19 Orthogonal Matrices

Recall that in \mathbb{R}^n an orthonormal basis is a set of vectors $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ satisfying:

- $||\mathbf{u}_{\mathbf{i}}|| = 1$ for every $1 \le i \le n$
- $\mathbf{u_i} \cdot \mathbf{u_j} = 0$ whenever $i \neq j$.

Examples: The following are orthonormal bases of \mathbb{R}^2 , \mathbb{R}^3 and \mathbb{R}^4 (check!)

• $\left\{ \left(\frac{3}{5}, \frac{4}{5}\right), \left(\frac{4}{5}, -\frac{3}{5}\right) \right\}$

•
$$\left\{ \left(\frac{6}{7}, \frac{3}{7}, -\frac{2}{7}\right), \left(-\frac{2}{7}, \frac{6}{7}, \frac{3}{7}\right), \left(\frac{3}{7}, -\frac{2}{7}, \frac{6}{7}\right) \right\}$$

• $\left\{ \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right), \left(\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}\right), \left(\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}\right), \left(\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}\right) \right\}$

Definition. We say that a square matrix U is an *orthogonal* matrix if the columns of U form an orthonormal basis.

Examples: The following are orthogonal matrices

$$\begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & -\frac{3}{5} \end{bmatrix} \begin{bmatrix} \frac{6}{7} & -\frac{2}{7} & \frac{3}{7} \\ \frac{3}{7} & \frac{6}{7} & -\frac{2}{7} \\ -\frac{2}{7} & \frac{3}{7} & \frac{6}{7} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

Definition. $GO_n = {\mathbf{x} \to U\mathbf{x} \mid U \text{ is an orthogonal } n \times n \text{ matrix}}.$ The following theorem shows that GO_n is precisely the subgroup of isometries of \mathbb{R}^n fixing the origin. We call GO_n the general orthogonal group.

Theorem 19.1. The subgroup of isometries of \mathbb{R}^n fixing **0** is equal to GO_n .

Proof. First we prove every element of GO_n is an isometry fixing **0**. To do so, consider an arbitrary function in GO_n of the form $\mathbf{x} \to A\mathbf{x}$ where $A = \begin{bmatrix} \mathbf{a_1} & \dots & \mathbf{a_n} \end{bmatrix}$ is an orthogonal matrix. First we prove a key fact:

Claim: Every $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ satisfy $(A\mathbf{v}) \cdot (A\mathbf{w}) = \mathbf{v} \cdot \mathbf{w}$

To prove this claim, let $\mathbf{v} = (v_1, \dots, v_n)$ and $\mathbf{w} = (w_1, \dots, w_n)$. Then using the fact that $\mathbf{a}_i \cdot \mathbf{a}_j = 0$ if $i \neq j$ and $\mathbf{a}_i \cdot \mathbf{a}_i = 1$ we find that

$$(A\mathbf{v}) \cdot (A\mathbf{w}) = (v_1\mathbf{a_1} + \ldots + v_n\mathbf{a_n}) \cdot (w_1\mathbf{a_1} + \ldots + w_n\mathbf{a_n})$$
$$= v_1w_1 + \ldots + v_nw_n$$
$$= \mathbf{v} \cdot \mathbf{w}$$

Now for every $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ we have

$$dist(A\mathbf{x}, A\mathbf{y}) = ||A\mathbf{x} - A\mathbf{y}||$$

= $||A(\mathbf{x} - \mathbf{y})||$
= $\sqrt{A(\mathbf{x} - \mathbf{y}) \cdot A(\mathbf{x} - \mathbf{y})}$
= $\sqrt{(\mathbf{x} - \mathbf{y}) \cdot (\mathbf{x} - \mathbf{y})}$
= $||\mathbf{x} - \mathbf{y}||$
= $dist(\mathbf{x}, \mathbf{y})$

and thus the function $\mathbf{x} \to A\mathbf{x}$ is an isometry.

To prove the other direction, let F be an isometry of \mathbb{R}^n fixing **0**. By a lemma proved earlier we have that $F(\mathbf{x}) = A\mathbf{x}$ for some $n \times n$ matrix $A = \begin{bmatrix} \mathbf{a_1} & \dots & \mathbf{a_n} \end{bmatrix}$. Let $\mathbf{e_i}$ be the vector with a 1 in position i and 0 in every other position and note that $F(\mathbf{e_i}) = A\mathbf{e_i} = \mathbf{a_i}$. Now we have

$$||a_i|| = \operatorname{dist}(\mathbf{0}, \mathbf{a}_i) = \operatorname{dist}(F(\mathbf{0}), F(\mathbf{e}_i)) = \operatorname{dist}(\mathbf{0}, \mathbf{e}_i) = 1$$

Now assuming $i \neq j$ we have

$$2 = ||\mathbf{e}_{i} - \mathbf{e}_{j}||^{2}$$

= $(\operatorname{dist}(\mathbf{e}_{i}, \mathbf{e}_{j}))^{2}$
= $(\operatorname{dist}(\mathbf{a}_{i}, \mathbf{a}_{j}))^{2}$
= $||\mathbf{a}_{i} - \mathbf{a}_{j}||^{2}$
= $(\mathbf{a}_{i} - \mathbf{a}_{j}) \cdot (\mathbf{a}_{i} - \mathbf{a}_{j})$
= $||\mathbf{a}_{i}|| + ||\mathbf{a}_{j}|| - 2\mathbf{a}_{i} \cdot \mathbf{a}_{j}$
= $2 - 2\mathbf{a}_{i} \cdot \mathbf{a}_{j}$

It follows that $\mathbf{a_i} \cdot \mathbf{a_j} = 0$ and we deduce that A is an orthogonal matrix, as desired. \Box

Definition. $AGO_n = {\mathbf{x} \to U\mathbf{x} + \mathbf{w} \mid U \text{ is an orthogonal } n \times n \text{ matrix and } \mathbf{w} \in \mathbb{R}^n}.$ The following corollary shows that AGO_n is precisely the set of isometries of \mathbb{R}^n . We call AGO_n the *affine general orthogonal group*.

Corollary 19.2. The set of isometries of \mathbb{R}^n is precisely AGO_n .

Proof. Every function in AGO_n is the composition of two isometries—a translation and a function in GO_n . Since the product of two isometries is another isometry, we deduce that AGO_n is a subset of the set of isometries.

To prove the other direction, let F be an isometry of \mathbb{R}^n and let $\mathbf{y} = F(\mathbf{0})$. Now define the transformation $G = T_{-\mathbf{y}}F$. Note that G is an isometry since the product of two isometries is an isometry. Now $G(\mathbf{0}) = T_{-\mathbf{y}}(F(\mathbf{0})) = T_{-\mathbf{y}}(\mathbf{y}) = \mathbf{0}$. By the previous theorem there is an orthogonal matrix A so that G is the function $G(\mathbf{x}) = A\mathbf{x}$. Since $F = T_{\mathbf{y}}G$ we deduce that $F(\mathbf{x}) = A\mathbf{x} + \mathbf{y}$ and thus F is in AGO_n .