11 Minkowski Polarity

Recall: If $\mathbf{y} \in \mathbb{R}^{n}$ and $t \in \mathbb{R}$, the half-space $H_{\mathbf{y}}^{\leq t}$ is given by

$$
H_{\mathbf{y}}^{\leq t}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{y} \cdot \mathbf{x} \leq t\right\} .
$$

Theorem 11.1 (Polytope Duality). Every polytope $P=\operatorname{Conv}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)$ can be expressed as an intersection of finitely many half-spaces: There exist $\mathbf{y}_{1}, \ldots, \mathbf{y}_{j}$ and t_{1}, \ldots, t_{j} so that

$$
P=\bigcap_{i=1}^{j} H_{\mathbf{y}_{i}}^{\leq t_{i}} .
$$

Example: The following triangle T in \mathbb{R}^{2} is the intersection of the half-spaces $H_{\mathbf{y}_{1}}^{\leq t_{1}}, \ldots H_{\mathbf{y}_{3}}^{\leq t_{3}}$.

Minkowski discovered a beautiful way to realize this duality for polytopes and even more general sets. The following definition is his idea:

Definition. For any set $S \subseteq \mathbb{R}^{n}$, the polar of S is defined to be

$$
S^{\circ}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{x} \cdot \mathbf{y} \leq 1 \text { holds for every } \mathbf{y} \in S\right\}
$$

Example 1:

$S=\{(1,0),(0,1),(-1,0),(0,-1)\}$

$$
S^{\circ}=\left\{\mathbf{x} \in \mathbf{R}^{2} \mid \mathbf{x} \cdot \mathbf{y} \leq 1 \text { for every } \mathbf{y} \in S\right\}
$$

Note: For a finite set of points $\left\{\mathbf{y}_{1}, \ldots, \mathbf{y}_{k}\right\}$ we can represent the polar as an intersection of a finite list of half-spaces:

$$
\begin{aligned}
\left\{\mathbf{y}_{1}, \ldots, \mathbf{y}_{k}\right\}^{\circ} & =\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{x} \cdot \mathbf{y}_{i} \leq 1 \text { for } 1 \leq i \leq k\right\} \\
& =H_{\mathbf{y}_{1}}^{\leq 1} \cap H_{\mathbf{y}_{2}}^{\leq 1} \ldots \cap H_{\mathbf{y}_{k}}^{\leq 1} .
\end{aligned}
$$

Example 2:

The next lemma shows that the polar of a polytope is the same as the polar of its set of vertices.

Lemma 11.2. If $P=\operatorname{Conv}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$, then $P^{\circ}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}^{\circ}$.
Proof. It follows from the definition of the polar that every $\mathbf{x} \in P^{\circ}$ must satisfy $\mathbf{x} \cdot \mathbf{v}_{k} \leq 1$. Therefore $P^{\circ} \subseteq\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}^{\circ}$. To complete the proof, we need to show $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}^{\circ} \subseteq P^{\circ}$. To do this, let $\mathbf{x} \in \mathbb{R}^{n}$ be an arbitrary point that satisfies $\mathbf{x} \cdot \mathbf{v}_{i} \leq 1$ for $1 \leq i \leq k$ and we will show that $\mathbf{x} \in P^{\circ}$. To show $\mathbf{x} \in P^{\circ}$ it suffices to check that $\mathbf{x} \cdot \mathbf{y} \leq 1$ holds for an arbitrary $\mathbf{y} \in P$. Since $\mathbf{y} \in P$ we have

$$
\mathbf{y}=c_{1} \mathbf{v}_{1}+\ldots+c_{k} \mathbf{v}_{k}
$$

for some coefficients $c_{1}, \ldots, c_{k} \geq 0$ with $c_{1}+\ldots+c_{k}=1$. Now we have

$$
\begin{aligned}
\mathbf{x} \cdot \mathbf{y} & =\mathbf{x} \cdot\left(c_{1} \mathbf{v}_{1}+\ldots+c_{k} \mathbf{v}_{k}\right) \\
& =c_{1}\left(\mathbf{x} \cdot \mathbf{v}_{1}\right)+\ldots+c_{k}\left(\mathbf{x} \cdot \mathbf{v}_{k}\right) \\
& \leq c_{1}+\ldots+c_{k} \\
& =1
\end{aligned}
$$

and this completes the proof.

Example 3: As a consequence of the above lemma and our first two examples we find that $P=\operatorname{Conv}((0,1),(0,-1),(1,0),(-1,0))$ and $Q=\operatorname{Conv}((1,1),(1,-1),(-1,1),(-1,-1))$ satisfy

$$
\begin{aligned}
& P^{\circ}=\{(0,1),(0,-1),(1,0),(-1,0)\}^{\circ}=Q, \text { and } \\
& Q^{\circ}=\{(1,1),(1,-1),(-1,1),(-1,-1)\}^{\circ}=P
\end{aligned}
$$

So, the polar operation takes P to Q and Q to P. The following theorem shows that this duality holds in much greater generality.

Theorem 11.3 (Minkowski). If $S \subseteq \mathbb{R}^{n}$ is closed and convex and contains $\mathbf{0}$ in its interior, then $\left(S^{\circ}\right)^{\circ}=S$.

Proof. First we prove that $S \subseteq\left(S^{\circ}\right)^{\circ}$. To do so, let $\mathbf{y} \in S$. By the definition of the polar, every $\mathbf{x} \in S^{\circ}$ must satisfy $\mathbf{x} \cdot \mathbf{y} \leq 1$. However, it follows immediately from this that $\mathbf{y} \in\left(S^{\circ}\right)^{\circ}$. Next we prove that $\left(S^{\circ}\right)^{\circ} \subseteq S$. Suppose (for a contradiction) that this is not true and consider a point $\mathbf{w} \in\left(S^{\circ}\right)^{\circ} \backslash S$. Since S is closed and convex, there exists a hyperplane separating \mathbf{w} and S. So, we may choose $\mathbf{z} \in \mathbb{R}^{n}$ and $t \in \mathbb{R}$ satisfying:

1. $\mathbf{z} \cdot \mathbf{w}>t$ and
2. $\mathbf{z} \cdot \mathbf{y} \leq t$ for every $\mathbf{y} \in S$

Since $\mathbf{0}$ is in the interior of S there exists $\epsilon>0$ so that $\epsilon \mathbf{z} \in S$. By the second property above we have $t \geq(\epsilon \mathbf{z}) \cdot \mathbf{z}=\epsilon\|\mathbf{z}\|^{2}>0$. Now define the vector $\mathbf{z}^{\prime}=\frac{1}{t} \mathbf{z}$ and note that we have

1. $\mathbf{z}^{\prime} \cdot \mathbf{w}>1$ and
2. $\mathbf{z}^{\prime} \cdot \mathbf{y} \leq 1$ for every $\mathbf{y} \in S$

It follows from the second part above that $\mathbf{z}^{\prime} \in S^{\circ}$. However, then we have a contradiction to $w \in\left(S^{\circ}\right)^{\circ}$ since $\mathbf{z}^{\prime} \cdot \mathbf{w}>1$. Therefore $\left(S^{\circ}\right)^{\circ} \subseteq S$, and this completes the proof.

