18 Isometries

Basic Properties

Recall that the distance between two points $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ is given by

$$
\operatorname{dist}(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|=\sqrt{(\mathbf{x}-\mathbf{y}) \cdot(\mathbf{x}-\mathbf{y})}
$$

Definition. A function $F \in \operatorname{Trans}\left(\mathbb{R}^{n}\right)$ is an isometry if every $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ satisfy

$$
\operatorname{dist}(F(\mathbf{x}), F(\mathbf{y}))=\operatorname{dist}(\mathbf{x}, \mathbf{y})
$$

In words, we say that a function F is an isometry if it preserves distances. Isometries are also called rigid transformations and we view them as the natural family of transformations that preserve the "structure" of Euclidean space.

Example: In \mathbb{R}^{2} (as we will prove) every rotation $R_{\mathbf{x}, \theta}$ and every mirror M_{L} is an isometry.
Our goal is to develop an understanding of isometries. The next two lemmas take a couple of steps toward this goal.

Lemma 18.1. Every translation is an isometry
Proof. For the translation $T_{\mathbf{z}}$ and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. We have

$$
\operatorname{dist}\left(T_{\mathbf{z}}(\mathbf{x}), T_{\mathbf{z}}(\mathbf{y})\right)=\operatorname{dist}(\mathbf{z}+\mathbf{x}, \mathbf{z}+\mathbf{y})=\|(\mathbf{z}+\mathbf{x})-(\mathbf{z}+\mathbf{y})\|=\|\mathbf{x}-\mathbf{y}\|=\operatorname{dist}(\mathbf{x}, \mathbf{y})
$$

Lemma 18.2. The set of all isometries of \mathbb{R}^{n} is a subgroup of $\operatorname{Trans}\left(\mathbb{R}^{n}\right)$
Proof. We need to show identity containment and closure under multiplication and inverses. (identity) It is immediate from the definition that the identity is an isometry.
(mult. closure) If F, G are isometries of \mathbb{R}^{n} and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ then

$$
\operatorname{dist}(F G(\mathbf{x}), F G(\mathbf{y}))=\operatorname{dist}(F(G(\mathbf{x})), F(G(\mathbf{y})))=\operatorname{dist}(G(\mathbf{x})), G(\mathbf{y}))=\operatorname{dist}(\mathbf{x}, \mathbf{y})
$$

It follows that $F G$ is an isometry, thus establishing closure under multiplication. (inverses) Let F be an isometry and let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. Since F is an isometry

$$
\operatorname{dist}\left(F^{-1}(\mathbf{x}), F^{-1}(\mathbf{y})\right)=\operatorname{dist}\left(F\left(F^{-1}(\mathbf{x})\right), F\left(F^{-1}(\mathbf{y})\right)\right)=\operatorname{dist}(\mathbf{x}, \mathbf{y})
$$

and it follows that F^{-1} is also an isometry. This establishes closure under inverses.

Lemma 18.3. Let $F \in \operatorname{Trans}\left(\mathbb{R}^{n}\right)$ be an isometry. If L is a line in \mathbb{R}^{n}, then $F(L)$ is a line.
Proof. To prove this lemma, it suffices to show that whenever $\mathbf{x}, \mathbf{y}, \mathbf{z}$ lie on a line, then $F(\mathbf{x}), F(\mathbf{y}), F(\mathbf{z})$ lie on a line. So assume $\mathbf{x}, \mathbf{y}, \mathbf{z}$ lie on a line with \mathbf{y} between \mathbf{x} and \mathbf{z}. Then

$$
\begin{aligned}
& \operatorname{dist}(\mathbf{x}, \mathbf{z})=\operatorname{dist}(\mathbf{x}, \mathbf{y})+\operatorname{dist}(\mathbf{y}, \mathbf{z}) \\
\Rightarrow & \operatorname{dist}(F(\mathbf{x}), F(\mathbf{z}))=\operatorname{dist}(F(\mathbf{x}), F(\mathbf{y}))+\operatorname{dist}(F(\mathbf{y}), F(\mathbf{z})) \\
\Rightarrow & F(\mathbf{x}), F(\mathbf{y}), F(\mathbf{z}) \text { lie on a line with } \mathbf{y} \text { between } \mathbf{x} \text { and } \mathbf{z}
\end{aligned}
$$

giving the desired conclusion.

Symmetry

Definition. A symmetry of a set $S \subseteq \mathbb{R}^{n}$ is an isometry $F \in \operatorname{Trans}\left(\mathbb{R}^{n}\right)$ so that $F(S)=S$.
Proposition 18.4. For every $S \subseteq \mathbb{R}^{n}$, the set of symmetries of S is a subgroup of $\operatorname{Trans}(S)$.
Proof. Let \mathcal{G} be the set of symmetries of S. We need to prove that \mathcal{G} contains the identity, is closed under products, and closed under inverses.
(identity) The identity I satisfies $I(S)=S$ so $I \in \mathcal{G}$.
(mult. closure) If $F, G \in \mathcal{G}$ then $F(S)=S$ and $G(S)=S$ we find that $F G(S)=F(G(S))=$ $F(S)=S$ and thus $F G \in \mathcal{G}$.
(inverses) Finally, if $F \in \mathcal{G}$ then $F(S)=S$ so F maps S bijectively to S. It follows that F^{-1} also maps S bijectively to S, so $F^{-1} \in \mathcal{G}$.

