18 Isometries

Basic Properties

Recall that the distance between two points $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ is given by

$$dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}|| = \sqrt{(\mathbf{x} - \mathbf{y}) \cdot (\mathbf{x} - \mathbf{y})}.$$

Definition. A function $F \in \operatorname{Trans}(\mathbb{R}^n)$ is an *isometry* if every $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ satisfy

$$\operatorname{dist}(F(\mathbf{x}), F(\mathbf{y})) = \operatorname{dist}(\mathbf{x}, \mathbf{y})$$

In words, we say that a function F is an isometry if it preserves distances. Isometries are also called *rigid* transformations and we view them as the natural family of transformations that preserve the "structure" of Euclidean space.

Example: In \mathbb{R}^2 (as we will prove) every rotation $R_{\mathbf{x},\theta}$ and every mirror M_L is an isometry.

Our goal is to develop an understanding of isometries. The next two lemmas take a couple of steps toward this goal.

Lemma 18.1. Every translation is an isometry

Proof. For the translation $T_{\mathbf{z}}$ and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. We have

$$\operatorname{dist}(T_{\mathbf{z}}(\mathbf{x}), T_{\mathbf{z}}(\mathbf{y})) = \operatorname{dist}(\mathbf{z} + \mathbf{x}, \mathbf{z} + \mathbf{y}) = ||(\mathbf{z} + \mathbf{x}) - (\mathbf{z} + \mathbf{y})|| = ||\mathbf{x} - \mathbf{y}|| = \operatorname{dist}(\mathbf{x}, \mathbf{y}) \quad \Box$$

Lemma 18.2. The set of all isometries of \mathbb{R}^n is a subgroup of $\operatorname{Trans}(\mathbb{R}^n)$

Proof. We need to show identity containment and closure under multiplication and inverses. (*identity*) It is immediate from the definition that the identity is an isometry. (*mult. closure*) If F, G are isometries of \mathbb{R}^n and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ then

$$\operatorname{dist}(FG(\mathbf{x}), FG(\mathbf{y})) = \operatorname{dist}(F(G(\mathbf{x})), F(G(\mathbf{y}))) = \operatorname{dist}(G(\mathbf{x})), G(\mathbf{y})) = \operatorname{dist}(\mathbf{x}, \mathbf{y}).$$

It follows that FG is an isometry, thus establishing closure under multiplication. (*inverses*) Let F be an isometry and let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Since F is an isometry

$$\operatorname{dist}(F^{-1}(\mathbf{x}), F^{-1}(\mathbf{y})) = \operatorname{dist}(F(F^{-1}(\mathbf{x})), F(F^{-1}(\mathbf{y}))) = \operatorname{dist}(\mathbf{x}, \mathbf{y})$$

and it follows that F^{-1} is also an isometry. This establishes closure under inverses.

Proof. To prove this lemma, it suffices to show that whenever $\mathbf{x}, \mathbf{y}, \mathbf{z}$ lie on a line, then $F(\mathbf{x}), F(\mathbf{y}), F(\mathbf{z})$ lie on a line. So assume $\mathbf{x}, \mathbf{y}, \mathbf{z}$ lie on a line with \mathbf{y} between \mathbf{x} and \mathbf{z} . Then

$$dist(\mathbf{x}, \mathbf{z}) = dist(\mathbf{x}, \mathbf{y}) + dist(\mathbf{y}, \mathbf{z})$$

$$\Rightarrow dist(F(\mathbf{x}), F(\mathbf{z})) = dist(F(\mathbf{x}), F(\mathbf{y})) + dist(F(\mathbf{y}), F(\mathbf{z}))$$

$$\Rightarrow F(\mathbf{x}), F(\mathbf{y}), F(\mathbf{z}) \text{ lie on a line with } \mathbf{y} \text{ between } \mathbf{x} \text{ and } \mathbf{z}$$

giving the desired conclusion.

Symmetry

Definition. A symmetry of a set $S \subseteq \mathbb{R}^n$ is an isometry $F \in \text{Trans}(\mathbb{R}^n)$ so that F(S) = S.

Proposition 18.4. For every $S \subseteq \mathbb{R}^n$, the set of symmetries of S is a subgroup of Trans(S).

Proof. Let \mathcal{G} be the set of symmetries of S. We need to prove that \mathcal{G} contains the identity, is closed under products, and closed under inverses.

(*identity*) The identity I satisfies I(S) = S so $I \in \mathcal{G}$.

(mult. closure) If $F, G \in \mathcal{G}$ then F(S) = S and G(S) = S we find that FG(S) = F(G(S)) = F(S) = S and thus $FG \in \mathcal{G}$.

