
8 Group Actions

Actions on Sets

Action: Let G be a multiplicative group and let Ω be a set. An action of G on Ω is a group

homomorphism G → Sym(Ω). So, each element g ∈ G is associated with a permutation

of Ω, and for convenience, we let g(x) denote the image of an element x ∈ Ω under this

permutation. The fact that we have a group homomorphism from G to Sym(Ω) is equivalent

to g(h(x)) = (gh)(x) for g, h ∈ G and x ∈ Ω.

Note: above we have defined a left action. For a right action we would denote the image of

x under g by x · g and then x · (gh) = (x · g) · h. We will use left actions exclusively.

Examples:

1. The group Sn has a natural action on [n] since each element of Sn is a permutation.

More generally Sym(Ω) acts on Ω.

2. The group GL(n,F) acts on Fn by matrix multiplication, that is, if A ∈ GL(n,F) and

~x ∈ Fn then A(~x) = A~x.

3. For any group G, we have that G acts on itself by the rule that g(x) = gx for all x ∈ G
and g ∈ G.

4. For any group G and subgroup H ≤ G we define G/H = {gH : g ∈ G}, that is, the

set of all left H-cosets. Now, G has a natural action on G/H by the rule that g ∈ G
applied to g′H is gg′H.

Faithful: We say that the action of G on Ω is faithful if the kernel of the homomorphism

from G to Sym(Ω) is trivial. Equivalently, the action is faithful if any two distinct elements

g, h ∈ G give distinct permutations of Ω (otherwise gh−1 is in the kernel).

Note: if we have a faithful group action, then we have represented G as a subgroup of

Sym(Ω). If our action is unfaithful, and H is the kernel of our group homomorphism, then

H / G and G/H has a faithful action on Ω.
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Orbit: Let x ∈ Ω. The orbit of x is the set

Ωx = {y ∈ Ω : g(x) = y for some g ∈ G}.

We let Ω/G denote the set of all orbits.

Stabilizer: The stabilizer of x ∈ Ω is the set

Gx = {g ∈ G : g(x) = x}.

Proposition 8.1 Let x, y ∈ Ω let h ∈ G and assume that h(x) = y. Then:

(i) {g ∈ G : g(x) = y} = hGx

(ii) Gy = hGxh
−1

(iii) |Ωx| · |Gx| = |G|.

Proof: For (i), note that if g ∈ Gx then hg(x) = h(x) = y (which proves ”⊇”) and conversely,

if g(x) = y then h−1g(x) = h−1(y) = x so h−1g ∈ Gx which implies g ∈ hGx (thus proving

”⊆”). Similarly for (ii), note that if g ∈ Gx then hgh−1(y) = hg(x) = h(x) = y (proving

”⊇ ”) and conversely if g ∈ Gy then h−1gh(x) = h−1g(y) = h−1(y) = x which implies

g ∈ hGxh
−1 (proving ”⊆”). Part (iii) is an immediate consequence of (i) since each element

of Ω which is the image of x under a group element is an image under exactly |Gx| group

elements. �

Transitive: The action of G on Ω is transitive if there is a single orbit.

Theorem 8.2 Let G act transitively on Ω. Then there exists H ≤ G so that the action of

G on Ω is isomorphic to the action of G on G/H.

Proof: Choose a point x0 ∈ Ω and set H = Gx0 . Now, apply Proposition 8.1 to choose for

every xi ∈ Ω a group element gi ∈ G so that giH is the subset of G which maps x0 to xi. We

now show that this correspondence between Ω and G/H yields an isomorphism. For this,

we must prove that if xi, xj ∈ Ω and h(xi) = xj then hgiH = gjH. But this is immediate, if

h(xi) = xj then hgi(x0) = h(xi) = xj so hgi ∈ gjH but then hgiH = gjH. �
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Polya Counting

Motivation: How can we count the number of essentially distinct ways of colouring the faces

of an Octahedron using {red , yellow , blue}, where two colourings are considered equivalent

if there is a rotational symmetry of the Octahedron which takes one to the other?

Actions on Colourings: Let A,B be finite sets, and let the group G act on A. We regard

B as a set of colours, so we think of a function f : A → B as a colouring of A. Now, the

group G inherits an action on the set BA (the colourings of A) by the rule that σ ∈ G applied

to f ∈ BA is given by σ(f) = f ◦σ−1. To check this, let σ1, σ2 ∈ G let f ∈ BA and note that

(σ2σ1)(f) = f ◦ (σ2σ1)−1 = f ◦ σ−1
1 ◦ σ−1

2 = σ2(σ1(f))

(note here that the −1 is necessary to have a group action). In the above problem, A is the

set of faces of the Octahedron, G is the rotational symmetry group acting on A, and B is

the set of colours {red , yellow , blue}. Now, two colourings f, f ′ ∈ BA are equivalent if there

exists σ ∈ G so that f ′ = f ◦ σ or in other words f ′ = σ−1(f). So, the number of essentially

different colourings is precisely |BA/G| (i.e. the number of orbits of the action of G on BA).

Fixed Points: For every g ∈ G we let Fix(g) = {x ∈ Ω : g(x) = x}.

Theorem 8.3 (Burnside’s Lemma) If G acts on the finite set Ω then

|Ω/G| = 1

|G|
∑
g∈G

|Fix(g)|

Proof: We have

1

|G|
∑
g∈G

|Fix(g)| = 1

|G|
∑
x∈Ω

|Gx|

=
∑
x∈Ω

1

|Ωx|

= |Ω/G| �

Theorem 8.4 (Polya) Let A,B be finite sets, let G act on A, and let ck denote the number

of group elements σ ∈ G which have exactly k cycles in their action on A. Then

|BA/G| = 1

|G|

∞∑
k=1

ck|B|k.



4

Proof: Considering the action of G on BA, we observe that a colouring f ∈ BA is a fixed

point of σ ∈ G if and only if f is constant on each cycle of σ. It follows that the number

of colourings fixed by σ is precisely |B|k where k is the number of cycles of σ. The theorem

follows immediately from this and Burnside’s Lemma. �

Problem Solution: The 24 rotational symmetries of the Octahedron consist of:

1. One identity (8 cycles)

2. Six rotations by π about an axis through antipodal edges (4 cycles).

3. Six rotations by ±π
2

about an axis through antipodal vertices (2 cycles).

4. Three rotations by π about an axis through antipodal vertices (4 cycles).

5. Eight rotations by ±2π
3

about an axis through antipodal faces (4 cycles).

Using the notation from Polya’s theorem this gives c2 = 6, c4 = 17 and c8 = 1 so the number

of essentially distinct colourings is

1

24
(6 · 32 + 17 · 34 + 1 · 38) =

1

24
(54 + 1377 + 6561) = 333

The Number Six

Motivating Problem: In what ways can the group Sn act faithfully on a set Ω of size n?

There are many obvious actions of this type: just label the points of Ω with 1..n and let the

permutation π ∈ Sn act accordingly. Could there ever be another such action?

Conjugation: If g, h ∈ G then we call ghg−1 the conjugate of h by g. Define a relation on G

by declaring two elements to be equivalent if one is a conjugate of the other. It is immediate

that this is an equivalence relation and we call the equivalence classes conjugacy classes.

Observation 8.5 A conjugacy class in Sn consists of all permutations with the same cycle

structure (i.e. the same number of cycles of each length).

Proof by Example: Given σ = (123)(4567)(8)(9X) and τ = (abc)(defg)(h)(ij), the function

π given by the rule π(1) = a, π(2) = b, . . . , π(X) = j satisfies σ = π−1τπ. �
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Group Automorphism: An automorphism of a group G is a group isomorphism φ : G→
G. Let g ∈ G and let φg : G → G be given by φg(x) = gxg−1. Then φg(xy) = g(xy)g−1 =

(gxg−1)(gyg−1) = φg(x)φg(y) so φg is an automorphism. We say that any automorphism of

this type is inner and any other automorphism is outer.

Motivating Problem, version 2: We return to the original problem, but now set Ω = [n].

A faithful action of Sn on [n] is, by definition, an injective group homomorphism from Sn

to Sym([n]) = Sn. So this is precisely a group automorphism of Sn. Now, the ”obvious”

actions are given by relabeling: if g ∈ Sn then we may have Sn act on itself by the rule that

x ∈ Sn gives the permutation gxg−1. However, this is precisely an inner automorphism of

Sn. So, our motivating problem is equivalent to the question: Does there ever exist an outer

automorphism of Sn?

Lemma 8.6 If φ is an automorphism of Sn and φ maps the conjugacy class of transpositions

to itself, then φ is inner.

Proof: Note that two distinct transpositions commute if and only if they transpose dis-

joint pairs. Let (a1a2) be the image of (12) under φ and consider the image of (23) under

φ. Since (12) and (23) do not commute, we may assume (without loss) that the image

of (23) is (a2a3). Next, consider the image of (34). This transposition must commute

with (ab) but not (bc) so without loss it is (cd). Continuing in this manner we find that

(12), (23), (34), . . . , (n − 1, n) map respectively to (a1a2), (a2a3), (a3a4), . . . (anan−1). Since

the transpositions (12), (23), . . . , (n− 1n) generate Sn (check!) it follows that φ is given by

the rule φ(i) = ai. �

Theorem 8.7 If n 6= 6 then there is no outer automorphism of Sn.

Proof: Consider all conjugacy classes of involutions (elements of order 2). Any group au-

tomorphism must map conjugacy classes to conjugacy classes (check!) and must preserve

the order of each element (check!) so it follows that every automorphism of Sn sends each

conjugacy class of involutions to another conjugacy class of involutions.

Let Kn have vertex set [n]. Every involution has the form (ab)(cd)..(st)(u)(v)..(z) so

we may identify it with the matching (set of pairwise nonadjecent edges) in Kn consisting

of the edges ab, cd, . . . , st. This gives a natural bijection between the conjugacy class of
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involutions which contain k disjoint transpositions and the set of k edge matchings in Kn.

In particular, it is only possible to map the conjugacy class of transpositions to the conjugacy

class of involutions with k disjoint transpositions if the number of edges in Kn is equal to

the number of k edge matchings in Kn.

To count the number of k edge matchings in Kn, we first choose the 2k vertices which are

to be covered by the matching edges. This can be done in
(
n
2k

)
ways. Next, we choose a k edge

matching on these 2k vertices by choosing a pair for the smallest vertex (which can be done

in 2k − 1 ways) and then one for the smallest unmatched vertex (2k − 3 ways), on down. It

follows that the total number of k edge matchings in Kn is given by
(
n
2k

)
(2k−1)(2k−3) . . . (1).

It follows from the previous lemma and the above argument that there can only be an

outer automorphism of Sn if there exists k ≥ 2 so that(
n

2

)
=

(
n

2k

)
(2k − 1)(2k − 3) . . . (1) (1)

If n − 2k > 2 then
(
n
2

)
<
(
n
2k

)
and if n = 2k + 2 then

(
n
2

)
=
(
n
2k

)
but again the right hand

side of the equation above is larger than the left. If n = 2k + 1 then the left hand side is

(2k+ 1)(k) while the right is (2k+ 1)(2k− 1)(2k− 3) . . . (1) which is again larger. Thus, the

only possibility for equality is when n = 2k. In this case the left hand side is k(2k− 1) while

the right is (2k − 1)(2k − 3) . . . (1). This implies (2k − 3) ≤ k so k ≤ 3. The only possible

cases here are n = 4 and k = 2 (which fails) and n = 6 and k = 3 which works! �

Theorem 8.8 There is an outer automorphism of S6.

Proof: Again we work with the complete graph K6 with vertex set [6]. We follow Sylvester’s

notation by calling an edge a duad, a 3 edge matching a syntheme, and a collection of five

pairwise disjoint synthemes (i.e. a 5-edge-colouring) a pentad. First observe that every

syntheme contains three duad’s and every duad is in exactly three synthemes. Since there

are
(

6
2

)
= 15 duads, there must also be 15 synthemes.

