13 Permutations

Definition. For every positive integer n we define $S_{n}=\operatorname{Trans}(\{1,2, \ldots, n\})$. An element of S_{n} is called a permutation. So, a permutation is a bijection from $\{1,2, \ldots, n\}$ to $\{1,2, \ldots, n\}$. In the example below we define a permutation that we carry through this section.

Example: A permutation $B \in S_{6}$.

Two Row Notation. We may denote $A \in S_{n}$ by the two row array

$$
\left(\begin{array}{cccc}
1 & 2 & \ldots & n \\
A(1) & A(2) & \ldots & A(n)
\end{array}\right)
$$

Here each element in the top row maps to the one below it.
Example Continued: Two row notation for our example permutation B is

$$
B=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 3 & 1 & 4 & 6 & 5
\end{array}\right)
$$

One Row Notation. If $A \in S_{n}$ then we may represent A by the sequence $(A(1), A(2), \ldots, A(n))$. So, the $i^{\text {th }}$ term of this sequence is $A(i)$. This is just two row notation without the top row.

Example Continued: One row notation for our example permutation B is

$$
B=(231465)
$$

Graphic Representation. We can denote a permutation $A \in S_{n}$ by drawing a dot labelled i in the plane for $1 \leq i \leq n$ and then drawing an arrow from i to j if $A(i)=j$.

Example Continued: We can describe B with the following graphic representation.

Definition. Let $A \in S_{n}$. A cycle of A is a sequence $\left(a_{1} a_{2} \ldots a_{k}\right)$ of distinct numbers from the set $\{1, \ldots, n\}$ where $A\left(a_{i}\right)=a_{i+1}$ for $1 \leq i \leq k-1$ and $A\left(a_{k}\right)=a_{1}$. We call k the length of the cycle.

Example Continued: The permutation B has cycles (123), (4), and (56). Note: (231) is also a cycle of B, but we treat this as the same as (123)

Extended Cycle Notation: The extended cycle representation of a permutation $A \in S_{n}$ is a list of cycles of A so that every element in $\{1,2, \ldots, n\}$ appears in exactly one of these cycles.

Example Continued: Our permutation B has extended cycle notation

$$
B=(123)(4)(56)
$$

Cycle Notation: We modify the extended cycle notation by omitting cycles of length one.

Example Continued: Our permutation B has cycle notation

$$
B=(123)(56)
$$

Composing permutations: To compose two permutations in cycle notation, write them down and then work right to left to see where each element goes. For instance taking $B=(123)(56)$ and $C=(1356)(24)$ we find

$$
B C=(123)(56)(1356)(24)=(1)(2436)(5)=(2436)
$$

