10 Hadamard Matrices

Hadamard Matrix: An $n \times n$ matrix H with all entries ± 1 and $H H^{\top}=n I$ is called a Hadamard matrix of order n. For brevity, we use + instead of 1 and - instead of -1 .

Examples:

$$
[+] \quad\left[\begin{array}{cc}
+ & + \\
+ & -
\end{array}\right] \quad\left[\begin{array}{llll}
+ & + & + & + \\
+ & + & - & - \\
+ & - & + & - \\
+ & - & - & +
\end{array}\right]
$$

Notes: If two matrices have product $t I$ then they commuet. It follows that $H^{\top} H=n I$ for every Hadamard matrix of order n. Also note that modifying a Hadamard matrix by multiplying a row/column by -1 or permuting the rows/columns yields another Hadamard matrix.

Observation 10.1 If H is a Hadamard matrix of order n then $n=1,2$ or $n \equiv 0(\bmod 4)$.
Proof: We may assume $n \geq 3$ and may assume (by possibly multiplying columns by -1) that the first row has all entries + . Now, the first three entries of each column must be ,,+++++-+-+ , or +-- and we shall assume that there are respectively a, b, c, and d of these. Now we have $a+b+c+d=n$ and the three orthogonality relations on the first three rows yield the equations: $a+b-c-d=0, a+c-b-d=0$ and $a-b-c+d=0$. Summing these four equations yields $4 a=n$

Conjecture 10.2 There exists a Hadamard matrix of order n whenever 4 divides n
Tensor Product: Let $A=\left\{a_{i, j}\right\}$ be an $m \times n$ matrix and let B be a matrix. Then

$$
A \otimes B=\left[\begin{array}{cccc}
a_{1,1} B & a_{1,2} B & \ldots & a_{1, n} B \\
a_{2,1} B & a_{2,2} B & & a_{2, n} B \\
\vdots & & \ddots & \vdots \\
a_{m, 1} B & a_{m, 2} B & \ldots & a_{m, n} B
\end{array}\right]
$$

Note: if A, B have the same dimensions and C, D have the same dimensions, then

$$
\begin{align*}
(A \otimes C)(B \otimes D) & =(A B) \otimes(C D) \tag{1}\\
(A \otimes C)^{\top} & =A^{\top} \otimes C^{\top} \tag{2}
\end{align*}
$$

Observation 10.3 If H_{1}, H_{2} are Hadamard matrices, then $H_{1} \otimes H_{2}$ is a Hadamard matrix.

Proof: This follows immediately from the above equations.
Character: A character of a (multiplicative) group G is a function $\chi: G \rightarrow \mathbb{C}$ which is a group homomorphism between G and the multiplicative group $\{z \in \mathbb{C}:\|z\|=1\}$. Whenever q is a power of an odd prime, we define $\chi^{\square}: \mathbb{F}_{q} \rightarrow \mathbb{C}$ as follows

$$
\chi^{\square}(a)=\left\{\begin{array}{cl}
0 & \text { if } a=0 \\
1 & \text { if } a \in \mathbb{F}_{q}^{\square} \\
-1 & \text { otherwise }
\end{array}\right.
$$

Observation 10.4

(i) $\quad \chi^{\square}(a b)=\chi^{\square}(a) \chi^{\square}(b)$ for all $a, b \in \mathbb{F}_{q}$. (so χ^{\square} is a character)
(ii) $\quad \chi^{\square}(-1)=\left\{\begin{array}{cl}1 & \text { if } q \equiv 1(\bmod 4) \\ -1 & \text { if } q \equiv 3(\bmod 4)\end{array}\right.$.
(iii) $\quad \sum_{a \in \mathbb{F}_{q}} \chi^{\square}(a)=0$
(iv) If $b \in \mathbb{F}_{q} \backslash\{0\}$ then $\sum_{a \in \mathbb{F}_{q}} \chi^{\square}(a) \chi^{\square}(b+a)=-1$

