The Quaternions

Algebra: An (associative) algebra over a field \mathbb{F} is a vector space over \mathbb{F} which is equipped with a vector product which is associative and distributive.

Normed Algebra: An algebra over \mathbb{R} is normed (or is called a composition algebra) if $|u v|=|u| \cdot|v|$ for all u, v.

Note: The complex numbers, \mathbb{C}, may be viewed as formal linear combinations $x+i y$ where $x, y \in \mathbb{R}$ and i commutes with every real and obeys the rule $i^{2}=-1$. The norm of a complex number is $|x+i y|=\sqrt{x^{2}+y^{2}}$ and \mathbb{C} is a 2-dimensional normed vector space over \mathbb{R}.

Quaternions: The Quaternions, \mathbb{H}, are formal linear combinations $x+i y+j z+k w$ where $x, y, w, z \in \mathbb{R}$ and i, j, k commute with every real and satisfy the rules:

$$
i j k=i^{2}=j^{2}=k^{2}=-1
$$

(it follows from this that $i j=k, j k=i, k i=j$ and $j i=-k, k j=-i, i k=-j$). The norm of a quaternion is $|x+i y+j z+k w|=\sqrt{x^{2}+y^{2}+z^{2}+w^{2}}$ and this gives \mathbb{Q} the structure of a 4-dimensional normed algebra over \mathbb{R}.

Octonians: The Octonians, \mathbb{O}, form an eight dimensional normed (non-associative!) algebra over \mathbb{R} which is based on the geometry of the Fano Plane.

Theorem 1 (Hurwitz) The only normed algebras over \mathbb{R} are: \mathbb{C}, \mathbb{H}, and \mathbb{O}.

Theorem 2 (Pfister) In any field and for any n, the product of two sums of 2^{n} squares is a sum of 2^{n} squares.

Note: There is no contradiction in the above two theorems, as Pfister's result does not yield a suitable composition law.

Actions of \mathbb{C} : Let $U=\{z \in \mathbb{C}:|z|=1\}$, then U acts on \mathbb{C} by the rule that $u \in U$ sends $z \in \mathbb{C}$ to $u z$. If $u=e^{i \theta}$ then u has the effect of rotating the plane counterclockwise about the origin by an angle of θ. Indeed, this action is isomorphic to SO_{2} (rotations fixing 0).

Actions of \mathbb{H} : let $q \in \mathbb{H} \backslash\{0\}$ and let q act on \mathbb{H} by the rule $q(x)=q x q^{-1}$. This is a linear map which preserves the norm of each vector, so it must be an isometry of \mathbb{R}^{4}. This mapping fixes \mathbb{R} pointwise, so it fixes the orthogonal subspace $V=\{i y+j z+k w: y, z, w \in \mathbb{R}\}$ setwise. Thus, each $q \in \mathbb{H}$ gives an isometry of $V \cong \mathbb{R}^{3}$ which fixes 0 . In fact, each such isometry is a rotation. This action is not faithful: its kernel is $\mathbb{R} \backslash\{0\}$, but if we quotient by this we get an action isomorphic to SO_{3}.

Gaussian Numbers: The Gaussian numbers are $\{x+i y \in \mathbb{H}: x, y \in \mathbb{Z}\}$. It is immediate that the Gaussian numbers are closed under addition and multiplication. The Gaussian numbers of norm 1, called units are $\{1,-1, i,-i\}$ and importantly, every Gaussian number has a unique factorization (up to multiplication by units).

Hurwitz Integral Quaternions: Although a naive extension of the above to Quaternions does not yield a ring with unique factorization, the Hurwitz Quaternions given by

$$
\left\{x+i y+j z+k w: x, y, z, w \in \mathbb{Z} \text { or } x, y, z, w \in \frac{1}{2}+\mathbb{Z}\right\}
$$

do form a ring with this property.

Proposition 3 Let n, m be integers.
(i) If n, m are sums of two squares, then $n m$ is a sum of two squares.
(ii) If n, mare sums of four squares, then $n m$ is a sum of four squares.

Proof: These follow immediately from the structure of \mathbb{C} and \mathbb{H} : for (i) let $n=a^{2}+b^{2}$ and $m=c^{2}+d^{2}$ and set $(a+b i)(c+d i)=(f+g i)$. Then $\sqrt{n m}=\sqrt{a^{2}+b^{2}} \sqrt{c^{2}+d^{2}}=\sqrt{f^{2}+g^{2}}$ so $n m=f^{2}+g^{2}$. As similar argument works for (ii).

Theorem 4 (Fermat (i) and Lagrange (ii))

(i) Every $n \in \mathbb{N}$ with no prime factor $\equiv 3(\bmod 4)$ is a sum of two squares.
(ii) Every $n \in \mathbb{N}$ is a sum of four squares.

