19 Orthogonal Matrices

Recall that in \mathbb{R}^{n} an orthonormal basis is a set of vectors $\left\{\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{n}}\right\}$ satisfying:

- $\left\|\mathbf{u}_{\mathbf{i}}\right\|=1$ for every $1 \leq i \leq n$
- $\mathbf{u}_{\mathbf{i}} \cdot \mathbf{u}_{\mathbf{j}}=0$ whenever $i \neq j$.

Examples: The following are orthonormal bases of $\mathbb{R}^{2}, \mathbb{R}^{3}$ and \mathbb{R}^{4} (check!)

- $\left\{\left(\frac{3}{5}, \frac{4}{5}\right),\left(\frac{4}{5},-\frac{3}{5}\right)\right\}$
- $\left\{\left(\frac{6}{7}, \frac{3}{7},-\frac{2}{7}\right),\left(-\frac{2}{7}, \frac{6}{7}, \frac{3}{7}\right),\left(\frac{3}{7},-\frac{2}{7}, \frac{6}{7}\right)\right\}$
- $\left\{\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right),\left(\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)\right\}$

Definition. We say that a square matrix U is an orthogonal matrix if the columns of U form an orthonormal basis.

Examples: The following are orthogonal matrices

$$
\left[\begin{array}{rr}
\frac{3}{5} & \frac{4}{5} \\
\frac{4}{5} & -\frac{3}{5}
\end{array}\right] \quad\left[\begin{array}{rrr}
\frac{6}{7} & -\frac{2}{7} & \frac{3}{7} \\
\frac{3}{7} & \frac{6}{7} & -\frac{2}{7} \\
-\frac{2}{7} & \frac{3}{7} & \frac{6}{7}
\end{array}\right] \quad\left[\begin{array}{rrrr}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2}
\end{array}\right]
$$

Definition. $G O_{n}=\{\mathbf{x} \rightarrow U \mathbf{x} \mid U$ is an orthogonal $n \times n$ matrix $\}$. The following theorem shows that $G O_{n}$ is precisely the subgroup of isometries of \mathbb{R}^{n} fixing the origin. We call $G O_{n}$ the general orthogonal group.

Theorem 19.1. The subgroup of isometries of \mathbb{R}^{n} fixing $\mathbf{0}$ is equal to $G O_{n}$.
Proof. First we prove every element of $G O_{n}$ is an isometry fixing $\mathbf{0}$. To do so, consider an arbitrary function in $G O_{n}$ of the form $\mathbf{x} \rightarrow A \mathbf{x}$ where $A=\left[\begin{array}{lll}\mathbf{a}_{\mathbf{1}} & \ldots & \mathbf{a}_{\mathbf{n}}\end{array}\right]$ is an orthogonal matrix. First we prove a key fact:

Claim: Every $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ satisfy $(A \mathbf{v}) \cdot(A \mathbf{w})=\mathbf{v} \cdot \mathbf{w}$

To prove this claim, let $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ and $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$. Then using the fact that $\mathbf{a}_{\mathbf{i}} \cdot \mathbf{a}_{\mathbf{j}}=0$ if $i \neq j$ and $\mathbf{a}_{\mathbf{i}} \cdot \mathbf{a}_{\mathbf{i}}=1$ we find that

$$
\begin{aligned}
(A \mathbf{v}) \cdot(A \mathbf{w}) & =\left(v_{1} \mathbf{a}_{\mathbf{1}}+\ldots+v_{n} \mathbf{a}_{\mathbf{n}}\right) \cdot\left(w_{1} \mathbf{a}_{\mathbf{1}}+\ldots+w_{n} \mathbf{a}_{\mathbf{n}}\right) \\
& =v_{1} w_{1}+\ldots+v_{n} w_{n} \\
& =\mathbf{v} \cdot \mathbf{w}
\end{aligned}
$$

