
11 Minkowski Polarity

Recall: If y ∈ Rn and t ∈ R, the half-space H≤ty is given by

H≤ty = {x ∈ Rn | y · x ≤ t}.

Theorem 11.1 (Polytope Duality). Every polytope P = Conv(x1, . . . ,xk) can be expressed

as an intersection of finitely many half-spaces: There exist y1, . . . ,yj and t1, . . . , tj so that

P =

j⋂
i=1

H≤tiyi
.

Example: The following triangle T in R2 is the intersection of the half-spacesH≤t1y1
, . . . H≤t3y3

.
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Minkowski discovered a beautiful way to realize this duality for polytopes and even more

general sets. The following definition is his idea:

Definition. For any set S ⊆ Rn, the polar of S is defined to be

S◦ = {x ∈ Rn | x · y ≤ 1 holds for every y ∈ S}.

Example 1:

(1; 0)(−1; 0)

(0; 1)

(0;−1)

S = f(1; 0); (0; 1); (−1; 0); (0;−1)g

(1; 1)

(1;−1)

(−1; 1)

(−1;−1)

S◦ = fx 2 R2 j x · y ≤ 1 for every y 2 Sg
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Note: For a finite set of points {y1, . . . ,yk} we can represent the polar as an intersection

of a finite list of half-spaces:

{y1, . . . ,yk}◦ = {x ∈ Rn | x · yi ≤ 1 for 1 ≤ i ≤ k}

= H≤1y1
∩H≤1y2

. . . ∩H≤1yk
.

Example 2:

(1; 0)(−1; 0)

(0; 1)

(0;−1)

T = f(1; 1); (1;−1); (−1; 1); (−1;−1)g

(1; 1)

(1;−1)

(−1; 1)

(−1;−1)

T ◦ = fx 2 R2 j x · y ≤ 1 for every y 2 Sg

The next lemma shows that the polar of a polytope is the same as the polar of its set of

vertices.

Lemma 11.2. If P = Conv(v1, . . . ,vk), then P ◦ = {v1, . . . ,vk}◦.

Proof. It follows from the definition of the polar that every x ∈ P ◦ must satisfy x · vk ≤ 1.

Therefore P ◦ ⊆ {v1, . . . ,vk}◦. To complete the proof, we need to show {v1, . . . ,vk}◦ ⊆ P ◦.

To do this, let x ∈ Rn be an arbitrary point that satisfies x ·vi ≤ 1 for 1 ≤ i ≤ k and we will

show that x ∈ P ◦. To show x ∈ P ◦ it suffices to check that x · y ≤ 1 holds for an arbitrary

y ∈ P . Since y ∈ P we have

y = c1v1 + . . .+ ckvk

for some coefficients c1, . . . , ck ≥ 0 with c1 + . . .+ ck = 1. Now we have

x · y = x · (c1v1 + . . .+ ckvk)

= c1 (x · v1) + . . .+ ck (x · vk)

≤ c1 + . . .+ ck

= 1

and this completes the proof.
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Example 3: As a consequence of the above lemma and our first two examples we find

that P = Conv((0, 1), (0,−1), (1, 0), (−1, 0)) and Q = Conv((1, 1), (1,−1), (−1, 1), (−1,−1))

satisfy

P ◦ = {(0, 1), (0,−1), (1, 0), (−1, 0)}◦ = Q, and

Q◦ = {(1, 1), (1,−1), (−1, 1), (−1,−1)}◦ = P

So, the polar operation takes P to Q and Q to P . The following theorem shows that this

duality holds in much greater generality.

Theorem 11.3 (Minkowski). If S ⊆ Rn is closed and convex and contains 0 in its interior,

then (S◦)◦ = S.

Proof. First we prove that S ⊆ (S◦)◦. To do so, let y ∈ S. By the definition of the polar,

every x ∈ S◦ must satisfy x·y ≤ 1. However, it follows immediately from this that y ∈ (S◦)◦.

Next we prove that (S◦)◦ ⊆ S. Suppose (for a contradiction) that this is not true and

consider a point w ∈ (S◦)◦ \ S. Since S is closed and convex, there exists a hyperplane

separating w and S. So, we may choose z ∈ Rn and t ∈ R satisfying:

1. z ·w > t and

2. z · y ≤ t for every y ∈ S

Since 0 is in the interior of S there exists ε > 0 so that εz ∈ S. By the second property

above we have t ≥ (εz) · z = ε||z||2 > 0. Now define the vector z′ = 1
t
z and note that we

have

1. z′ ·w > 1 and

2. z′ · y ≤ 1 for every y ∈ S

It follows from the second part above that z′ ∈ S◦. However, then we have a contradiction

to w ∈ (S◦)◦ since z′ ·w > 1. Therefore (S◦)◦ ⊆ S, and this completes the proof.


