
5 Affine Sets I

Definition: We say that a set U ⊆ Rn is affine if for every pair of distinct points x,y in U

the line ←→xy is contained in U .

Examples: All of the following sets are affine

• Any single point

• A line

• A plane

• A hyperplane

Observation 5.1. If U is affine, then every translate of U is affine.

Recall: A set U ⊆ Rn is a subspace if it satisfies the following: Identity, closure scalars

Lemma 5.2. If U ⊆ Rn and 0 ∈ U , then U is affine if and only if U is a subspace.

Proof. First we suppose that U is a subspace and show that U is affine. To prove that U is

affine, let x,y be distinct points in U and let w be an arbitrary point on the line ←→xy (we

will show that w ∈ U). Since ←→xy = {x + t(y − x) | t ∈ R} we may choose t ∈ R so that

w = x + t(y − x). By assumption U is a subspace containing x and y so (1− t)x ∈ U and

ty ∈ U and thus

w = x + t(y − x) ∈ U

Since x,y and w were arbitrary, we deduce that U is affine.

For the other direction we suppose that U is affine and we will prove that it is a subspace.

We have assumed that 0 is in U , so we already have the first property. To prove that U is

closed under scalar multiplication, we let x ∈ U and let t ∈ R and we will show that tx ∈ U .

This is automatically true when x = 0 because in this case tx = t0 = 0 ∈ U . So we may

assume x 6= 0. Since U is affine and 0,x ∈ U we have
←→
0x ⊆ U and it follows that tx ∈ U . It

follows that U is closed under scalar multiplication. To show that U is closed under sums,

we let x,y ∈ U and we will show that x + y ∈ U . If x = y then x + y = 2x is in U since

U is closed under scalar multiplication. So, we may assume x 6= y. Since U is affine it must

contain the line
←→xy = {x + t(y − x) | t ∈ R}
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It follows that U contains the point w = 1
2
x + 1

2
y = x + 1

2
(y − x). Since we have already

proved U is closed under scalar multiplication, U must also contain the point 2w = x + y

as desired.

Theorem 5.3. For every nonempty affine set U there is a unique subspace V so that U is

a translate of V :

U = u + V

Here the point u may be chosen to be any point in U .

Proof. Let U be a nonempty affine set and choose u ∈ U . Now V = −u + U is an affine set

containing 0, so V is a subspace and we can write U as U = u + V thus giving the desired

equation.

For the second part, let u′ be an arbitrary point in U . We wish to prove

u′ + V = u + V

Since U = u′ +V there exists v ∈ V so that u′ = u + v. Now, to prove that u′ +V = u +V

we will show that each set is contained in the other.

(1) u′ + V ⊆ u + V

To prove (1), we let w be an arbitrary point in u′ + V and we will show w ∈ u + V . To do

this, express w as w = u′ + v′ where v′ ∈ V . Now using the fact that V is a subspace we

have

w = u′ + v′ = u + v + v′ ∈ u + V

(2) u + V ⊆ u′ + V

To prove (2), we let z be an arbitrary point in u′ + V and we will show z ∈ u + V . To do

this, express z as z = u + v′′ where v′′ ∈ V . Now using the fact that V is a subspace we

have

z = u + v′′ = u′ − v + v′′ ∈ u′ + V

Definition: If U is a nonempty affine set, then we define the dimension of U to be the

dimension of the subspace V from the above theorem.

Examples:
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• Affine sets of dimension 0 are sets consisting of a single point.

• Affine sets of dimension 1 are lines

• Affine sets of dimension 2 are planes

• Affine sets of dimension n− 1 are hyperplanes


