4 Hyperplanes
Definition: If y € R" is nonzero and t € R we define the set
t_ n _
Hy={xeR"|x-y=t}
and we call any set of this form a hyperplane.

Example.

\ y:(172)

I 0. I \11 H;:{X€R2|xy:4}:{(11x2)|11+2x2:4}
\\ Hg:{XE]I@‘X.yzg}:{(th)|xl+2z2:2}
\ H3:{X€R2|XyZO}:{($17I2)‘x1+2I2:0}

H?={xeR?|x-y= 2} ={(v1,22) |21 + 225 = 2}

Note: Consider the point (0,1) on the hyperplane Hf, above. Suppose we want to move
from (0,1) by adding a vector v = (vq,v2) to it. How can we arrange that this new point
(0,1) + (v1,v2) lies on the same hyperplane H;? A quick check reveals that we need for the

vector v we add to be orthogonal to y. Next we show that this happens in general.

Lemma 4.1. Let w be a point on the hyperplane H;, and let v.€ R™. The point w + v is
on the hyperplane H;, if and only if y -v =10

Proof. This is a rather direct consequence of the computation
(W+V) y=w-y+v-y==>t+v-y.

If v is orthogonal to y then (W +v) -y =t so w + v is on H,. If v is not orthogonal to y,
then (w4 v) -y # t so w + v is not on HJ. O



Figure in R? containing three points.

Show that the hyperplane is also of the form x; + Span()

Note: The line Span(y) is precisely the set {sy | s € R}. The dot product of sy and y
equals (sy)-y = sy -y = s||y||?. So if we imagine moving along the line Span(y) by starting
at sy and increasing s we will increase the dot product of our point with y. It follows from

this and the above lemma that hyperplanes always appear as in the figure below.

Example.

Lemma 4.2. The translation of a hyperplane H;, by a vector v is a hyperplane given by
t t+v-
v+ H,=H"Y
Proof. This lemma follows immediately from the following chain of equivalent statements.
X€V+H;,<=>X—VEH§,
=4 (x - V) y =t
X y—v-y=t

SxXy=t+v-y

S xE H;Jrv'y m



