6 Affine Sets II

Definition. If $\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{k}} \in \mathbb{R}^{n}$ then an affine combination of $\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{k}}$ is a linear combination

$$
c_{1} \mathbf{x}_{\mathbf{1}}+\ldots+c_{k} \mathbf{x}_{\mathbf{k}}
$$

with the additional property that $c_{1}+\ldots+c_{k}=1$. The affine hull of $\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{k}}$ is the set of all affine combinations of these points, denoted

$$
\operatorname{Aff}\left(\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{k}}\right)=\left\{c_{1} \mathbf{x}_{\mathbf{1}}+\ldots+c_{k} \mathbf{x}_{\mathbf{k}} \mid c_{1}+\ldots+c_{k}=1\right\}
$$

Examples:

1. For a single point $\mathbf{x}_{\mathbf{1}} \in \mathbb{R}^{n}$ the definition gives $\operatorname{Aff}\left(\mathbf{x}_{\mathbf{1}}\right)=\left\{c_{1} \mathbf{x}_{\mathbf{1}} \mid c_{1}=1\right\}=\left\{\mathbf{x}_{\mathbf{1}}\right\}$.
2. If $\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}} \in \mathbb{R}^{n}$ are distinct, the set $\operatorname{Aff}\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}\right)$ is a set we have already met-it is the line through $\mathbf{x}_{\mathbf{1}}$ and $\mathbf{x}_{\mathbf{2}}$. This fact follows from the equation

$$
\begin{aligned}
\operatorname{Aff}\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}\right) & =\left\{c_{1} \mathbf{x}_{\mathbf{1}}+c_{2} \mathbf{x}_{\mathbf{2}} \mid c_{1}+c_{2}=1\right\} \\
& =\left\{\mathbf{x}_{\mathbf{1}}+\left(c_{1}-1\right) \mathbf{x}_{\mathbf{1}}+c_{2} \mathbf{x}_{\mathbf{2}} \mid c_{1}+c_{2}=1\right\} \\
& =\left\{\mathbf{x}_{\mathbf{1}}-c_{2} \mathbf{x}_{\mathbf{1}}+c_{2} \mathbf{x}_{\mathbf{2}} \mid c_{2} \in \mathbb{R}\right\} \\
& =\left\{\mathbf{x}_{\mathbf{1}}+c_{2}\left(\mathbf{x}_{\mathbf{2}}-\mathbf{x}_{\mathbf{1}}\right) \mid c_{2} \in \mathbb{R}\right\} \\
& =\mathbf{x}_{\mathbf{1}}+\left\{c_{2}\left(\mathbf{x}_{\mathbf{2}}-\mathbf{x}_{\mathbf{1}}\right) \mid c_{2} \in \mathbb{R}\right\} \\
& =\mathbf{x}_{\mathbf{1}}+\operatorname{Span}\left(\mathbf{x}_{\mathbf{2}}-\mathbf{x}_{\mathbf{1}}\right)
\end{aligned}
$$

3. For three distinct points $\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \mathbf{x}_{\mathbf{3}} \in \mathbb{R}^{n}$ we will prove that the set $\operatorname{Aff}\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \mathbf{x}_{\mathbf{3}}\right)$ will be a line if all three of these points lie on a common line. Otherwise $\operatorname{Aff}\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \mathbf{x}_{\mathbf{3}}\right)$ will be a plane.
4. In general we will show that $\operatorname{Aff}\left(\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{k}}\right)$ is the smallest affine set containing the points $\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{k}}$.

Lemma 6.1. The affine hull of $\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{k}}$ is affine.

Proof. Let $\mathbf{y}, \mathbf{z} \in \operatorname{Aff}\left(\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{k}}\right)$ be distinct and let \mathbf{w} be a point on the line $\overleftrightarrow{\mathbf{y}} \mathbf{z}$. Since \mathbf{w} is on this line we may choose a real number t so that $\mathbf{w}=t \mathbf{y}+(1-t) \mathbf{z}$. Since \mathbf{y} and \mathbf{z} lie in the affine hull we may choose $c_{1}, \ldots, c_{k}, d_{1}, \ldots, d_{k} \in \mathbb{R}$ so that