Next consider two disjoint sythemes S, S ′. The graph K6\(S∪S ′) is a 3-prism. Since this

graph has just a single 3-edge-colouring, it follows that there is a unique pentad containing

S and S ′. So, for any syntheme S, we find that S intersects six other synthemes, and of the

remaining eight synthemes, they have a natural partition into two sets of size four, each of

which form a pentad with S. It follows that each syntheme appears in exactly two pentads.
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Figure 1: A 3-prism

Since there are exactly 15 synthemes and every pentad contains 5 synthemes, we deduce

that the number of pentads is exactly six.

Based on this construction, we now have an action of Sn on the six pentads. If σ is a

transposition, then σ does not fix any pentad (check!) and σ2 is the identity, so σ acts on the

pentads by a permutation with cycle structure (··)(··)(··). Labelling the pentads 1..6 yields

an outer automorphism of S6. �

Actions on Structures

Suppose we have a combinatorial structure defined on a ground set Ω. Then we say that a

group G acts on this structure if G acts on Ω preserving all properties of the structure.

Examples:

1. If Γ is a graph with vertex set V , we say that a group G acts on Γ if G acts on V

preserving adjacency (i.e., if u, v ∈ V and g ∈ G then u, v are adjacent if and only if

g(u), g(v) are adjacent.)

2. if P = (X,≤) is a poset we say that G acts on P if G acts on X preserving ≤ (i.e., if

x, y ∈ X and g ∈ G then x ≤ y if and only if g(x) ≤ g(y).

3. If I = (V,B,∼) is an incidence structure then we say that G acts on I if there is an

action of G on V and an action of G on B which preserves ∼ (i.e., if x ∈ V , ` ∈ B and

g ∈ G then x ∼ ` if and only if g(x) ∼ g(`)).

Automorphisms: An automorphism of a structure on a ground set Ω is a permutation of

Ω which preserves all properties of the structure. So, for instance, an automorphism of a

graph Γ with vertex set V is a permutation π of V with the property that u ∼ v if and only
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if π(u) ∼ π(v) for every u, v ∈ V . We let Aut(Γ) denote the set of automorphisms of G (and

we apply similar notation for other structures). Note that Aut(Γ) is a group.

PGL: The elements of PG(n,F) are subspaces of Fn+1 and there is a natural action of

GL(n+ 1,F) on these subspaces: if V is a subspace of Fn+1 and A ∈ GL(n+ 1,F) then AV

is another subspace of Fn+1. It is immediate that this action preserves subspace inclusion,

so GL(n + 1,F) acts on PG(n,F). Setting Z = {sI : s ∈ F \ {0}} we find (check!) that

Z is the kernel of this group action (i.e. Z is precisely the set of elements which give the

trivial permutation of PG(n,F)). We define the projective general linear group PGL(n +

1,F) = GL(n + 1,F)/Z and note that PGL(n + 1,F) acts faithfully on PG(n,F). As with

homogeneous coordinates for vectors, we will write elements in PGL(n + 1,F) as invertible

(n + 1)-dimensional matrices over F with the understanding that two such matrices are

equivalent if they are scalar multiples.

PSL: The group SL(n+1,F) has a natural action on PG(n,F) (as a subgroup ofGL(n+1,F))

and setting Z ′ = {sIn+1 : s ∈ F \ {0} and det(sIn+1) = 1} we find that Z ′ is the kernel of

this action. We define the projective special linear group PSL(n + 1,F) = SL(n + 1,F)/Z ′

and note that PSL(n + 1,F) acts faithfully on PG(n,F). Note that |Z ′| = |{s ∈ F \ {0} :

sn+1 = 1}| which depends on the order of the group (in particular, for F = Fq we have

|Z ′| = (n+ 1, q − 1)).

Theorem 8.9 The group PSL(n,Fq) is simple whenever n, q ≥ 2 except for PSL(2,F2) ∼=
S3 and PSL(2,F3) ∼= A4.

