5 Affine Sets I

Definition: We say that a set $U \subseteq \mathbb{R}^{n}$ is affine if for every pair of distinct points \mathbf{x}, \mathbf{y} in U the line $\overleftrightarrow{\mathbf{x y}}$ is contained in U.

Examples: All of the following sets are affine

- Any single point
- A line
- A plane
- A hyperplane

Observation 5.1. If U is affine, then every translate of U is affine.
Recall: A set $U \subseteq \mathbb{R}^{n}$ is a subspace if it satisfies the following: Identity, closure scalars
Lemma 5.2. If $U \subseteq \mathbb{R}^{n}$ and $\mathbf{0} \in U$, then U is affine if and only if U is a subspace.
Proof. First we suppose that U is a subspace and show that U is affine. To prove that U is affine, let \mathbf{x}, \mathbf{y} be distinct points in U and let \mathbf{w} be an arbitrary point on the line $\overleftrightarrow{\mathbf{x y}}$ (we will show that $\mathbf{w} \in U)$. Since $\overleftrightarrow{\mathbf{x}} \mathbf{y}=\{\mathbf{x}+t(\mathbf{y}-\mathbf{x}) \mid t \in \mathbb{R}\}$ we may choose $t \in \mathbb{R}$ so that $\mathbf{w}=\mathbf{x}+t(\mathbf{y}-\mathbf{x})$. By assumption U is a subspace containing \mathbf{x} and \mathbf{y} so $(1-t) \mathbf{x} \in U$ and $t \mathbf{y} \in U$ and thus

$$
\mathbf{w}=\mathbf{x}+t(\mathbf{y}-\mathbf{x}) \in U
$$

Since \mathbf{x}, \mathbf{y} and \mathbf{w} were arbitrary, we deduce that U is affine.
For the other direction we suppose that U is affine and we will prove that it is a subspace. We have assumed that $\mathbf{0}$ is in U, so we already have the first property. To prove that U is closed under scalar multiplication, we let $\mathbf{x} \in U$ and let $t \in \mathbb{R}$ and we will show that $t \mathbf{x} \in U$. This is automatically true when $\mathbf{x}=0$ because in this case $t \mathbf{x}=t \mathbf{0}=\mathbf{0} \in U$. So we may assume $\mathbf{x} \neq \mathbf{0}$. Since U is affine and $\mathbf{0}, \mathbf{x} \in U$ we have $\overleftrightarrow{\mathbf{0 x}} \subseteq U$ and it follows that $t \mathbf{x} \in U$. It follows that U is closed under scalar multiplication. To show that U is closed under sums, we let $\mathbf{x}, \mathbf{y} \in U$ and we will show that $\mathbf{x}+\mathbf{y} \in U$. If $\mathbf{x}=\mathbf{y}$ then $\mathbf{x}+\mathbf{y}=2 \mathbf{x}$ is in U since U is closed under scalar multiplication. So, we may assume $\mathbf{x} \neq \mathbf{y}$. Since U is affine it must contain the line

$$
\overleftrightarrow{\mathbf{x}} \mathbf{y}=\{\mathbf{x}+t(\mathbf{y}-\mathbf{x}) \mid t \in \mathbb{R}\}
$$

It follows that U contains the point $\mathbf{w}=\frac{1}{2} \mathbf{x}+\frac{1}{2} \mathbf{y}=\mathbf{x}+\frac{1}{2}(\mathbf{y}-\mathbf{x})$. Since we have already proved U is closed under scalar multiplication, U must also contain the point $2 \mathbf{w}=\mathbf{x}+\mathbf{y}$ as desired.

Theorem 5.3. For every nonempty affine set U there is a unique subspace V so that U is a translate of V :

$$
U=\mathbf{u}+V
$$

Here the point \mathbf{u} may be chosen to be any point in U.
Proof. Let U be a nonempty affine set and choose $\mathbf{u} \in U$. Now $V=-\mathbf{u}+U$ is an affine set containing $\mathbf{0}$, so V is a subspace and we can write U as $U=\mathbf{u}+V$ thus giving the desired equation.
For the second part, let \mathbf{u}^{\prime} be an arbitrary point in U. We wish to prove

$$
\mathbf{u}^{\prime}+V=\mathbf{u}+V
$$

Since $U=\mathbf{u}^{\prime}+V$ there exists $\mathbf{v} \in V$ so that $\mathbf{u}^{\prime}=\mathbf{u}+\mathbf{v}$. Now, to prove that $\mathbf{u}^{\prime}+V=\mathbf{u}+V$ we will show that each set is contained in the other.
(1) $\mathbf{u}^{\prime}+V \subseteq \mathbf{u}+V$

To prove (1), we let \mathbf{w} be an arbitrary point in $\mathbf{u}^{\prime}+V$ and we will show $\mathbf{w} \in \mathbf{u}+V$. To do this, express \mathbf{w} as $\mathbf{w}=\mathbf{u}^{\prime}+\mathbf{v}^{\prime}$ where $\mathbf{v}^{\prime} \in V$. Now using the fact that V is a subspace we have

$$
\mathbf{w}=\mathbf{u}^{\prime}+\mathbf{v}^{\prime}=\mathbf{u}+\mathbf{v}+\mathbf{v}^{\prime} \in \mathbf{u}+V
$$

(2) $\mathbf{u}+V \subseteq \mathbf{u}^{\prime}+V$

To prove (2), we let \mathbf{z} be an arbitrary point in $\mathbf{u}^{\prime}+V$ and we will show $\mathbf{z} \in \mathbf{u}+V$. To do this, express \mathbf{z} as $\mathbf{z}=\mathbf{u}+\mathbf{v}^{\prime \prime}$ where $\mathbf{v}^{\prime \prime} \in V$. Now using the fact that V is a subspace we have

$$
\mathbf{z}=\mathbf{u}+\mathbf{v}^{\prime \prime}=\mathbf{u}^{\prime}-\mathbf{v}+\mathbf{v}^{\prime \prime} \in \mathbf{u}^{\prime}+V
$$

Definition: If U is a nonempty affine set, then we define the dimension of U to be the dimension of the subspace V from the above theorem.

Examples:

- Affine sets of dimension 0 are sets consisting of a single point.
- Affine sets of dimension 1 are lines
- Affine sets of dimension 2 are planes
- Affine sets of dimension $n-1$ are hyperplanes

