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the exterior vertices. These paths exist because a planar triangulation is
3-connected, but the paths obtained by this algorithmic process satisfy sev-
eral key structural properties. Schynder’s argument can be extended easily
to show that given a planar map in which every face, except possibly the
exterior face, is a triangle, the poset of vertices, edges, and faces ordered
by inclusion has dimension at most four. However, his techniques do not
apply to arbitrary planar maps.

Brightwell and Trotter then succeeded in showing that the vertex-edge-
face poset of any planar map has dimension at most four even if loops and
multiple edges are allowed. The problem of determining the dimension of
the vertex-edge-face poset is first reduced to the consideration of planar
maps which are ordinary graphs and are 2-connected. We then develop
some combinatorial properties of a family of paths constructed in a planar
graph satis{lying a slightly weaker property than being 3-connected. The 3-
connected planar graphs are of particular interest because these are just the
planar graphs associated with convex polytopes in 3-dimensional Euclidean
space. For such graphs, Brightwell and Trotter showed that the poset
consisting of the vertices and faces ordered by inclusion is 4-irreducible.
For t > 4, there are convex polytopes in t-dimensional Euclidean space for
which there is no bound on the dimension of the vertex-edge poset.

2. Schnyder’s Dimension Theoretic Test for
Planarity

Let G = (V, E) be an ordinary graph. We associate with G a poset
P = (X, P) called the vertez-edge poset of G (also, the incidence poset of
G)by X =VUFandz<yimnPifandonlyifz€ V,y € E, and z
is an end point of y. I consider the next theorem to be one of the most
significant results in dimension theory since the concept was introduced 50
years ago. ' :

(2.1) Theorem (Schnyder [SCHN}). Let G = (V, £} be a graph and let
P = (VU E, P) be the vertez-edge poset associated with G. Then G is
planar if and only if dim(P) < 3.

Proof. Suppose first that dim(P) < 3. We show that G is planar. (This is
the relatively easy part of Schnyder’s theorem, and the argument presented
here is actually due to Babai and Duffus [BA-DU].) We use the well-known
fact that a graph G = (V, E) is planar if it can be drawn in the plane so
that there are no edge crossings involving edges e;, e2 which do not share an
end point. Edge crossing involving edges with a common end point present
no problem as such crossings can be eliminated.
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Choose an embedding of P in R3 which associates with each y € VUE
a vector y = (y1,¥2,y3) € R? so that u < vin P if and only if u; < v; in
R fori=1,2,3. For each y € VUF, let m(y) be the orthogonal projection
of y on the plane z; + z2 + z3 = 0 in R3. Without loss of generality, all
points in V U E project to distinct points on the plane z; + z2 + z3 = 0,
and these points are in general position.

For each u € V and each e € E containing u as an end point, join 7(u)
and m(e) with a straight line segment. If G is nonplanar, there exist distinct
vertices u,v € V and distinct edges e, f € E so that u is an end point of
e but not of f, v 13 an end point of f but not of e, and the line segment
7(u)r(e) crosses the line segment x(v)x(f) at a point p interior to both.
Let z be the point on the line segment ue in R? so that 7(z) = p. Also let
w be the point on the line segment vf in R3 so that #{w) = p. Then either
2z <winR3orw < zinR? However,z < wimpliesu <z <wc<f,
which is false since u is not an end point of f. Similarly w < z implies
v < e which is also false. The contradiction shows that G is planar.

Now suppose that G is planar. We show that the vertex-edge poset P
has dimension at most 3. Without loss of generality, we assume that G is
maximal planar since adding edges to G can only increase the dimension
of the associated vertex-edge poset. Choose a planar drawing of G using
straight line segments for the edges. This diagram is a triangulation T
of the plane. Each interior region is a triangle, and T has three exterior
vertices which we label in clockwise order vy, vz, and v3.

Now consider a function f which assigns to each angle of each interior
triangle of T a color selected from {1,2,3}. The function f is called a
normal coloring of T if the following properties are satisfied:

1) All angles incident with exterior vertex v; are mapped by f to color i,
8
fori=1,2,3;

(2) At each interior vertex u of T', there is an angle mapped by f to color
i,fori1=1,23;

(3) At each interior vertex u of T, all angles mapped by f to color i are
consecutive, for 1 = 1,2,3;

(4) At each interior vertex u of T', the block of angles mapped by f to color
2 appears immediately after the block of angles mapped by f to color
1 in clockwise order; and

(6) For each elementary triangle of T, f assigns the three angles to colors 1,
2, and 3 in clockwise order. We illustrate this definition in the following
figure with a normal coloring of a triangulation.
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The following claim admits an easy inductive argument, and its proof
is left as an exercise,

Claim 1. Fvery planar triangulation has a normal coloring.

