4 Hyperplanes

Definition: If $\mathbf{y} \in \mathbb{R}^{n}$ is nonzero and $\mathbf{t} \in \mathbb{R}$ we define the set

$$
H_{\mathbf{y}}^{t}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{x} \cdot \mathbf{y}=t\right\}
$$

and we call any set of this form a hyperplane.

Example.

Note: Consider the point $(0,1)$ on the hyperplane $H_{\mathbf{y}}^{2}$ above. Suppose we want to move from $(0,1)$ by adding a vector $\mathbf{v}=\left(v_{1}, v_{2}\right)$ to it. How can we arrange that this new point $(0,1)+\left(v_{1}, v_{2}\right)$ lies on the same hyperplane $H_{\mathbf{y}}^{2}$? A quick check reveals that we need for the vector \mathbf{v} we add to be orthogonal to \mathbf{y}. Next we show that this happens in general.

Lemma 4.1. Let \mathbf{w} be a point on the hyperplane $H_{\mathbf{y}}^{t}$ and let $\mathbf{v} \in \mathbb{R}^{n}$. The point $\mathbf{w}+\mathbf{v}$ is on the hyperplane $H_{\mathbf{y}}^{t}$ if and only if $\mathbf{y} \cdot \mathbf{v}=0$

Proof. This is a rather direct consequence of the computation

$$
(\mathbf{w}+\mathbf{v}) \cdot \mathbf{y}=\mathbf{w} \cdot \mathbf{y}+\mathbf{v} \cdot \mathbf{y}=t+\mathbf{v} \cdot \mathbf{y}
$$

If \mathbf{v} is orthogonal to \mathbf{y} then $(\mathbf{w}+\mathbf{v}) \cdot \mathbf{y}=t$ so $\mathbf{w}+\mathbf{v}$ is on $H_{\mathbf{y}}^{t}$. If \mathbf{v} is not orthogonal to \mathbf{y}, then $(\mathbf{w}+\mathbf{v}) \cdot \mathbf{y} \neq t$ so $\mathbf{w}+\mathbf{v}$ is not on $H_{\mathbf{y}}^{t}$.

Figure in \mathbb{R}^{3} containing three points.
Show that the hyperplane is also of the form $\mathbf{x}_{\mathbf{1}}+\operatorname{Span}()$
Note: The line $\operatorname{Span}(\mathbf{y})$ is precisely the set $\{s \mathbf{y} \mid s \in \mathbb{R}\}$. The dot product of $s \mathbf{y}$ and \mathbf{y} equals $(s \mathbf{y}) \cdot \mathbf{y}=s \mathbf{y} \cdot \mathbf{y}=s\|\mathbf{y}\|^{2}$. So if we imagine moving along the line $\operatorname{Span}(\mathbf{y})$ by starting at $s \mathbf{y}$ and increasing s we will increase the dot product of our point with \mathbf{y}. It follows from this and the above lemma that hyperplanes always appear as in the figure below.

Example.

Lemma 4.2. The translation of a hyperplane $H_{\mathbf{y}}^{t}$ by a vector \mathbf{v} is a hyperplane given by

$$
\mathbf{v}+H_{\mathbf{y}}^{t}=H_{\mathbf{y}}^{t+\mathbf{v} \cdot \mathbf{y}}
$$

Proof. This lemma follows immediately from the following chain of equivalent statements.

$$
\begin{aligned}
\mathbf{x} \in \mathbf{v}+H_{\mathbf{y}}^{t} & \Leftrightarrow \mathbf{x}-\mathbf{v} \in H_{\mathbf{y}}^{t} \\
& \Leftrightarrow(\mathbf{x}-\mathbf{v}) \cdot \mathbf{y}=t \\
& \Leftrightarrow \mathbf{x} \cdot \mathbf{y}-\mathbf{v} \cdot \mathbf{y}=t \\
& \Leftrightarrow \mathbf{x} \cdot \mathbf{y}=t+\mathbf{v} \cdot \mathbf{y} \\
& \Leftrightarrow \mathbf{x} \in H_{\mathbf{y}}^{t+\mathbf{v} \cdot \mathbf{y}}
\end{aligned}
$$

