11 Minkowski Polarity

Recall: If $\mathbf{y} \in \mathbb{R}^n$ and $t \in \mathbb{R}$, the half-space $H_{\mathbf{y}}^{\leq t}$ is given by

$$H_{\mathbf{y}}^{\leq t} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{y} \cdot \mathbf{x} \leq t \}.$$

Theorem 11.1 (Polytope Duality). Every polytope $P = \operatorname{Conv}(\mathbf{x}_1, \dots, \mathbf{x}_k)$ can be expressed as an intersection of finitely many half-spaces: There exist $\mathbf{y}_1, \dots, \mathbf{y}_j$ and t_1, \dots, t_j so that

$$P = \bigcap_{i=1}^{j} H_{\mathbf{y}_i}^{\leq t_i}.$$

Example: The following triangle T in \mathbb{R}^2 is the intersection of the half-spaces $H_{\mathbf{y}_1}^{\leq t_1}, \dots H_{\mathbf{y}_3}^{\leq t_3}$.

Minkowski discovered a beautiful way to realize this duality for polytopes and even more general sets. The following definition is his idea:

Definition. For any set $S \subseteq \mathbb{R}^n$, the *polar* of S is defined to be

$$S^{\circ} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \cdot \mathbf{y} \le 1 \text{ holds for every } \mathbf{y} \in S \}.$$

Example 1:

Note: For a finite set of points $\{\mathbf{y}_1, \dots, \mathbf{y}_k\}$ we can represent the polar as an intersection of a finite list of half-spaces:

$$\{\mathbf{y}_1, \dots, \mathbf{y}_k\}^{\circ} = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \cdot \mathbf{y}_i \le 1 \text{ for } 1 \le i \le k\}$$
$$= H_{\mathbf{y}_1}^{\le 1} \cap H_{\mathbf{y}_2}^{\le 1} \dots \cap H_{\mathbf{y}_k}^{\le 1}.$$

Example 2:

The next lemma shows that the polar of a polytope is the same as the polar of its set of vertices.

Lemma 11.2. If
$$P = \text{Conv}(\mathbf{v}_1, \dots, \mathbf{v}_k)$$
, then $P^{\circ} = {\mathbf{v}_1, \dots, \mathbf{v}_k}^{\circ}$.

Proof. It follows from the definition of the polar that every $\mathbf{x} \in P^{\circ}$ must satisfy $\mathbf{x} \cdot \mathbf{v}_k \leq 1$. Therefore $P^{\circ} \subseteq \{\mathbf{v}_1, \dots, \mathbf{v}_k\}^{\circ}$. To complete the proof, we need to show $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}^{\circ} \subseteq P^{\circ}$. To do this, let $\mathbf{x} \in \mathbb{R}^n$ be an arbitrary point that satisfies $\mathbf{x} \cdot \mathbf{v}_i \leq 1$ for $1 \leq i \leq k$ and we will show that $\mathbf{x} \in P^{\circ}$. To show $\mathbf{x} \in P^{\circ}$ it suffices to check that $\mathbf{x} \cdot \mathbf{y} \leq 1$ holds for an arbitrary $\mathbf{y} \in P$. Since $\mathbf{y} \in P$ we have

$$\mathbf{y} = c_1 \mathbf{v}_1 + \ldots + c_k \mathbf{v}_k$$

for some coefficients $c_1, \ldots, c_k \geq 0$ with $c_1 + \ldots + c_k = 1$. Now we have

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{x} \cdot (c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k)$$

$$= c_1 (\mathbf{x} \cdot \mathbf{v}_1) + \dots + c_k (\mathbf{x} \cdot \mathbf{v}_k)$$

$$\leq c_1 + \dots + c_k$$

$$= 1$$

and this completes the proof.

Example 3: As a consequence of the above lemma and our first two examples we find that P = Conv((0,1), (0,-1), (1,0), (-1,0)) and Q = Conv((1,1), (1,-1), (-1,1), (-1,-1)) satisfy

$$P^{\circ} = \{(0,1), (0,-1), (1,0), (-1,0)\}^{\circ} = Q$$
, and $Q^{\circ} = \{(1,1), (1,-1), (-1,1), (-1,-1)\}^{\circ} = P$

So, the polar operation takes P to Q and Q to P. The following theorem shows that this duality holds in much greater generality.

Theorem 11.3 (Minkowski). If $S \subseteq \mathbb{R}^n$ is closed and convex and contains $\mathbf{0}$ in its interior, then $(S^{\circ})^{\circ} = S$.

Proof. First we prove that $S \subseteq (S^{\circ})^{\circ}$. To do so, let $\mathbf{y} \in S$. By the definition of the polar, every $\mathbf{x} \in S^{\circ}$ must satisfy $\mathbf{x} \cdot \mathbf{y} \leq 1$. However, it follows immediately from this that $\mathbf{y} \in (S^{\circ})^{\circ}$. Next we prove that $(S^{\circ})^{\circ} \subseteq S$. Suppose (for a contradiction) that this is not true and consider a point $\mathbf{w} \in (S^{\circ})^{\circ} \setminus S$. Since S is closed and convex, there exists a hyperplane separating \mathbf{w} and S. So, we may choose $\mathbf{z} \in \mathbb{R}^n$ and $t \in \mathbb{R}$ satisfying:

- 1. $\mathbf{z} \cdot \mathbf{w} > t$ and
- 2. $\mathbf{z} \cdot \mathbf{y} \leq t$ for every $\mathbf{y} \in S$

Since **0** is in the interior of S there exists $\epsilon > 0$ so that $\epsilon \mathbf{z} \in S$. By the second property above we have $t \geq (\epsilon \mathbf{z}) \cdot \mathbf{z} = \epsilon ||\mathbf{z}||^2 > 0$. Now define the vector $\mathbf{z}' = \frac{1}{t}\mathbf{z}$ and note that we have

- 1. $\mathbf{z}' \cdot \mathbf{w} > 1$ and
- 2. $\mathbf{z}' \cdot \mathbf{y} \leq 1$ for every $\mathbf{y} \in S$

It follows from the second part above that $\mathbf{z}' \in S^{\circ}$. However, then we have a contradiction to $w \in (S^{\circ})^{\circ}$ since $\mathbf{z}' \cdot \mathbf{w} > 1$. Therefore $(S^{\circ})^{\circ} \subseteq S$, and this completes the proof.