5 Affine Sets I

Definition: We say that a set $U \subseteq \mathbb{R}^n$ is *affine* if for every pair of distinct points \mathbf{x}, \mathbf{y} in U the line $\overleftarrow{\mathbf{xy}}$ is contained in U.

Examples: All of the following sets are affine

- Any single point
- A line
- A plane
- A hyperplane

Observation 5.1. If U is affine, then every translate of U is affine.

Recall: A set $U \subseteq \mathbb{R}^n$ is a subspace if it satisfies the following: Identity, closure scalars

Lemma 5.2. If $U \subseteq \mathbb{R}^n$ and $\mathbf{0} \in U$, then U is affine if and only if U is a subspace.

Proof. First we suppose that U is a subspace and show that U is affine. To prove that U is affine, let \mathbf{x}, \mathbf{y} be distinct points in U and let \mathbf{w} be an arbitrary point on the line $\overleftarrow{\mathbf{xy}}$ (we will show that $\mathbf{w} \in U$). Since $\overleftarrow{\mathbf{xy}} = {\mathbf{x} + t(\mathbf{y} - \mathbf{x}) \mid t \in \mathbb{R}}$ we may choose $t \in \mathbb{R}$ so that $\mathbf{w} = \mathbf{x} + t(\mathbf{y} - \mathbf{x})$. By assumption U is a subspace containing \mathbf{x} and \mathbf{y} so $(1 - t)\mathbf{x} \in U$ and $t\mathbf{y} \in U$ and thus

$$\mathbf{w} = \mathbf{x} + t(\mathbf{y} - \mathbf{x}) \in U$$

Since \mathbf{x}, \mathbf{y} and \mathbf{w} were arbitrary, we deduce that U is affine.

For the other direction we suppose that U is affine and we will prove that it is a subspace. We have assumed that $\mathbf{0}$ is in U, so we already have the first property. To prove that U is closed under scalar multiplication, we let $\mathbf{x} \in U$ and let $t \in \mathbb{R}$ and we will show that $t\mathbf{x} \in U$. This is automatically true when $\mathbf{x} = 0$ because in this case $t\mathbf{x} = t\mathbf{0} = \mathbf{0} \in U$. So we may assume $\mathbf{x} \neq \mathbf{0}$. Since U is affine and $\mathbf{0}, \mathbf{x} \in U$ we have $\overleftrightarrow{\mathbf{0x}} \subseteq U$ and it follows that $t\mathbf{x} \in U$. It follows that U is closed under scalar multiplication. To show that U is closed under sums, we let $\mathbf{x}, \mathbf{y} \in U$ and we will show that $\mathbf{x} + \mathbf{y} \in U$. If $\mathbf{x} = \mathbf{y}$ then $\mathbf{x} + \mathbf{y} = 2\mathbf{x}$ is in U since U is closed under scalar multiplication. So, we may assume $\mathbf{x} \neq \mathbf{y}$. Since U is affine it must contain the line

$$\overleftrightarrow{\mathbf{x}} = \{\mathbf{x} + t(\mathbf{y} - \mathbf{x}) \mid t \in \mathbb{R}\}$$

It follows that U contains the point $\mathbf{w} = \frac{1}{2}\mathbf{x} + \frac{1}{2}\mathbf{y} = \mathbf{x} + \frac{1}{2}(\mathbf{y} - \mathbf{x})$. Since we have already proved U is closed under scalar multiplication, U must also contain the point $2\mathbf{w} = \mathbf{x} + \mathbf{y}$ as desired.

Theorem 5.3. For every nonempty affine set U there is a unique subspace V so that U is a translate of V:

$$U = \mathbf{u} + V$$

Here the point \mathbf{u} may be chosen to be any point in U.

Proof. Let U be a nonempty affine set and choose $\mathbf{u} \in U$. Now $V = -\mathbf{u} + U$ is an affine set containing $\mathbf{0}$, so V is a subspace and we can write U as $U = \mathbf{u} + V$ thus giving the desired equation.

For the second part, let \mathbf{u}' be an arbitrary point in U. We wish to prove

$$\mathbf{u}' + V = \mathbf{u} + V$$

Since $U = \mathbf{u}' + V$ there exists $\mathbf{v} \in V$ so that $\mathbf{u}' = \mathbf{u} + \mathbf{v}$. Now, to prove that $\mathbf{u}' + V = \mathbf{u} + V$ we will show that each set is contained in the other.

(1)
$$\mathbf{u}' + V \subseteq \mathbf{u} + V$$

To prove (1), we let \mathbf{w} be an arbitrary point in $\mathbf{u}' + V$ and we will show $\mathbf{w} \in \mathbf{u} + V$. To do this, express \mathbf{w} as $\mathbf{w} = \mathbf{u}' + \mathbf{v}'$ where $\mathbf{v}' \in V$. Now using the fact that V is a subspace we have

$$\mathbf{w} = \mathbf{u}' + \mathbf{v}' = \mathbf{u} + \mathbf{v} + \mathbf{v}' \in \mathbf{u} + V$$

(2) $\mathbf{u} + V \subseteq \mathbf{u}' + V$

To prove (2), we let \mathbf{z} be an arbitrary point in $\mathbf{u}' + V$ and we will show $\mathbf{z} \in \mathbf{u} + V$. To do this, express \mathbf{z} as $\mathbf{z} = \mathbf{u} + \mathbf{v}''$ where $\mathbf{v}'' \in V$. Now using the fact that V is a subspace we have

$$\mathbf{z} = \mathbf{u} + \mathbf{v}'' = \mathbf{u}' - \mathbf{v} + \mathbf{v}'' \in \mathbf{u}' + V$$

Definition: If U is a nonempty affine set, then we define the *dimension* of U to be the dimension of the subspace V from the above theorem.

Examples:

- Affine sets of dimension 0 are sets consisting of a single point.
- Affine sets of dimension 1 are lines
- Affine sets of dimension 2 are planes
- Affine sets of dimension n-1 are hyperplanes