$$
\begin{aligned}
& \mathbf{y}=c_{1} \mathbf{x}_{\mathbf{1}}+\ldots+c_{k} \mathbf{x}_{\mathbf{k}} \\
& \mathbf{z}=d_{1} \mathbf{y}_{\mathbf{1}}+\ldots+d_{k} \mathbf{x}_{\mathbf{k}}
\end{aligned}
$$

with the added property $c_{1}+\ldots+c_{k}=1$ and $d_{1}+\ldots+d_{k}=1$. Now we have

$$
\begin{aligned}
\mathbf{w} & =t \mathbf{y}+(1-t) \mathbf{z} \\
& =t\left(c_{1} \mathbf{x}_{\mathbf{1}}+\ldots+c_{k} \mathbf{x}_{\mathbf{k}}\right)+(1-t)\left(d_{1} \mathbf{y}_{\mathbf{1}}+\ldots+d_{k} \mathbf{x}_{\mathbf{k}}\right) \\
& =\left(t c_{1}+(1-t) d_{1}\right) \mathbf{x}_{\mathbf{1}}+\ldots+\left(t c_{k}(1-t) d_{k}\right) \mathbf{x}_{\mathbf{k}}
\end{aligned}
$$

The sum of the coefficients in the above linear combination is
$\left(t c_{1}+(1-t) d_{1}\right)+\ldots+\left(t c_{k}(1-t) d_{k}\right)=t\left(c_{1}+\ldots+c_{k}\right)+(1-t)\left(d_{1}+\ldots+d_{k}\right)=t+(1-t)=1$
so we find that $\mathbf{w} \in \operatorname{Aff}\left(\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{k}}\right)$ as desired.
Theorem 6.2. The affine hull of $\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{k}}$ is the unique minimal affine set containing these points.

Proof. To prove this theorem, it suffices to show that every affine set U containing $\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{k}}$ also contains $\operatorname{Aff}\left(\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{k}}\right)$. We do this by induction on k.

Theorem 6.3. Every affine set can be expressed as an intersection of hyperplanes.
Proof. Let U be an affine set in \mathbb{R}^{n}. If $U=\emptyset$ then we can write U as an intersection of two disjoint hyperplanes (we assume here that $n \geq 1$). Otherwise, we have $U=\mathbf{w}+V$ where V is a subspace. It follows from a result in linear algebra that there exists a matrix A so that V is precisely the Nullspace of $A \cdot{ }^{1}$ Define the vector \mathbf{y} by the equation

$$
A \mathbf{w}=\mathbf{y}
$$

[^0]Claim: $U=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A \mathbf{x}=\mathbf{y}\right\}$
The proof of this claim follows immediately from the following equivalence.

$$
\begin{aligned}
A \mathbf{x}=\mathbf{y} & \Leftrightarrow A \mathbf{x}-A \mathbf{w}=\mathbf{0} \\
& \Leftrightarrow A(\mathbf{x}-\mathbf{w})=\mathbf{0} \\
& \Leftrightarrow \mathbf{x}-\mathbf{w} \in V \\
& \Leftrightarrow \mathbf{x} \in \mathbf{w}+V \\
& \Leftrightarrow \mathbf{x} \in U
\end{aligned}
$$

Next express A (in terms of row vectors) and \mathbf{y} as follows

$$
A=\left[\begin{array}{c}
\mathbf{a}_{\mathbf{1}} \\
\vdots \\
\mathbf{a}_{\mathrm{m}}
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right]
$$

Now applying the claim gives us

$$
\begin{aligned}
U & =\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A \mathbf{x}=\mathbf{y}\right\} \\
& =\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{a}_{\mathbf{i}} \cdot \mathbf{x}=y_{i} \text { holds for every } 1 \leq i \leq m\right\} \\
& =\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{x} \in H_{\mathbf{a}_{\mathbf{i}}}^{y_{i}} \text { holds for every } 1 \leq i \leq m\right\} \\
& =H_{\mathbf{a}_{\mathbf{1}}}^{y_{1}} \cap \ldots \cap H_{\mathbf{a}_{\mathbf{m}}}^{y_{m}}
\end{aligned}
$$

and this completes the proof.

[^0]: ${ }^{1}$ To prove this property, choose an orthogonal basis $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ of V and extend this to an orthogonal basis $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ of \mathbb{R}^{n}. Now the matrix A can be constructed by taking the vectors $\mathbf{v}_{\mathbf{k}+\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}$ as rows.

