
4 Hyperplanes

Definition: If y ∈ Rn is nonzero and t ∈ R we define the set

H t
y = {x ∈ Rn | x · y = t}

and we call any set of this form a hyperplane.

Example.
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2 j x · y = 0g = f(x1; x2) j x1 + 2x2 = 0g
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2 j x · y = 2g = f(x1; x2) j x1 + 2x2 = 2g
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2 j x · y = 4g = f(x1; x2) j x1 + 2x2 = 4g
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2 j x · y = �2g = f(x 1; x2) j x1 + 2x2 = �2g
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Note: Consider the point (0, 1) on the hyperplane H2
y above. Suppose we want to move

from (0, 1) by adding a vector v = (v1, v2) to it. How can we arrange that this new point

(0, 1) + (v1, v2) lies on the same hyperplane H2
y? A quick check reveals that we need for the

vector v we add to be orthogonal to y. Next we show that this happens in general.

Lemma 4.1. Let w be a point on the hyperplane H t
y and let v ∈ Rn. The point w + v is

on the hyperplane H t
y if and only if y · v = 0

Proof. This is a rather direct consequence of the computation(
w + v

)
· y = w · y + v · y = t + v · y.

If v is orthogonal to y then (w + v) · y = t so w + v is on H t
y. If v is not orthogonal to y,

then (w + v) · y 6= t so w + v is not on H t
y.
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Figure in R3 containing three points.

Show that the hyperplane is also of the form x1 + Span()

Note: The line Span(y) is precisely the set {sy | s ∈ R}. The dot product of sy and y

equals (sy) ·y = sy ·y = s||y||2. So if we imagine moving along the line Span(y) by starting

at sy and increasing s we will increase the dot product of our point with y. It follows from

this and the above lemma that hyperplanes always appear as in the figure below.

Example.
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Lemma 4.2. The translation of a hyperplane H t
y by a vector v is a hyperplane given by

v + H t
y = H t+v·y

y

Proof. This lemma follows immediately from the following chain of equivalent statements.

x ∈ v + H t
y ⇔ x− v ∈ H t

y

⇔
(
x− v

)
· y = t

⇔ x · y − v · y = t

⇔ x · y = t + v · y

⇔ x ∈ H t+v·y
y


