
19 Orthogonal Matrices

Recall that in Rn an orthonormal basis is a set of vectors {u1, . . . ,un} satisfying:

• ||ui|| = 1 for every 1 ≤ i ≤ n

• ui · uj = 0 whenever i 6= j.

Examples: The following are orthonormal bases of R2, R3 and R4 (check!)
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Definition. We say that a square matrix U is an orthogonal matrix if the columns of U

form an orthonormal basis.

Examples: The following are orthogonal matrices
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Definition. GOn = {x→ Ux | U is an orthogonal n× n matrix}. The following theorem

shows that GOn is precisely the subgroup of isometries of Rn fixing the origin. We call GOn

the general orthogonal group.

Theorem 19.1. The subgroup of isometries of Rn fixing 0 is equal to GOn.

Proof. First we prove every element of GOn is an isometry fixing 0. To do so, consider an

arbitrary function in GOn of the form x → Ax where A =
[
a1 . . . an

]
is an orthogonal

matrix. First we prove a key fact:

Claim: Every v,w ∈ Rn satisfy (Av) · (Aw) = v ·w
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To prove this claim, let v = (v1, . . . , vn) and w = (w1, . . . , wn). Then using the fact that

ai · aj = 0 if i 6= j and ai · ai = 1 we find that

(Av) · (Aw) = (v1a1 + . . . + vnan) · (w1a1 + . . . + wnan)

= v1w1 + . . . + vnwn

= v ·w

Now for every x,y ∈ Rn we have

dist(Ax, Ay) = ||Ax− Ay||

= ||A(x− y)||

=
√

A
(
x− y

)
· A
(
x− y

)
=
√(

x− y
)
·
(
x− y

)
= ||x− y||

= dist(x,y)

and thus the function x→ Ax is an isometry.

To prove the other direction, let F be an isometry of Rn fixing 0. By a lemma proved earlier

we have that F (x) = Ax for some n × n matrix A =
[
a1 . . . an

]
. Let ei be the vector

with a 1 in position i and 0 in every other position and note that F (ei) = Aei = ai. Now

we have

||ai|| = dist(0, ai) = dist(F (0), F (ei)) = dist(0, ei) = 1

Now assuming i 6= j we have

2 = ||ei − ej||2

= (dist(ei, ej))
2

= (dist(ai, aj))
2

= ||ai − aj||2

= (ai − aj) · (ai − aj)

= ||ai||+ ||aj|| − 2ai · aj

= 2− 2ai · aj

It follows that ai · aj = 0 and we deduce that A is an orthogonal matrix, as desired.
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Definition. AGOn = {x→ Ux + w | U is an orthogonal n× n matrix and w ∈ Rn}. The

following corollary shows that AGOn is precisely the set of isometries of Rn. We call AGOn

the affine general orthogonal group.

Corollary 19.2. The set of isometries of Rn is precisely AGOn.

Proof. Every function in AGOn is the composition of two isometries—a translation and a

function in GOn. Since the product of two isometries is another isometry, we deduce that

AGOn is a subset of the set of isometries.

To prove the other direction, let F be an isometry of Rn and let y = F (0). Now define the

transformation G = T−yF . Note that G is an isometry since the product of two isometries

is an isometry. Now G(0) = T−y(F (0)) = T−y(y) = 0. By the previous theorem there is an

orthogonal matrix A so that G is the function G(x) = Ax. Since F = TyG we deduce that

F (x) = Ax + y and thus F is in AGOn.


