈ R.[
cos θ − sin θ

sin θ cos θ

]
or

[
cos θ sin θ

sin θ − cos θ

]

Proof. Let A be a 2× 2 orthogonal matrix, say A =

[
a b

c d

]
. The first column

[
a

c

]
is a unit

vector, so a2 + c2 = 1. Equivalently, the point (a, c) must lie on the unit circle. Therefore,

we may choose θ so that a = cos θ and c = sin θ. Now (b, d) must also lie on the unit circle,

and since (b, d) is orthogonal to (a, c) they must make an angle of π
2
. This leaves just two

possibilities for (b, d)

1. (b, d) = (cos(θ + π
2
), sin(θ + π

2
)) = (− sin θ, cos θ), or

2. (b, d) = (cos(θ − π
2
), sin(θ − π

2
)) = (sin θ,− cos θ).

and the result follows immediately.

Lemma 20.2. The functions in GO2 are precisely those of the form

1. R0,θ given by R0,θ

([
x1

x2

])
=

[
cos θ − sin θ

sin θ cos θ

][
x1

x2

]
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2. ML where L is a line with angle θ
2

through 0 given by ML

([
x1

x2

])
=

[
cos θ sin θ

sin θ − cos θ

][
x1

x2

]
Proof. Consider a function in GO2 of the form x → Ax. To see how these matrices act, it

will be helpful to use polar coordinates for x so we let x = (r cosα, r sinα). By the previous

lemma, the matrix A must have one of two forms that we consider separately.

1. Ax =

[
cos θ − sin θ

sin θ cos θ

][
r cosα

r sinα

]
=

[
r cos θ cosα− r sin θ sinα

r cosα sin θ + r cos θ sinα

]
=

[
r cos(θ + α)

r sin(θ + α)

]
and we

see that this matrix rotates the plane by an angle of θ around the origin. So, in other

words, this function is precisely the rotation R0,θ defied previously.

(r cosα; r sinα)

α
θ

r

r

(

r cos(α+ θ); r sin(α+ θ)
)

2. Ax =

[
cos θ sin θ

sin θ − cos θ

][
r cosα

r sinα

]
=

[
r cos θ cosα + r sin θ sinα

r cosα sin θ − r cos θ sinα

]
=

[
r cos(θ − α)

r sin(θ − α)

]
This transformation is a little easier to understand if we change variables. Define

α = 1
2
θ + β. Then the point

[
r cos(1

2
θ + β)

r sin(1
2
θ + β)

]
maps to

[
r cos(1

2
θ − β)

r sin(1
2
θ − β)

]
. So this trans-

formation is precisely ML where L is the line through the origin at an angle of 1
2
θ.

r

r
(

r cos( θ
2
− β); r sin( θ

2
− β)

)

β
β

(

r cos( θ
2
+ β); r sin( θ

2
+ β)

)

θ

2
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Fixing a different point

Suppose that F is an isometry and F (y) = y. If y = 0 then we know that F is given by an

orthogonal matrix, but what if y is another point? Next we show that these isometries are

given by closely related affine transformations.

Proposition 20.3. The functions in AGO2 fixing y =

[
y1

y2

]
are precisely

1. Ry,θ given by

Ry,θ

([
x1

x2

])
=

[
cos θ − sin θ

sin θ cos θ

][
x1

x2

]
+

[
1− cos θ sin θ

− sin θ 1− cos θ

][
y1

y2

]

2. ML where L is a line with angle θ
2

through y given by

ML

([
x1

x2

])
=

[
cos θ sin θ

sin θ − cos θ

][
x1

x2

]
+

[
1− cos θ − sin θ

− sin θ 1 + cos θ

][
y1

y2

]

Proof. Let F ∈ AGO2 satisfy F (y) = y and consider the transformation

G = T−yFTy

The function G is an isometry since it is a product of three isometries, and isometries form

a subgroup. Furthermore, G(0) = T−y(F (Ty(0))) = T−y(F (y)) = T−y(y) = 0. So G is an

isometry fixing the origin. Therefore, there is an orthogonal matrix A so that G(x) = Ax.