Linearity

Definition. A function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called linear if it satisfies the following properties:
(1) For every $\mathbf{x} \in \mathbb{R}^{n}$ and every $t \in \mathbb{R}$ we have $F(t \mathbf{x})=t F(\mathbf{x})$.
(2) For every $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ we have $F(\mathbf{x}+\mathbf{y})=F(\mathbf{x})+F(\mathbf{y})$.

Note: If F is linear, then there exists an $m \times n$ matrix A so that the function F is given by the rule $F(\mathbf{x})=A \mathbf{x}$.

Definition. We say that a function F fixes \mathbf{x} if $F(\mathbf{x})=\mathbf{x}$.

Lemma 18.5. Every isometry that fixes $\mathbf{0}$ is linear.
Proof. Let $F \in \operatorname{Trans}\left(\mathbb{R}^{n}\right)$ be an isometry that satisfies $F(\mathbf{0})=\mathbf{0}$. We will show that F satisfies (1) and (2) in the definition of linear.

To prove (1) let $\mathbf{x} \in \mathbb{R}^{n}$ and let $t \in \mathbb{R}$. If $\mathbf{x}=\mathbf{0}$ then $F(t \mathbf{x})=F(\mathbf{0})=\mathbf{0}=t \mathbf{0}$. So, we may assume $\mathbf{x} \neq \mathbf{0}$. Let $\mathbf{y}=F(\mathbf{x})$ and observe that since F is an isometry fixing $\mathbf{0}$ we must have

$$
\|\mathbf{x}\|=\operatorname{dist}(\mathbf{x}, \mathbf{0})=\operatorname{dist}(\mathbf{y}, \mathbf{0})=\|\mathbf{y}\|
$$

Define $L_{\mathbf{x}}$ to be the line $\operatorname{Span}(\mathbf{x})$ and $L_{\mathbf{y}}$ to be the line $\operatorname{Span}(\mathbf{y})$ and note that Lemma 18.3 shows that $F\left(L_{\mathbf{x}}\right)=L_{\mathbf{y}}$. Now, $t \mathbf{x}$ is the unique point on $L_{\mathbf{x}}$ that has distance $\|t \mathbf{x}\|$ to $\mathbf{0}$ and distance $\|(t-1) \mathbf{x}\|$ to \mathbf{x}. Similarly, $t \mathbf{y}$ is the unique point on $L_{\mathbf{y}}$ that has distance $\|t \mathbf{y}\|$ to $\mathbf{0}$ and distance $\|(t-1) \mathbf{y}\|$ to \mathbf{y}. It follows that $F(t \mathbf{x})=t \mathbf{y}=t F(\mathbf{x})$ as desired.

To prove (2) let $\mathbf{x}, \mathbf{x}^{\prime} \in \mathbb{R}^{n}$. Since F is an isometry, it must map the midpoint between \mathbf{x} and \mathbf{x}^{\prime} to the midpoint between their images $F(\mathbf{x})$ and $F\left(\mathbf{x}^{\prime}\right)$, so

$$
F\left(\frac{1}{2} \mathbf{x}+\frac{1}{2} \mathbf{x}^{\prime}\right)=\frac{1}{2} F(\mathbf{x})+\frac{1}{2} F\left(\mathbf{x}^{\prime}\right) .
$$

It follows from (1) that

$$
\frac{1}{2} F\left(\mathbf{x}+\mathbf{x}^{\prime}\right)=F\left(\frac{1}{2} \mathbf{x}+\frac{1}{2} \mathbf{x}^{\prime}\right)
$$

Combining these equations gives $F\left(\mathbf{x}+\mathbf{x}^{\prime}\right)=F(\mathbf{x})+F\left(\mathbf{x}^{\prime}\right)$ as desired.
Lemma 18.6. Every isometry is an affine transformation.
Proof. Let $F \in \operatorname{Trans}\left(\mathbb{R}^{n}\right)$ be an isometry and let $\mathbf{y}=F(\mathbf{0})$. Now we may define the transformation $G=T_{-\mathbf{y}} F$ and we have

$$
G(\mathbf{0})=T_{-\mathbf{y}} F(\mathbf{0})=T_{-\mathbf{y}}(\mathbf{y})=\mathbf{0}
$$

It follows from Lemma 18.5 that G is linear, so we may choose a matrix A so that $G(\mathbf{x})=A \mathbf{x}$. Now $F=\left(T_{-\mathbf{y}}\right)^{-1} G=T_{\mathbf{y}} G$ so F is given by the rule $F(\mathbf{x})=A \mathbf{x}+\mathbf{y}$, so F is an affine transformation.

