
6 Affine Sets II

Definition. If x1, . . . ,xk ∈ Rn then an affine combination of x1, . . . ,xk is a linear

combination

c1x1 + . . . + ckxk

with the additional property that c1 + . . . + ck = 1. The affine hull of x1, . . . ,xk is the set

of all affine combinations of these points, denoted

Aff(x1, . . . ,xk) = {c1x1 + . . . + ckxk | c1 + . . . + ck = 1}.

Examples:

1. For a single point x1 ∈ Rn the definition gives Aff(x1) = {c1x1 | c1 = 1} = {x1}.

2. If x1,x2 ∈ Rn are distinct, the set Aff(x1,x2) is a set we have already met—it is the

line through x1 and x2. This fact follows from the equation

Aff(x1,x2) = {c1x1 + c2x2 | c1 + c2 = 1}

= {x1 + (c1 − 1)x1 + c2x2 | c1 + c2 = 1}

= {x1 − c2x1 + c2x2 | c2 ∈ R}

= {x1 + c2(x2 − x1) | c2 ∈ R}

= x1 + {c2(x2 − x1) | c2 ∈ R}

= x1 + Span(x2 − x1)

3. For three distinct points x1,x2,x3 ∈ Rn we will prove that the set Aff(x1,x2,x3) will

be a line if all three of these points lie on a common line. Otherwise Aff(x1,x2,x3)

will be a plane.

4. In general we will show that Aff(x1, . . . ,xk) is the smallest affine set containing the

points x1, . . . ,xk.

Lemma 6.1. The affine hull of x1, . . . ,xk is affine.
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Proof. Let y, z ∈ Aff(x1, . . . ,xk) be distinct and let w be a point on the line ←→yz. Since w

is on this line we may choose a real number t so that w = ty + (1 − t)z. Since y and z lie

in the affine hull we may choose c1, . . . , ck, d1, . . . , dk ∈ R so that

y = c1x1 + . . . + ckxk

z = d1y1 + . . . + dkxk

with the added property c1 + . . . + ck = 1 and d1 + . . . + dk = 1. Now we have

w = ty + (1− t)z

= t
(
c1x1 + . . . + ckxk

)
+ (1− t)

(
d1y1 + . . . + dkxk

)
= (tc1 + (1− t)d1)x1 + . . . + (tck(1− t)dk)xk

The sum of the coefficients in the above linear combination is

(tc1 +(1− t)d1)+ . . .+(tck(1− t)dk) = t(c1 + . . .+ ck)+(1− t)(d1 + . . .+dk) = t+(1− t) = 1

so we find that w ∈ Aff(x1, . . . ,xk) as desired.

Theorem 6.2. The affine hull of x1, . . . ,xk is the unique minimal affine set containing these

points.

Proof. To prove this theorem, it suffices to show that every affine set U containing x1, . . . ,xk

also contains Aff(x1, . . . ,xk). We do this by induction on k.

Theorem 6.3. Every affine set can be expressed as an intersection of hyperplanes.

Proof. Let U be an affine set in Rn. If U = ∅ then we can write U as an intersection of two

disjoint hyperplanes (we assume here that n ≥ 1). Otherwise, we have U = w + V where V

is a subspace. It follows from a result in linear algebra that there exists a matrix A so that

V is precisely the Nullspace of A.1 Define the vector y by the equation

Aw = y.

1To prove this property, choose an orthogonal basis {v1, . . . ,vk} of V and extend this to an orthogonal

basis {v1, . . . ,vn} of Rn. Now the matrix A can be constructed by taking the vectors vk+1, . . . ,vn as rows.
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Claim: U = {x ∈ Rn | Ax = y}

The proof of this claim follows immediately from the following equivalence.

Ax = y⇔ Ax− Aw = 0

⇔ A (x−w) = 0

⇔ x−w ∈ V

⇔ x ∈ w + V

⇔ x ∈ U

Next express A (in terms of row vectors) and y as follows

A =


a1

...

am

 y =


y1
...

ym


Now applying the claim gives us

U = {x ∈ Rn | Ax = y}

= {x ∈ Rn | ai · x = yi holds for every 1 ≤ i ≤ m}

= {x ∈ Rn | x ∈ Hyi
ai

holds for every 1 ≤ i ≤ m}

= Hy1
a1
∩ . . . ∩Hym

am

and this completes the proof.