(inverses) Finally, if $F \in \mathcal{G}$ then F(S) = S so F maps S bijectively to S. It follows that F^{-1} also maps S bijectively to S, so $F^{-1} \in \mathcal{G}$.

Linearity

Definition. A function $F : \mathbb{R}^n \to \mathbb{R}^m$ is called *linear* if it satisfies the following properties:

- (1) For every $\mathbf{x} \in \mathbb{R}^n$ and every $t \in \mathbb{R}$ we have $F(t\mathbf{x}) = tF(\mathbf{x})$.
- (2) For every $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ we have $F(\mathbf{x} + \mathbf{y}) = F(\mathbf{x}) + F(\mathbf{y})$.

Note: If F is linear, then there exists an $m \times n$ matrix A so that the function F is given by the rule $F(\mathbf{x}) = A\mathbf{x}$.

Definition. We say that a function F fixes \mathbf{x} if $F(\mathbf{x}) = \mathbf{x}$.

Lemma 18.5. Every isometry that fixes 0 is linear.

Proof. Let $F \in \text{Trans}(\mathbb{R}^n)$ be an isometry that satisfies $F(\mathbf{0}) = \mathbf{0}$. We will show that F satisfies (1) and (2) in the definition of linear.

To prove (1) let $\mathbf{x} \in \mathbb{R}^n$ and let $t \in \mathbb{R}$. If $\mathbf{x} = \mathbf{0}$ then $F(t\mathbf{x}) = F(\mathbf{0}) = \mathbf{0} = t\mathbf{0}$. So, we may assume $\mathbf{x} \neq \mathbf{0}$. Let $\mathbf{y} = F(\mathbf{x})$ and observe that since F is an isometry fixing $\mathbf{0}$ we must have

$$||\mathbf{x}|| = \operatorname{dist}(\mathbf{x}, \mathbf{0}) = \operatorname{dist}(\mathbf{y}, \mathbf{0}) = ||\mathbf{y}||$$

Define $L_{\mathbf{x}}$ to be the line $\text{Span}(\mathbf{x})$ and $L_{\mathbf{y}}$ to be the line $\text{Span}(\mathbf{y})$ and note that Lemma 18.3 shows that $F(L_{\mathbf{x}}) = L_{\mathbf{y}}$. Now, $t\mathbf{x}$ is the unique point on $L_{\mathbf{x}}$ that has distance $||t\mathbf{x}||$ to $\mathbf{0}$ and distance $||(t-1)\mathbf{x}||$ to \mathbf{x} . Similarly, $t\mathbf{y}$ is the unique point on $L_{\mathbf{y}}$ that has distance $||t\mathbf{y}||$ to $\mathbf{0}$ and distance $||(t-1)\mathbf{y}||$ to \mathbf{y} . It follows that $F(t\mathbf{x}) = t\mathbf{y} = tF(\mathbf{x})$ as desired.

To prove (2) let $\mathbf{x}, \mathbf{x}' \in \mathbb{R}^n$. Since F is an isometry, it must map the midpoint between \mathbf{x} and \mathbf{x}' to the midpoint between their images $F(\mathbf{x})$ and $F(\mathbf{x}')$, so

$$F(\frac{1}{2}\mathbf{x} + \frac{1}{2}\mathbf{x}') = \frac{1}{2}F(\mathbf{x}) + \frac{1}{2}F(\mathbf{x}').$$

It follows from (1) that

$$\frac{1}{2}F(\mathbf{x} + \mathbf{x}') = F(\frac{1}{2}\mathbf{x} + \frac{1}{2}\mathbf{x}').$$

Combining these equations gives $F(\mathbf{x} + \mathbf{x}') = F(\mathbf{x}) + F(\mathbf{x}')$ as desired.

Lemma 18.6. Every isometry is an affine transformation.

Proof. Let $F \in \text{Trans}(\mathbb{R}^n)$ be an isometry and let $\mathbf{y} = F(\mathbf{0})$. Now we may define the transformation $G = T_{-\mathbf{y}}F$ and we have

$$G(\mathbf{0}) = T_{-\mathbf{y}}F(\mathbf{0}) = T_{-\mathbf{y}}(\mathbf{y}) = \mathbf{0}$$

It follows from Lemma 18.5 that G is linear, so we may choose a matrix A so that $G(\mathbf{x}) = A\mathbf{x}$. Now $F = (T_{-\mathbf{y}})^{-1}G = T_{\mathbf{y}}G$ so F is given by the rule $F(\mathbf{x}) = A\mathbf{x} + \mathbf{y}$, so F is an affine transformation.