
10 Hadamard Matrices

Hadamard Matrix: An n × n matrix H with all entries ±1 and HH> = nI is called a

Hadamard matrix of order n. For brevity, we use + instead of 1 and − instead of −1.

Examples:

[+]

[
+ +

+ −

] 
+ + + +

+ + − −
+ − + −
+ − − +


Notes: If two matrices have product tI then they commuet. It follows that H>H = nI

for every Hadamard matrix of order n. Also note that modifying a Hadamard matrix by

multiplying a row/column by -1 or permuting the rows/columns yields another Hadamard

matrix.

Observation 10.1 If H is a Hadamard matrix of order n then n = 1, 2 or n ≡ 0 (mod 4).

Proof: We may assume n ≥ 3 and may assume (by possibly multiplying columns by −1)

that the first row has all entries +. Now, the first three entries of each column must be

+ + +, + +−, +−+, or +−− and we shall assume that there are respectively a, b, c, and

d of these. Now we have a+ b+ c+ d = n and the three orthogonality relations on the first

three rows yield the equations: a + b− c− d = 0, a + c− b− d = 0 and a− b− c + d = 0.

Summing these four equations yields 4a = n �

Conjecture 10.2 There exists a Hadamard matrix of order n whenever 4 divides n

Tensor Product: Let A = {ai,j} be an m× n matrix and let B be a matrix. Then

A⊗B =


a1,1B a1,2B . . . a1,nB

a2,1B a2,2B a2,nB
...

. . .
...

am,1B am,2B . . . am,nB


Note: if A,B have the same dimensions and C,D have the same dimensions, then

(A⊗ C)(B ⊗D) = (AB)⊗ (CD) (1)

(A⊗ C)> = A> ⊗ C> (2)
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Observation 10.3 If H1, H2 are Hadamard matrices, then H1⊗H2 is a Hadamard matrix.

Proof: This follows immediately from the above equations. �

Character: A character of a (multiplicative) group G is a function χ : G → C which is a

group homomorphism between G and the multiplicative group {z ∈ C : ||z|| = 1}. Whenever

q is a power of an odd prime, we define χ� : Fq → C as follows

χ�(a) =


0 if a = 0

1 if a ∈ F�
q

−1 otherwise

Observation 10.4

(i) χ�(ab) = χ�(a)χ�(b) for all a, b ∈ Fq. (so χ� is a character)

(ii) χ�(−1) =

{
1 if q ≡ 1 (mod 4)

−1 if q ≡ 3 (mod 4)
.

(iii)
∑

a∈Fq
χ�(a) = 0

(iv) If b ∈ Fq \ {0} then
∑

a∈Fq
χ�(a)χ�(b+ a) = −1

Proof: The mutiplicative group Fq \ {0} is cyclic, and thus isomorphic to Zq−1. So, if we

choose a generator g for this group we may write its elements as 1 = g0, g1, g2, . . . , gq−2.

Now, the squares F�
q = {g0, g2, g4, . . . , gq−3} form a (multiplicative) subgroup of index 2.

Parts (i) and (iii) follow immediately from this. Since −1 is the unique nonidentity element

whose square is the identity we have that −1 = g
q−1
2 , so if q ≡ 1 (mod 4) then −1 ∈ F�

q and

otherwise −1 6∈ F�
q which establishes (ii). For (iv) we have∑

a∈Fq

χ�(a)χ�(b+ a) =
∑

a∈Fq\{0}

(
χ�(a)

)2
χ�(ba−1 + 1)

=
∑

c∈Fq\{1}

χ�(c)

= −1

as desired. �
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Conference Matrix: An n × n matrix C with all diagonal entries 0 all other entries ±1

and CC> = (n− 1)I is called a conference matrix.

Lemma 10.5 Let C be a conference matrix.

(i) If C is antisymmetric, then I + C is a Hadamard matrix.

(ii) If C is symmetric, then

[
I + C −I + C

−I + C −I − C

]
is a Hadamard matrix.

Proof: For (i) we have (I +C)(I +C)> = I +C +C> +CC> = nI. Part (ii) is similar. For

instance, the upper left submatrix of the product is

(I +C)(I +C)>+ (−I +C)(−I +C)> = (I + 2C + (n− 1)I) + (−I − 2C + (n− 1)I) = 2nI

and the other submatrices are similarly easy to verify. �

Theorem 10.6 Let q be a power of an odd prime. There exists a Hadamard matrix of order

q + 1 if q ≡ 3 (mod 4) and a Hadamard matrix of order 2(q + 1) if q ≡ 1 (mod 4).

Proof: Let a1, a2, . . . , aq be the elements of Fq and define a matrix B = {bij}1≤i,j≤q by the

rule bij = χ�(ai − aj). Now we have

(BB>)ij =
∑

1≤k≤q

bikbjk

=
∑

1≤k≤q

χ�(ai − ak)χ�(aj − ak)

=
∑
a∈Fq

χ�(a)χ�(aj − ai + a)

=

{
−1 if i 6= j

q − 1 otherwise

For every 1 ≤ i ≤ q we have∑
1≤k≤q

bik =
∑

1≤k≤q

χ�(ai − ak) =
∑
c∈Fq

χ�(c) = 0

bij = χ�(ai − aj) = χ�(−1)χ�(aj − ai) = χ�(−1)bji =

{
bji if q ≡ 1 (mod 4)

−bji if q ≡ 3 (mod 4)
.
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If q ≡ 1 (mod 4) then the previous equation shows that B is symmetric and we define

C =


0 1 . . . 1

1
... B

1


Now C is symmetric and CC> = qI so C is a symmetric conference matrix of order q + 1.

On the other hand, if q ≡ 3 (mod 4) thenB is antisymmetric and we define

C =


0 1 . . . 1

−1
... B

−1


Now C is antisymmetric and CC> = qI so C is an antisymmetric conference matrix of order

q + 1. It now follows from the previous lemma that the desired Hadamard matrix exists.

�


