4 Hyperplanes

Definition: If $\mathbf{y} \in \mathbb{R}^n$ is nonzero and $\mathbf{t} \in \mathbb{R}$ we define the set

$$H_{\mathbf{y}}^t = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \cdot \mathbf{y} = t \}$$

and we call any set of this form a hyperplane.

Example.

Note: Consider the point (0, 1) on the hyperplane $H_{\mathbf{y}}^2$ above. Suppose we want to move from (0, 1) by adding a vector $\mathbf{v} = (v_1, v_2)$ to it. How can we arrange that this new point $(0, 1) + (v_1, v_2)$ lies on the same hyperplane $H_{\mathbf{y}}^2$? A quick check reveals that we need for the vector \mathbf{v} we add to be orthogonal to \mathbf{y} . Next we show that this happens in general.

Lemma 4.1. Let \mathbf{w} be a point on the hyperplane $H_{\mathbf{y}}^t$ and let $\mathbf{v} \in \mathbb{R}^n$. The point $\mathbf{w} + \mathbf{v}$ is on the hyperplane $H_{\mathbf{y}}^t$ if and only if $\mathbf{y} \cdot \mathbf{v} = 0$

Proof. This is a rather direct consequence of the computation

$$(\mathbf{w} + \mathbf{v}) \cdot \mathbf{y} = \mathbf{w} \cdot \mathbf{y} + \mathbf{v} \cdot \mathbf{y} = t + \mathbf{v} \cdot \mathbf{y}.$$

If **v** is orthogonal to **y** then $(\mathbf{w} + \mathbf{v}) \cdot \mathbf{y} = t$ so $\mathbf{w} + \mathbf{v}$ is on $H_{\mathbf{y}}^t$. If **v** is not orthogonal to **y**, then $(\mathbf{w} + \mathbf{v}) \cdot \mathbf{y} \neq t$ so $\mathbf{w} + \mathbf{v}$ is not on $H_{\mathbf{y}}^t$.

Figure in \mathbb{R}^3 containing three points.

Show that the hyperplane is also of the form $\mathbf{x_1} + \operatorname{Span}()$

Note: The line $\text{Span}(\mathbf{y})$ is precisely the set $\{s\mathbf{y} \mid s \in \mathbb{R}\}$. The dot product of $s\mathbf{y}$ and \mathbf{y} equals $(s\mathbf{y}) \cdot \mathbf{y} = s\mathbf{y} \cdot \mathbf{y} = s||\mathbf{y}||^2$. So if we imagine moving along the line $\text{Span}(\mathbf{y})$ by starting at $s\mathbf{y}$ and increasing s we will increase the dot product of our point with \mathbf{y} . It follows from this and the above lemma that hyperplanes always appear as in the figure below.

Example.

Lemma 4.2. The translation of a hyperplane $H_{\mathbf{y}}^t$ by a vector \mathbf{v} is a hyperplane given by

$$\mathbf{v} + H_{\mathbf{y}}^t = H_{\mathbf{y}}^{t + \mathbf{v} \cdot \mathbf{y}}$$

Proof. This lemma follows immediately from the following chain of equivalent statements.

$$\mathbf{x} \in \mathbf{v} + H_{\mathbf{y}}^{t} \Leftrightarrow \mathbf{x} - \mathbf{v} \in H_{\mathbf{y}}^{t}$$

$$\Leftrightarrow (\mathbf{x} - \mathbf{v}) \cdot \mathbf{y} = t$$

$$\Leftrightarrow \mathbf{x} \cdot \mathbf{y} - \mathbf{v} \cdot \mathbf{y} = t$$

$$\Leftrightarrow \mathbf{x} \cdot \mathbf{y} = t + \mathbf{v} \cdot \mathbf{y}$$

$$\Leftrightarrow \mathbf{x} \in H_{\mathbf{y}}^{t + \mathbf{v} \cdot \mathbf{y}} \qquad \Box$$