Let C be a cycle in a planar triangulation T which has been colored
normally. A vertex z belonging to C is called a Type i vertex on C if
all angles incident with z and interior to C are colored i. When C is the
exterior triangle, v; is a Type i vertex on C.

Claim 2. If C 1s a cycle in T, then C contains a Type 1 vertez for each
1=1,2,3.

Proof. Suppose the claim is false. Choose a counterexample C contain-
ing the minimum number of elementary triangles. Clearly C is not the
boundary of an elementary triangle. Without loss of generality, we may
now suppose C does not have a Type 1 vertex.

Suppose that C has two nonconsecutive vertices z and y which are the
end points of an edge e = zy interior to C. Then the region bounded by C
can be partitioned into regions bounded by cycles C’ and C” having ¢ as a
common edge. Now C’ and C” both have a Type 1 vertex. If z is a Type
1 vertex of C’ and for C”, then z is a Type 1 vertex for C. An analogous
statement holds for y. We conclude that one of £ and y is a Type 1 vertex
for C' and the other is a Type 1 vertex for C". Consideration of the two
elementary triangles sharing the edge shows this is impossible.

Now let C' = {z,,2,,...,2,} and let z; and z;,; be any two consecu-
tive vertices of C, and let z; be the vertex so that z;z;112; is an elementary
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triangle interior to C. Let C; be the cycle obtained by deleting the edge
r;2;4+1 and adding the edges z;z; and z;z;4;. Then C; has a Type 1 vertex
because it contains fewer elementary triangles than C. Clearly 2; cannot
be a Type 1 vertex on C; because z; is an interior vertex of 7.

It follows that one of 2; and z;;, is a Type 1 vertex on C;. If z; is
Type 1 on C;, then the angle of triangle #;z;,)2; incident with z; must
be colored 3; else z; is Type 1 on C. Thus the angle of z;z;4,2 incident
with z;4, is colored 1. This implies that z;4, is not Type 1 for C;. Dually,
if ;41 is Type 1 for Cj, then the angle of z;z;412; incident with =z, is
colored 2, the angle of z;x;,,z; incident with z; is colored 1, and z; is not
Type 1 for C;. :

If some vertex z;y; is Type 1 for both C; and Cj44, then z; is Type 1
for C'. So either z; is Type 1 for C; fori = 1,2,... s, or ;4 is Type 1 for
Ci for i = 1,2,... 5. In the first case, there is no Type 2 vertex on Cy; in
the second, there is no Type 3 vertex on C3. The contradiction completes
the proof.

Claim 3. Let P; be the binary relation on the sel V of vertices G defined
by (x,y) € P; if and only if there exists an elementary triangle T having
r and y as vertices in which the angle incident at y is colored i. Then the
transitive closure Q; = tr{ P;) is a partial order on V.

Proof. It suffices to show Q: has no directed cycles. This follows from
Claim 2 since a directed cycle in @; could not have either a Type i + 1 or
a Type 1 + 2 vertex.

For each i = 1,2, 3, let M; be a linear extension of ;. Then let L; be
any linear extension of P so that:

(1) The restriction of L; to V is M;.

(2) For each e € E, the M; largest element of V which is less than e in M;
is less than e in P.

Alternately, we may view L; as being obtained from M; by inserting
the elements of £ as low as possible. To complete the proof, it suffices to
show that R = {L;, Ly, L3} is a realizer of P. To accomplish this, it is
enough to show that R reverses the critical pairs in P. However, it is easy
to see that the critical pairs have the form (2,e) where z € V, e = zy € E,
and z is not an end point of e, It follows that we must find some M; in
which z is over both z and y in M;. In fact, we will show that there is some
t for which z > zin Q; and z > y in Q;.

If z is an exterior vertex, say z = v;, then z is the largest element in
Qi. Now suppose z is an interior vertex. Then for each i = 1,2, 3, there is
a path P(z,v;) from z to the i*" exterior vertex v;. The starting point of
P(z,v;) is up = z. If u; has been determined and u; is an interior vertex,
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then ujy, is the unique vertex such that the angles at u; on either side of
the edge uju; 4, are colored i + 1 and i+ 2.

The paths P(z,vy), P(z, v2), and P(z,v3) are pairwise disjoint (except
of course for the point z) and partition T into 3 regions S(z,1), S(z,2), and
5(z,3).

v
1
If the edge e = zy joins two vertices in the region S(z,1), then z is
greater than both = and y in Q;. This completes the proof.

3. Convex Polytopes

In this section we generalize Schnyder’s characterization of planar
graphs and consider the vertices, edges, and faces of a planar map.

We consider a planar map M as a finite connected planar graph
G = (V, E) together with a plane drawing D of G, i.e., a representation of
G by points and arcs in the plane R? in which there are no edge crossings.




