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Definition. If x1,...,xx € R™ then an affine combination of xq,...,Xx is a linear
combination

C1X1 + ...+ CpXk

with the additional property that ¢; + ...+ ¢z = 1. The affine hull of x1,...,xy is the set

of all affine combinations of these points, denoted

Aff(xq,...,xx) ={ax1+ ...+ x|+ ...+ =1}

Examples:
1. For a single point x; € R™ the definition gives Aff(xy) = {e1x1 | 1 = 1} = {x1}.

2. If x3,%x2 € R™ are distinct, the set Aff(x1,x2) is a set we have already met—it is the

line through x; and x5. This fact follows from the equation

Aff(x1,%x2) = {e1X1 + X2 | ¢ + ¢ = 1}
={x1+(c1 — 1)x1 + Xz | c1 + 2 =1}
= {x1 — ¢oX1 + X3 | ¢ € R}
= {x1 + c2(x2 —x1) | 2 € R}
=x1 + {c2(x2 — X1) | 2 € R}

= X1 + Span(xs — X1)

3. For three distinct points x1, X2, x3 € R™ we will prove that the set Aff(x;,x2,x3) will
be a line if all three of these points lie on a common line. Otherwise Aff(x;,X2,Xx3)

will be a plane.

4. In general we will show that Aff(xy,...,xx) is the smallest affine set containing the

points Xj, ..., Xk.

Lemma 6.1. The affine hull of Xy, ...,xXy is affine.
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Proof. Let y,z € Aff(xy,...,xx) be distinct and let w be a point on the line $7Z. Since w

is on this line we may choose a real number ¢ so that w = ty + (1 — t)z. Since y and z lie

in the affine hull we may choose cy,...,cg,dy,...,d; € R so that

y =cX1 + ...+ Xk

zZ=diyy+ ...+ dpXx
with the added property ¢; +...+ ¢ =1and dy + ...+ d = 1. Now we have

w=ty+(l—1t)z
:t<01x1+...+ckxk) +(1—t)<d1y1+...—|—dkxk)

= (tq + (1 — t)dl)Xl + ...+ (tCk(l — t)dk)Xk
The sum of the coefficients in the above linear combination is

(ter+(1—=t)dy)+...+(tex(1—t)dg) = t(cr+. .. +ep) + (1 —t)(di+...+dy) =t+(1—t) =1

so we find that w € Aff(xq,...,xx) as desired. O
Theorem 6.2. The affine hull of X1, ..., Xy is the unique minimal affine set containing these
points.

Proof. To prove this theorem, it suffices to show that every affine set U containing Xy, . .., Xx

also contains Aff(xy,...,xk). We do this by induction on k.
[l

Theorem 6.3. Fvery affine set can be expressed as an intersection of hyperplanes.

Proof. Let U be an affine set in R™. If U = ) then we can write U as an intersection of two
disjoint hyperplanes (we assume here that n > 1). Otherwise, we have U = w + V' where V
is a subspace. It follows from a result in linear algebra that there exists a matrix A so that

V is precisely the Nullspace of A.' Define the vector y by the equation

Aw =vy.

ITo prove this property, choose an orthogonal basis {v1,..., vk} of V and extend this to an orthogonal

basis {v1,...,vn} of R™. Now the matrix A can be constructed by taking the vectors viy1,...,Vy as rows.



Claim: U={xeR"|Ax =y}

The proof of this claim follows immediately from the following equivalence.

Ax =y < Ax— Aw =0
S Ax—w)=0
eSx-weV
Sxew+V

SxelU

Next express A (in terms of row vectors) and y as follows

Now applying the claim gives us

U={xeR"| Ax =y}
= {x € R" | a; - x = y; holds for every 1 <1i < m}
= {x € R" | x € HY holds for every 1 <i <m}
— HY' N ...0HY

and this completes the proof.



