15 Transformation Subgroups

Subgroups

Informally, we have described a symmetry of an object as a "structure-preserving" transformation that sends the object back to itself. As an example of what this informal notion means, consider a square S in the plane. Rotating S by 90° around the centre of S is a symmetry of it. However, the transformation of \mathbb{R}^{2} that fixes every point of the plane except for two opposite corners of S and interchanges these two is not a symmetry of S. To work with symmetries of such objects, we will not be working with all of the transformation group $\operatorname{Trans}\left(\mathbb{R}^{n}\right)$, but rather a subset of it. This brings us to the following key notion.

Definition. A subset of transformations, $\mathcal{G} \subseteq \operatorname{Trans}(X)$ is a subgroup if it satisfies:

- $I_{X} \in \mathcal{G}$. (Identity containment)
- If $F, G \in \mathcal{G}$, then $F G \in \mathcal{G}$. (Closure under products)
- If $F \in \mathcal{G}$, then $F^{-1} \in \mathcal{G}$. (Closure under inverses)

In this case we also call \mathcal{G} a transformation subgroup or a subgroup of transformations.

Note: A subgroup $\mathcal{G} \subseteq \operatorname{Trans}(X)$ has all of the key features of the original group (the identity, products, and inverses). Therefore, \mathcal{G} is group on its own.

Continuing our informal discussion of symmetry, let us note that the set of symmetries of a square will naturally form a subgroup of $\operatorname{Trans}\left(\mathbb{R}^{2}\right)$ since the identity function is a symmetry, the product of two symmetries is another symmetry (this just means performing one then the other) and the inverse of a symmetry is a symmetry.

Examples: Here are some subgroups of $\operatorname{Trans}(\mathbb{R})$.

1. $\mathcal{F}=\{F \in \operatorname{Trans}(\mathbb{R}) \mid F$ is continuous $\}$.
2. $\mathcal{G}=\{F \in \operatorname{Trans}(\mathbb{R}) \mid F$ is differentiable $\}$.
3. $\mathcal{H}=\{F \in \operatorname{Trans}(\mathbb{R}) \mid F(x)=c x$ for some $c \neq 0\}$.
4. $\mathcal{J}=\{F \in \operatorname{Trans}(\mathbb{R}) \mid F(x)=x+c$ for some $c \in \mathbb{R}\}$.

Subgroups of S_{n}

Before diving into the world of subgroups of $\operatorname{Trans}\left(\mathbb{R}^{n}\right)$ let us pause to prove one result concerning a subgroup of S_{n}.

Definition. Let $A_{n}=\left\{A \in S_{n} \mid A\right.$ is even $\}$. The following lemma shows that A_{n} is a subgroup and we call it the alternating group.

Lemma 15.1. A_{n} is a subgroup of S_{n}.

Proof. To prove that a subset of a group is a subgroup, we need to check that it contains the identity, is closed under products, and is closed under inverses. We previously showed that the identity is an even permutation, so $I \in S_{n}$. We also proved that whenever A, B are even, the product $A B$ is even, so A_{n} is closed under products. Finally, if A is even, then A^{-1} must also be even since $A A^{-1}=I$ is even. Therefore A_{n} is closed under inverses.

Proposition 15.2. The groups S_{n} and A_{n} have sizes $\left|S_{n}\right|=n$! and $\left|A_{n}\right|=\frac{1}{2} n$! for $n \geq 2$
Proof. To see that the number of permutations in S_{n} is equal to n !, consider one row notation. There are n choices for the first position, $n-1$ for the second, $n-2$ for the third, and so on. The total number of elements is therefore $n(n-1) \ldots(2)(1)=n$!.
Define a function $F: S_{n} \rightarrow S_{n}$ by the rule $F(A)=(12) A$. The composition of this function with itself is the identity (since applying it twice has the effect of multiplying the input permutation on the left by $(12)(12)=I)$. It follows from this that F is a bijection. If $A \in S_{n}$ is even, then $F(A)$ is odd, and if A is odd, then $F(A)$ is even. Therefore $\left|A_{n}\right|=$ $\left|F\left(A_{n}\right)\right|=\left|S_{n} \backslash A_{n}\right|$ from which it follows that $\left|A_{n}\right|=\frac{1}{2}\left|S_{n}\right|=\frac{1}{2} n!$.

Subgroups of $\operatorname{Trans}\left(\mathbb{R}^{n}\right)$

Definition. For every $\mathbf{y} \in \mathbb{R}^{n}$ define the function $T_{\mathbf{y}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by the rule $T_{\mathbf{y}}(\mathbf{x})=\mathbf{x}+\mathbf{y}$. We call the function $T_{\mathbf{y}}$ a translation by \mathbf{y}. We let $\mathcal{T}_{n}=\left\{T_{\mathbf{y}} \mid \mathbf{y} \in \mathbb{R}^{n}\right\}$. The following lemma shows that \mathcal{T}_{n} is a subgroup and we call it the translation group.

Lemma 15.3. \mathcal{T}_{n} is a subgroup of $\operatorname{Trans}\left(\mathbb{R}^{n}\right)$.

