6 Affine Sets II

Definition. If $x_1, \ldots, x_k \in \mathbb{R}^n$ then an *affine combination* of x_1, \ldots, x_k is a linear combination

$$c_1\mathbf{x_1} + \ldots + c_k\mathbf{x_k}$$

with the additional property that $c_1 + \ldots + c_k = 1$. The *affine hull* of $\mathbf{x_1}, \ldots, \mathbf{x_k}$ is the set of all affine combinations of these points, denoted

$$\operatorname{Aff}(\mathbf{x}_1,\ldots,\mathbf{x}_k) = \{c_1\mathbf{x}_1 + \ldots + c_k\mathbf{x}_k \mid c_1 + \ldots + c_k = 1\}.$$

Examples:

- 1. For a single point $\mathbf{x_1} \in \mathbb{R}^n$ the definition gives $\operatorname{Aff}(\mathbf{x_1}) = \{c_1\mathbf{x_1} \mid c_1 = 1\} = \{\mathbf{x_1}\}.$
- 2. If $\mathbf{x_1}, \mathbf{x_2} \in \mathbb{R}^n$ are distinct, the set $\operatorname{Aff}(\mathbf{x_1}, \mathbf{x_2})$ is a set we have already met—it is the line through $\mathbf{x_1}$ and $\mathbf{x_2}$. This fact follows from the equation

Aff
$$(\mathbf{x_1}, \mathbf{x_2}) = \{c_1\mathbf{x_1} + c_2\mathbf{x_2} \mid c_1 + c_2 = 1\}$$

$$= \{\mathbf{x_1} + (c_1 - 1)\mathbf{x_1} + c_2\mathbf{x_2} \mid c_1 + c_2 = 1\}$$

$$= \{\mathbf{x_1} - c_2\mathbf{x_1} + c_2\mathbf{x_2} \mid c_2 \in \mathbb{R}\}$$

$$= \{\mathbf{x_1} + c_2(\mathbf{x_2} - \mathbf{x_1}) \mid c_2 \in \mathbb{R}\}$$

$$= \mathbf{x_1} + \{c_2(\mathbf{x_2} - \mathbf{x_1}) \mid c_2 \in \mathbb{R}\}$$

$$= \mathbf{x_1} + \operatorname{Span}(\mathbf{x_2} - \mathbf{x_1})$$

- 3. For three distinct points $\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3} \in \mathbb{R}^n$ we will prove that the set $\operatorname{Aff}(\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3})$ will be a line if all three of these points lie on a common line. Otherwise $\operatorname{Aff}(\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3})$ will be a plane.
- 4. In general we will show that $Aff(\mathbf{x_1}, \ldots, \mathbf{x_k})$ is the smallest affine set containing the points $\mathbf{x_1}, \ldots, \mathbf{x_k}$.

Lemma 6.1. The affine hull of $\mathbf{x}_1, \ldots, \mathbf{x}_k$ is affine.

Proof. Let $\mathbf{y}, \mathbf{z} \in \text{Aff}(\mathbf{x}_1, \dots, \mathbf{x}_k)$ be distinct and let \mathbf{w} be a point on the line $\mathbf{\dot{y}}\mathbf{z}$. Since \mathbf{w} is on this line we may choose a real number t so that $\mathbf{w} = t\mathbf{y} + (1-t)\mathbf{z}$. Since \mathbf{y} and \mathbf{z} lie in the affine hull we may choose $c_1, \dots, c_k, d_1, \dots, d_k \in \mathbb{R}$ so that

$$\mathbf{y} = c_1 \mathbf{x}_1 + \ldots + c_k \mathbf{x}_k$$
$$\mathbf{z} = d_1 \mathbf{y}_1 + \ldots + d_k \mathbf{x}_k$$

with the added property $c_1 + \ldots + c_k = 1$ and $d_1 + \ldots + d_k = 1$. Now we have

$$\mathbf{w} = t\mathbf{y} + (1-t)\mathbf{z}$$

= $t\left(c_1\mathbf{x_1} + \ldots + c_k\mathbf{x_k}\right) + (1-t)\left(d_1\mathbf{y_1} + \ldots + d_k\mathbf{x_k}\right)$
= $(tc_1 + (1-t)d_1)\mathbf{x_1} + \ldots + (tc_k(1-t)d_k)\mathbf{x_k}$

The sum of the coefficients in the above linear combination is

$$(tc_1 + (1-t)d_1) + \ldots + (tc_k(1-t)d_k) = t(c_1 + \ldots + c_k) + (1-t)(d_1 + \ldots + d_k) = t + (1-t) = 1$$

so we find that $\mathbf{w} \in \operatorname{Aff}(\mathbf{x}_1, \ldots, \mathbf{x}_k)$ as desired.

Theorem 6.2. The affine hull of $\mathbf{x_1}, \ldots, \mathbf{x_k}$ is the unique minimal affine set containing these points.

Proof. To prove this theorem, it suffices to show that every affine set U containing $\mathbf{x_1}, \ldots, \mathbf{x_k}$ also contains $\operatorname{Aff}(\mathbf{x_1}, \ldots, \mathbf{x_k})$. We do this by induction on k.

Theorem 6.3. Every affine set can be expressed as an intersection of hyperplanes.

Proof. Let U be an affine set in \mathbb{R}^n . If $U = \emptyset$ then we can write U as an intersection of two disjoint hyperplanes (we assume here that $n \ge 1$). Otherwise, we have $U = \mathbf{w} + V$ where V is a subspace. It follows from a result in linear algebra that there exists a matrix A so that V is precisely the Nullspace of A.¹ Define the vector \mathbf{y} by the equation

$$A\mathbf{w} = \mathbf{y}$$

¹To prove this property, choose an orthogonal basis $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ of V and extend this to an orthogonal basis $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ of \mathbb{R}^n . Now the matrix A can be constructed by taking the vectors $\mathbf{v}_{k+1}, \ldots, \mathbf{v}_n$ as rows.

Claim: $U = \{ \mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{y} \}$

The proof of this claim follows immediately from the following equivalence.

$$A\mathbf{x} = \mathbf{y} \Leftrightarrow A\mathbf{x} - A\mathbf{w} = \mathbf{0}$$
$$\Leftrightarrow A(\mathbf{x} - \mathbf{w}) = \mathbf{0}$$
$$\Leftrightarrow \mathbf{x} - \mathbf{w} \in V$$
$$\Leftrightarrow \mathbf{x} \in \mathbf{w} + V$$
$$\Leftrightarrow \mathbf{x} \in U$$

Next express A (in terms of row vectors) and \mathbf{y} as follows

$$A = \begin{bmatrix} \mathbf{a_1} \\ \vdots \\ \mathbf{a_m} \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$

Now applying the claim gives us

$$U = \{ \mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{y} \}$$

= $\{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}_i \cdot \mathbf{x} = y_i \text{ holds for every } 1 \le i \le m \}$
= $\{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \in H^{y_i}_{\mathbf{a}_i} \text{ holds for every } 1 \le i \le m \}$
= $H^{y_1}_{\mathbf{a}_1} \cap \ldots \cap H^{y_m}_{\mathbf{a}_m}$

and this completes the proof.