Now for every $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ we have

$$
\begin{aligned}
\operatorname{dist}(A \mathbf{x}, A \mathbf{y}) & =\|A \mathbf{x}-A \mathbf{y}\| \\
& =\|A(\mathbf{x}-\mathbf{y})\| \\
& =\sqrt{A(\mathbf{x}-\mathbf{y}) \cdot A(\mathbf{x}-\mathbf{y})} \\
& =\sqrt{(\mathbf{x}-\mathbf{y}) \cdot(\mathbf{x}-\mathbf{y})} \\
& =\|\mathbf{x}-\mathbf{y}\| \\
& =\operatorname{dist}(\mathbf{x}, \mathbf{y})
\end{aligned}
$$

and thus the function $\mathbf{x} \rightarrow A \mathbf{x}$ is an isometry.
To prove the other direction, let F be an isometry of \mathbb{R}^{n} fixing $\mathbf{0}$. By a lemma proved earlier we have that $F(\mathbf{x})=A \mathbf{x}$ for some $n \times n$ matrix $A=\left[\begin{array}{lll}\mathbf{a}_{\mathbf{1}} & \ldots & \mathbf{a}_{\mathbf{n}}\end{array}\right]$. Let $\mathbf{e}_{\mathbf{i}}$ be the vector with a 1 in position i and 0 in every other position and note that $F\left(\mathbf{e}_{\mathbf{i}}\right)=A \mathbf{e}_{\mathbf{i}}=\mathbf{a}_{\mathbf{i}}$. Now we have

$$
\left\|a_{i}\right\|=\operatorname{dist}\left(\mathbf{0}, \mathbf{a}_{\mathbf{i}}\right)=\operatorname{dist}\left(F(\mathbf{0}), F\left(\mathbf{e}_{\mathbf{i}}\right)\right)=\operatorname{dist}\left(\mathbf{0}, \mathbf{e}_{\mathbf{i}}\right)=1
$$

Now assuming $i \neq j$ we have

$$
\begin{aligned}
2 & =\left\|\mathbf{e}_{\mathbf{i}}-\mathbf{e}_{\mathbf{j}}\right\|^{2} \\
& =\left(\operatorname{dist}\left(\mathbf{e}_{\mathbf{i}}, \mathbf{e}_{\mathbf{j}}\right)\right)^{2} \\
& =\left(\operatorname{dist}\left(\mathbf{a}_{\mathbf{i}}, \mathbf{a}_{\mathbf{j}}\right)\right)^{2} \\
& =\left\|\mathbf{a}_{\mathbf{i}}-\mathbf{a}_{\mathbf{j}}\right\|^{2} \\
& =\left(\mathbf{a}_{\mathbf{i}}-\mathbf{a}_{\mathbf{j}}\right) \cdot\left(\mathbf{a}_{\mathbf{i}}-\mathbf{a}_{\mathbf{j}}\right) \\
& =\left\|\mathbf{a}_{\mathbf{i}}\right\|+\left\|\mathbf{a}_{\mathbf{j}}\right\|-2 \mathbf{a}_{\mathbf{i}} \cdot \mathbf{a}_{\mathbf{j}} \\
& =2-2 \mathbf{a}_{\mathbf{i}} \cdot \mathbf{a}_{\mathbf{j}}
\end{aligned}
$$

It follows that $\mathbf{a}_{\mathbf{i}} \cdot \mathbf{a}_{\mathbf{j}}=0$ and we deduce that A is an orthogonal matrix, as desired.

Definition. $A G O_{n}=\left\{\mathbf{x} \rightarrow U \mathbf{x}+\mathbf{w} \mid U\right.$ is an orthogonal $n \times n$ matrix and $\left.\mathbf{w} \in \mathbb{R}^{n}\right\}$. The following corollary shows that $A G O_{n}$ is precisely the set of isometries of \mathbb{R}^{n}. We call $A G O_{n}$ the affine general orthogonal group.

Corollary 19.2. The set of isometries of \mathbb{R}^{n} is precisely $A G O_{n}$.
Proof. Every function in $A G O_{n}$ is the composition of two isometries-a translation and a function in $G O_{n}$. Since the product of two isometries is another isometry, we deduce that $A G O_{n}$ is a subset of the set of isometries.
To prove the other direction, let F be an isometry of \mathbb{R}^{n} and let $\mathbf{y}=F(\mathbf{0})$. Now define the transformation $G=T_{-\mathbf{y}} F$. Note that G is an isometry since the product of two isometries is an isometry. Now $G(\mathbf{0})=T_{-\mathbf{y}}(F(\mathbf{0}))=T_{-\mathbf{y}}(\mathbf{y})=\mathbf{0}$. By the previous theorem there is an orthogonal matrix A so that G is the function $G(\mathbf{x})=A \mathbf{x}$. Since $F=T_{\mathbf{y}} G$ we deduce that $F(\mathbf{x})=A \mathbf{x}+\mathbf{y}$ and thus F is in $A G O_{n}$.