Proof: The mutiplicative group $\mathbb{F}_{q} \backslash\{0\}$ is cyclic, and thus isomorphic to \mathbb{Z}_{q-1}. So, if we choose a generator g for this group we may write its elements as $1=g^{0}, g^{1}, g^{2}, \ldots, g^{q-2}$. Now, the squares $\mathbb{F}_{q}^{\square}=\left\{g^{0}, g^{2}, g^{4}, \ldots, g^{q-3}\right\}$ form a (multiplicative) subgroup of index 2. Parts (i) and (iii) follow immediately from this. Since -1 is the unique nonidentity element whose square is the identity we have that $-1=g^{\frac{q-1}{2}}$, so if $q \equiv 1(\bmod 4)$ then $-1 \in \mathbb{F}_{q}^{\square}$ and otherwise $-1 \notin \mathbb{F}_{q}^{\square}$ which establishes (ii). For (iv) we have

$$
\begin{aligned}
\sum_{a \in \mathbb{F}_{q}} \chi^{\square}(a) \chi^{\square}(b+a) & =\sum_{a \in \mathbb{F}_{q} \backslash\{0\}}\left(\chi^{\square}(a)\right)^{2} \chi^{\square}\left(b a^{-1}+1\right) \\
& =\sum_{c \in \mathbb{F}_{q} \backslash\{1\}} \chi^{\square}(c) \\
& =-1
\end{aligned}
$$

as desired.

Conference Matrix: An $n \times n$ matrix C with all diagonal entries 0 all other entries ± 1 and $C C^{\top}=(n-1) I$ is called a conference matrix.

Lemma 10.5 Let C be a conference matrix.
(i) If C is antisymmetric, then $I+C$ is a Hadamard matrix.
(ii) If C is symmetric, then $\left[\begin{array}{cc}I+C & -I+C \\ -I+C & -I-C\end{array}\right]$ is a Hadamard matrix.

Proof: For (i) we have $(I+C)(I+C)^{\top}=I+C+C^{\top}+C C^{\top}=n I$. Part (ii) is similar. For instance, the upper left submatrix of the product is $(I+C)(I+C)^{\top}+(-I+C)(-I+C)^{\top}=(I+2 C+(n-1) I)+(-I-2 C+(n-1) I)=2 n I$ and the other submatrices are similarly easy to verify.

Theorem 10.6 Let q be a power of an odd prime. There exists a Hadamard matrix of order $q+1$ if $q \equiv 3(\bmod 4)$ and a Hadamard matrix of order $2(q+1)$ if $q \equiv 1(\bmod 4)$.

Proof: Let $a_{1}, a_{2}, \ldots, a_{q}$ be the elements of \mathbb{F}_{q} and define a matrix $B=\left\{b_{i j}\right\}_{1 \leq i, j \leq q}$ by the rule $b_{i j}=\chi^{\square}\left(a_{i}-a_{j}\right)$. Now we have

$$
\begin{aligned}
\left(B B^{\top}\right)_{i j} & =\sum_{1 \leq k \leq q} b_{i k} b_{j k} \\
& =\sum_{1 \leq k \leq q} \chi^{\square}\left(a_{i}-a_{k}\right) \chi^{\square}\left(a_{j}-a_{k}\right) \\
& =\sum_{a \in \mathbb{F}_{q}} \chi^{\square}(a) \chi^{\square}\left(a_{j}-a_{i}+a\right) \\
& =\left\{\begin{array}{cl}
-1 & \text { if } i \neq j \\
q-1 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

For every $1 \leq i \leq q$ we have

$$
\begin{gathered}
\sum_{1 \leq k \leq q} b_{i k}=\sum_{1 \leq k \leq q} \chi^{\square}\left(a_{i}-a_{k}\right)=\sum_{c \in \mathbb{F}_{q}} \chi^{\square}(c)=0 \\
b_{i j}=\chi^{\square}\left(a_{i}-a_{j}\right)=\chi^{\square}(-1) \chi^{\square}\left(a_{j}-a_{i}\right)=\chi^{\square}(-1) b_{j i}=\left\{\begin{array}{cc}
b_{j i} & \text { if } q \equiv 1(\bmod 4) \\
-b_{j i} & \text { if } q \equiv 3(\bmod 4)
\end{array} .\right.
\end{gathered}
$$

If $q \equiv 1(\bmod 4)$ then the previous equation shows that B is symmetric and we define

$$
C=\left[\begin{array}{cccc}
0 & 1 & \ldots & 1 \\
1 & & & \\
\vdots & & B & \\
1 & & &
\end{array}\right]
$$

Now C is symmetric and $C C^{\top}=q I$ so C is a symmetric conference matrix of order $q+1$. On the other hand, if $q \equiv 3(\bmod 4)$ then B is antisymmetric and we define

$$
C=\left[\begin{array}{cccc}
0 & 1 & \ldots & 1 \\
-1 & & & \\
\vdots & & B & \\
-1 & & &
\end{array}\right]
$$

Now C is antisymmetric and $C C^{\top}=q I$ so C is an antisymmetric conference matrix of order $q+1$. It now follows from the previous lemma that the desired Hadamard matrix exists.