Multiplying the equation G = T−yFTy on the left by Ty and on the right by T−y yields the

equation F = TyGT−y. It follows that the function F is give by the rule

F (x) = TyGT−y(x) = TyG(x− y) = TyA(x− y) = y + A(x− y)

We see that the function F maps the point y + w to the point y + Aw. The result now

follows by combining this with the analysis in the previous lemma.

Classifying all isometries

We have seen several different types of isometries of the plane, namely translations, rotations,

and mirrors (the identity may be viewed as a trivial translation and as a trivial rotation).
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However, there is one last type of isometry we have yet to introduce, and it’s time to meet

this last variety.

Definition. Let L be a line in the plane and let v be a vector in the same direction as L.

We define the glide reflection (or just glide for short) GL,v by the rule

GL,v(x) = TvML.

So a glide reflection is just a mirror about a line L followed by a translation in the same

direction as L. Note that (since v is nonzero) the glide reflection GL,v will not have any

fixed points. However GL,v does map the line L to itself (i.e. GL,v(L) = L).

It is easy to see that glides are isometries since we know that translations and mirrors are

isometries, and isometries are closed under products. However, it is not obvious that we

have really listed all types of isometries yet. This fact we prove next.

Theorem 20.4. Every isometry of R2 is either a translation, rotation, mirror, or glide.

Proof. Consider an arbitrary isometry F of R2. By a theorem from before may choose an

orthogonal matrix A and w ∈ R2 so that

F (x) = Ax + w

We need to show that F is either a translation, rotation, mirror, or glide. Our analysis will

break into cases depending on the matrix A.

Case 1: A = I

In this case we have F (x) = x + w = Tw(x) so F is the translation Tw.

Case 2: A =

[
cos θ − sin θ

sin θ cos θ

]
for some 0 < θ < 2π.

It follows from the previous proposition that for every y ∈ R2 the rotation Ry,θ is given by

Ry,θ(x) = Ax + (I − A)y

So, if there exists a vector y so that (I−A)y = w, then F is a rotation about y. The matrix

I − A has determinant

det(I − A) = det

([
1− cos θ sin θ

− sin θ 1− cos θ

])
= (1− cos θ)2 + sin2 θ = 2− 2 cos θ > 0
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Therefore I − A is invertible and there exists a vector y so that (I − A)y = w and we

conclude that F is a rotation about y.

Case 3: A =

[
cos θ sin θ

sin θ − cos θ

]
for some 0 ≤ θ < 2π.

We claim that the vectors

[
cos θ

2

sin θ
2

]
and

[
1− cos θ

− sin θ

]
are orthogonal. To see this we compute

the dot product using half-angle formulas from trig.[
cos θ

2

sin θ
2

]
·

[
1− cos θ

− sin θ

]
= cos θ

2
− cos θ

2
cos θ − sin θ

2
sin θ

= cos θ
2
− cos θ

2

(
cos2 θ

2
− sin2 θ

2

)
− sin θ

2

(
2 cos θ

2
sin θ

2

)
= cos θ

2

(
1− cos2 θ

2
− sin2 θ

2

)
= 0

Since these vectors are orthogonal, we can express w as follows

w = s

[
cos θ

2

sin θ
2

]
+ t

[
1− cos θ

− sin θ

]

Now we claim that the isometry F is the glide reflection GL,v where v = s

[
cos θ

2

sin θ
2

]
and L is

the line through the point (t, 0) at an angle of θ
2
. To check this, we evaluate this function at

an arbitrary point x =

[
x1

x2

]
.

GL,v(x) = TvML(x)

=

[
cos θ sin θ

sin θ − cos θ

][
x1

x2

]
+

[
1− cos θ − sin θ

− sin θ 1 + cos θ

][
t

0

]
+ s

[
cos θ

2

sin θ
2

]
= Ax + w


