
15 Transformation Subgroups

Subgroups

Informally, we have described a symmetry of an object as a “structure-preserving” trans-

formation that sends the object back to itself. As an example of what this informal notion

means, consider a square S in the plane. Rotating S by 90◦ around the centre of S is a

symmetry of it. However, the transformation of R2 that fixes every point of the plane except

for two opposite corners of S and interchanges these two is not a symmetry of S. To work

with symmetries of such objects, we will not be working with all of the transformation group

Trans(Rn), but rather a subset of it. This brings us to the following key notion.

Definition. A subset of transformations, G ⊆ Trans(X) is a subgroup if it satisfies:

• IX ∈ G. (Identity containment)

• If F,G ∈ G, then FG ∈ G. (Closure under products)

• If F ∈ G, then F−1 ∈ G. (Closure under inverses)

In this case we also call G a transformation subgroup or a subgroup of transformations.

Note: A subgroup G ⊆ Trans(X) has all of the key features of the original group (the

identity, products, and inverses). Therefore, G is group on its own.

Continuing our informal discussion of symmetry, let us note that the set of symmetries of a

square will naturally form a subgroup of Trans(R2) since the identity function is a symmetry,

the product of two symmetries is another symmetry (this just means performing one then

the other) and the inverse of a symmetry is a symmetry.

Examples: Here are some subgroups of Trans(R).

1. F = {F ∈ Trans(R) | F is continuous}.

2. G = {F ∈ Trans(R) | F is differentiable}.

3. H = {F ∈ Trans(R) | F (x) = cx for some c 6= 0}.

4. J = {F ∈ Trans(R) | F (x) = x + c for some c ∈ R}.
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Subgroups of Sn

Before diving into the world of subgroups of Trans(Rn) let us pause to prove one result

concerning a subgroup of Sn.

Definition. Let An = {A ∈ Sn | A is even}. The following lemma shows that An is a

subgroup and we call it the alternating group.

Lemma 15.1. An is a subgroup of Sn.

Proof. To prove that a subset of a group is a subgroup, we need to check that it contains

the identity, is closed under products, and is closed under inverses. We previously showed

that the identity is an even permutation, so I ∈ Sn. We also proved that whenever A,B are

even, the product AB is even, so An is closed under products. Finally, if A is even, then

A−1 must also be even since AA−1 = I is even. Therefore An is closed under inverses.

Proposition 15.2. The groups Sn and An have sizes |Sn| = n! and |An| = 1
2
n! for n ≥ 2

Proof. To see that the number of permutations in Sn is equal to n!, consider one row notation.

There are n choices for the first position, n − 1 for the second, n − 2 for the third, and so

on. The total number of elements is therefore n(n− 1) . . . (2)(1) = n!.

Define a function F : Sn → Sn by the rule F (A) = (12)A. The composition of this function

with itself is the identity (since applying it twice has the effect of multiplying the input

permutation on the left by (12)(12) = I). It follows from this that F is a bijection. If

A ∈ Sn is even, then F (A) is odd, and if A is odd, then F (A) is even. Therefore |An| =

|F (An)| = |Sn \ An| from which it follows that |An| = 1
2
|Sn| = 1

2
n!.

Subgroups of Trans(Rn)

Definition. For every y ∈ Rn define the function Ty : Rn → Rn by the rule Ty(x) = x+y.

We call the function Ty a translation by y. We let Tn = {Ty | y ∈ Rn}. The following lemma

shows that Tn is a subgroup and we call it the translation group.

Lemma 15.3. Tn is a subgroup of Trans(Rn).



3

Proof. For every y ∈ Rn the functions Ty and T−y are inverse. It follows immediately from

this that T is a subset of Trans(Rn). Furthermore, this observation shows that T is closed

under inverses. The function T0 is the identity function since it maps x to x + 0 = x. To

prove closure under products, let x,y, z ∈ Rn and observe that

TyTz(x) = Ty(x + z) = x + z + y = Ty+z(x)

It follows that TyTz = Ty+z, so T is closed under products. It follows that T is a subgroup

of Trans(Rn) as desired.

Note: Usually when working with functions it is most convenient to give them names.

For instance, we may define f : R → R by the rule f(x) = x2 and this gives the name

f to the “squaring function”. However, in other instances we might just write y = x2

to describe this same function without giving it a name. Another variation of this is to

write x → x2 to describe the same function. More generally, we will use the notation

x → (expression in terms of x) to describe a functions of Euclidean space (in many such

instances, the domain and codomain must be inferred from context).1

Definition. GLn = {x → Ax | A is an invertible n× n matrix}. The following lemma

shows that GLn is a subgroup and we call it the general linear group.

Lemma 15.4. GLn is a subgroup of Trans(Rn).

Proof. For every invertible matrix A, the function x→ Ax has inverse function x→ A−1x.

Therefore GLn is a subset of Trans(Rn). Furthermore, this observation shows that GLn

is closed under inverses. The identity function I is given by the identity matrix, so it is

contained in GLn. To prove closure under multiplication, let A,B be invertible matrices and

note that detA 6= 0 6= detB. Now the composition of x→ Ax and x→ Bx is the function

x→ ABx. Since detAB = detA detB 6= 0 the matrix AB is also invertible, and therefore,

GLn is closed under products.

Definition. AGLn = {x → Ax + w | A is an invertible n× n matrix and w ∈ Rn}. The

following lemma shows that AGLn is a subgroup and we call it the general affine group.

1Why would we want to describe a function but not name it? Naming an object gives it a certain

signficance and status, so for clarity we wish to keep names to a minimum. Our choice not to give a name

to a function is a decision to place emphasis elsewhere.
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Lemma 15.5. AGLn is a subgroup of Trans(Rn).

Proof. Every function in AGLn is the composition of a function in GLn and a function in

Tn so it is indeed a transformation. Therefore AGLn is a subset of Trans(Rn). The identity

function is given by x→ Ix + 0 so it is contained in AGLn. Let A,B be invertible and let

y, z ∈ Rn. The composition of x→ Ax + y and x→ Bx + z sends x to

B (Ax + y) + z = BAx + (By + z)

Since A,B are invertible, the matrix BA is also invertible and we find that AGLn is closed

under products. Finally we claim that the function x → Ax + y has inverse x → A−1x +

A−1(−y). To verify this, note that the composition of these functions sends x to

A
(
A−1x + A−1(−y)

)
+ y = x + A−1A(−y) + y = x.

We conclude that AGLn is closed under inverses, and is therefore a subgroup.

It is straightforward to see that GLn, Tn ⊆ AGLn. The only transformation in Tn which

sends 0 to 0 is the identity, so GLn ∩ Tn = {I}. This gives the Venn Diagram below.

Trans(Rn)
AGLn

GLnTn I


