
18 Isometries

Basic Properties

Recall that the distance between two points x,y ∈ Rn is given by

dist(x,y) = ||x− y|| =
√

(x− y) · (x− y).

Definition. A function F ∈ Trans(Rn) is an isometry if every x,y ∈ Rn satisfy

dist(F (x), F (y)) = dist(x,y)

In words, we say that a function F is an isometry if it preserves distances. Isometries are

also called rigid transformations and we view them as the natural family of transformations

that preserve the “structure” of Euclidean space.

Example: In R2 (as we will prove) every rotation Rx,θ and every mirror ML is an isometry.

Our goal is to develop an understanding of isometries. The next two lemmas take a couple

of steps toward this goal.

Lemma 18.1. Every translation is an isometry

Proof. For the translation Tz and x,y ∈ Rn. We have

dist(Tz(x), Tz(y)) = dist(z + x, z + y) = ||(z + x)− (z + y)|| = ||x− y|| = dist(x,y)

Lemma 18.2. The set of all isometries of Rn is a subgroup of Trans(Rn)

Proof. We need to show identity containment and closure under multiplication and inverses.

(identity) It is immediate from the definition that the identity is an isometry.

(mult. closure) If F,G are isometries of Rn and x,y ∈ Rn then

dist(FG(x), FG(y)) = dist(F (G(x)), F (G(y))) = dist(G(x)), G(y)) = dist(x,y).

It follows that FG is an isometry, thus establishing closure under multiplication.

(inverses) Let F be an isometry and let x,y ∈ Rn. Since F is an isometry

dist(F−1(x), F−1(y)) = dist(F (F−1(x)), F (F−1(y))) = dist(x,y)

and it follows that F−1 is also an isometry. This establishes closure under inverses.
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Lemma 18.3. Let F ∈ Trans(Rn) be an isometry. If L is a line in Rn, then F (L) is a line.

Proof. To prove this lemma, it suffices to show that whenever x,y, z lie on a line, then

F (x), F (y), F (z) lie on a line. So assume x,y, z lie on a line with y between x and z. Then

dist(x, z) = dist(x,y) + dist(y, z)

⇒ dist(F (x), F (z)) = dist(F (x), F (y)) + dist(F (y), F (z))

⇒ F (x), F (y), F (z) lie on a line with y between x and z

giving the desired conclusion.

Symmetry

Definition. A symmetry of a set S ⊆ Rn is an isometry F ∈ Trans(Rn) so that F (S) = S.

Proposition 18.4. For every S ⊆ Rn, the set of symmetries of S is a subgroup of Trans(S).

Proof. Let G be the set of symmetries of S. We need to prove that G contains the identity,

is closed under products, and closed under inverses.

(identity) The identity I satisfies I(S) = S so I ∈ G.

(mult. closure) If F,G ∈ G then F (S) = S and G(S) = S we find that FG(S) = F (G(S)) =

F (S) = S and thus FG ∈ G.

(inverses) Finally, if F ∈ G then F (S) = S so F maps S bijectively to S. It follows that

F−1 also maps S bijectively to S, so F−1 ∈ G.

Linearity

Definition. A function F : Rn → Rm is called linear if it satisfies the following properties:

(1) For every x ∈ Rn and every t ∈ R we have F (tx) = tF (x).

(2) For every x,y ∈ Rn we have F (x + y) = F (x) + F (y).

Note: If F is linear, then there exists an m× n matrix A so that the function F is given

by the rule F (x) = Ax.

Definition. We say that a function F fixes x if F (x) = x.
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Lemma 18.5. Every isometry that fixes 0 is linear.

Proof. Let F ∈ Trans(Rn) be an isometry that satisfies F (0) = 0. We will show that F

satisfies (1) and (2) in the definition of linear.

To prove (1) let x ∈ Rn and let t ∈ R. If x = 0 then F (tx) = F (0) = 0 = t0. So, we may

assume x 6= 0. Let y = F (x) and observe that since F is an isometry fixing 0 we must have

||x|| = dist(x,0) = dist(y,0) = ||y||

Define Lx to be the line Span(x) and Ly to be the line Span(y) and note that Lemma 18.3

shows that F (Lx) = Ly. Now, tx is the unique point on Lx that has distance ||tx|| to 0 and

distance ||(t− 1)x|| to x. Similarly, ty is the unique point on Ly that has distance ||ty|| to

0 and distance ||(t− 1)y|| to y. It follows that F (tx) = ty = tF (x) as desired.

To prove (2) let x,x′ ∈ Rn. Since F is an isometry, it must map the midpoint between x

and x′ to the midpoint between their images F (x) and F (x′), so

F (1
2
x + 1

2
x′) = 1

2
F (x) + 1

2
F (x′).

It follows from (1) that
1
2
F (x + x′) = F (1

2
x + 1

2
x′).

Combining these equations gives F (x + x′) = F (x) + F (x′) as desired.

Lemma 18.6. Every isometry is an affine transformation.

Proof. Let F ∈ Trans(Rn) be an isometry and let y = F (0). Now we may define the

transformation G = T−yF and we have

G(0) = T−yF (0) = T−y(y) = 0

It follows from Lemma 18.5 that G is linear, so we may choose a matrix A so that G(x) = Ax.

Now F = (T−y)−1G = TyG so F is given by the rule F (x) = Ax + y, so F is an affine

transformation.