Proof. For every $\mathbf{y} \in \mathbb{R}^{n}$ the functions $T_{\mathbf{y}}$ and $T_{-\mathbf{y}}$ are inverse. It follows immediately from this that \mathcal{T} is a subset of $\operatorname{Trans}\left(\mathbb{R}^{n}\right)$. Furthermore, this observation shows that \mathcal{T} is closed under inverses. The function $T_{\mathbf{0}}$ is the identity function since it maps \mathbf{x} to $\mathbf{x}+\mathbf{0}=\mathbf{x}$. To prove closure under products, let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^{n}$ and observe that

$$
T_{\mathbf{y}} T_{\mathbf{z}}(\mathrm{x})=T_{\mathbf{y}}(\mathbf{x}+\mathbf{z})=\mathbf{x}+\mathbf{z}+\mathbf{y}=T_{\mathbf{y}+\mathbf{z}}(\mathrm{x})
$$

It follows that $T_{\mathbf{y}} T_{\mathbf{z}}=T_{\mathbf{y}+\mathbf{z}}$, so \mathcal{T} is closed under products. It follows that \mathcal{T} is a subgroup of $\operatorname{Trans}\left(\mathbb{R}^{n}\right)$ as desired.

Note: Usually when working with functions it is most convenient to give them names. For instance, we may define $f: \mathbb{R} \rightarrow \mathbb{R}$ by the rule $f(x)=x^{2}$ and this gives the name f to the "squaring function". However, in other instances we might just write $y=x^{2}$ to describe this same function without giving it a name. Another variation of this is to write $x \rightarrow x^{2}$ to describe the same function. More generally, we will use the notation $\mathbf{x} \rightarrow$ (expression in terms of \mathbf{x}) to describe a functions of Euclidean space (in many such instances, the domain and codomain must be inferred from context). ${ }^{1}$

Definition. $G L_{n}=\{\mathbf{x} \rightarrow A \mathbf{x} \mid A$ is an invertible $n \times n$ matrix $\}$. The following lemma shows that $G L_{n}$ is a subgroup and we call it the general linear group.

Lemma 15.4. $G L_{n}$ is a subgroup of $\operatorname{Trans}\left(\mathbb{R}^{n}\right)$.
Proof. For every invertible matrix A, the function $\mathbf{x} \rightarrow A \mathbf{x}$ has inverse function $\mathbf{x} \rightarrow A^{-1} \mathbf{x}$. Therefore $G L_{n}$ is a subset of $\operatorname{Trans}\left(\mathbb{R}^{n}\right)$. Furthermore, this observation shows that $G L_{n}$ is closed under inverses. The identity function I is given by the identity matrix, so it is contained in $G L_{n}$. To prove closure under multiplication, let A, B be invertible matrices and note that $\operatorname{det} A \neq 0 \neq \operatorname{det} B$. Now the composition of $\mathbf{x} \rightarrow A \mathbf{x}$ and $\mathbf{x} \rightarrow B \mathbf{x}$ is the function $\mathbf{x} \rightarrow A B \mathbf{x}$. Since $\operatorname{det} A B=\operatorname{det} A \operatorname{det} B \neq 0$ the matrix $A B$ is also invertible, and therefore, $G L_{n}$ is closed under products.

Definition. $\quad A G L_{n}=\left\{\mathbf{x} \rightarrow A \mathbf{x}+\mathbf{w} \mid A\right.$ is an invertible $n \times n$ matrix and $\left.\mathbf{w} \in \mathbb{R}^{n}\right\}$. The following lemma shows that $A G L_{n}$ is a subgroup and we call it the general affine group.

[^0]Lemma 15.5. $A G L_{n}$ is a subgroup of $\operatorname{Trans}\left(\mathbb{R}^{n}\right)$.
Proof. Every function in $A G L_{n}$ is the composition of a function in $G L_{n}$ and a function in \mathcal{T}_{n} so it is indeed a transformation. Therefore $A G L_{n}$ is a subset of $\operatorname{Trans}\left(\mathbb{R}^{n}\right)$. The identity function is given by $\mathbf{x} \rightarrow I \mathbf{x}+\mathbf{0}$ so it is contained in $A G L_{n}$. Let A, B be invertible and let $\mathbf{y}, \mathbf{z} \in \mathbb{R}^{n}$. The composition of $\mathbf{x} \rightarrow A \mathbf{x}+\mathbf{y}$ and $\mathbf{x} \rightarrow B \mathbf{x}+\mathbf{z}$ sends \mathbf{x} to

$$
B(A \mathbf{x}+\mathbf{y})+\mathbf{z}=B A \mathbf{x}+(B \mathbf{y}+\mathbf{z})
$$

Since A, B are invertible, the matrix $B A$ is also invertible and we find that $A G L_{n}$ is closed under products. Finally we claim that the function $\mathbf{x} \rightarrow A \mathbf{x}+\mathbf{y}$ has inverse $\mathbf{x} \rightarrow A^{-1} \mathbf{x}+$ $A^{-1}(-\mathbf{y})$. To verify this, note that the composition of these functions sends \mathbf{x} to

$$
A\left(A^{-1} \mathbf{x}+A^{-1}(-\mathbf{y})\right)+\mathbf{y}=\mathbf{x}+A^{-1} A(-\mathbf{y})+\mathbf{y}=\mathbf{x} .
$$

We conclude that $A G L_{n}$ is closed under inverses, and is therefore a subgroup.
It is straightforward to see that $G L_{n}, \mathcal{T}_{n} \subseteq A G L_{n}$. The only transformation in \mathcal{T}_{n} which sends $\mathbf{0}$ to $\mathbf{0}$ is the identity, so $G L_{n} \cap \mathcal{T}_{n}=\{I\}$. This gives the Venn Diagram below.

[^0]: ${ }^{1}$ Why would we want to describe a function but not name it? Naming an object gives it a certain signficance and status, so for clarity we wish to keep names to a minimum. Our choice not to give a name to a function is a decision to place emphasis elsewhere.