Projective Line: We call PG(1,F) the projective line over F. Using homogeneous coordi-

nates, each point in PG(1,F) may be denoted by a pair 〈x, y〉 with x, y not both zero. Since

these coordinates are invariant under scalar multiples, we may think of 〈x, y〉 as a slope x
y

(indeed this is the familiar notion of slope for graphs of lines in R2) with the usual convention

that x
0

= ∞. Since slopes form a more convenient labelling of the points, we shall identify

PG(1,F) with the set of slopes: F ∪ {∞}.

Möbius Transformations: Consider the action of PGL(2, q) on PG(1, q). Using homoge-

neous coordinates (here as column vectors) we have[
a b

c d

][
x

y

]
→

[
ax+ by

cx+ dy

]
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Interpreting 〈x, y〉 as a slope x
y

we see that this matrix maps s = x
y

to ax+by
cx+dy

= a(x/y)+b
c(x/y)+d

= as+b
cs+d

with the interpretations that an output of t
0

is ∞ and the input s = ∞ goes to a
c
. These

functions are generally called Möbius Transformations or fractional linear transformations.

Squares: For any field F we let F� = {t2 : t ∈ F \ {0}}. It is immediate that F� is a

multiplicative subgroup of F \ {0} which has index 2 if F = Fq with q odd.

Special Möbius Transformations: Consider the action of A ∈ GL(2, q) on PG(1,Fq).
The matrices whose action is equivalent to that of A are precisely {tA : t ∈ F \ {0}}. If

det(A) = s2 then A′ = s−1A ∈ SL(2, q) and has the same action as A. On the other hand, if

det(A) 6∈ F� then there is no matrix in SL(2, q) with the same action as A. It follows that

we may view the action of PSL(2, q) on PG(1,Fq) as given by those matrices A ∈ GL(2, q)

with det(A) ∈ F�. We call these special Möbius transformations.

Note: We now have faithful actions of PGL(2, q) and PSL(2, q) on q + 1 points (namely

on PG(1, q) = Fq ∪ {∞}).

Theorem 8.10 (Galois) The group PSL(2, q) does not act faithfully on q points except

when q = 5, 7, 11. Here we have PSL(2, 5) ∼= A5 and PSL(2, 7) ∼= GL(3, 2).

High Transitivity

t-homogeneous: We say that a group G acts t-homogeneously on Ω if for any two sets X, Y

with |X| = |Y | = t there is an element g ∈ G so that g(X) = Y .

t-transitive: We say that a group G acts t-transitively on a set Ω if whenever (x1, x2, . . . , xt)

and (y1, y2, . . . , yt) satisfy xi 6= xj and yi 6= yj for i 6= j, there exists an element g ∈ G so

that (g(x1), g(x2), . . . , g(xt)) = (y1, y2, . . . , yt). If there is a unique such element g then we

say that G acts sharply t-transitively on Ω.

Generalized Stabilizers: If X ⊆ Ω we let GX = {g ∈ G : g(X) = X} and if x1, . . . , xt ∈ Ω

we let G(x1,x2,...,xt) = {g ∈ G : g(xi) = xi for 1 ≤ i ≤ k}. Note that the proof of (ii) in

Propositon 8.1 shows that whenever h ∈ G satisfies h(X) = Y we have GY = hGXh
−1 and

whenever h ∈ G sends xi to yi for 1 ≤ i ≤ t we have G(y1,y2,...,yt) = hG(x1,x2,...,xt)h
−1.

Proposition 8.11 PGL(2,F) acts sharply 3-transitively on PG(1,F).
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Proof: Let (x, y, z) be a triple of distinct points in PG(1,F). First we shall show that there

is a sequence of Möbius transformations which map (x, y, z) to (∞, 0, 1). If x 6= ∞ then

the map s → 1
s−x maps x to ∞ and brings our triple to (∞, y′, z′). Now, the transform

s → s − y′ fixes ∞ and sends y′ to 0 bringing our triple to (∞, 0, z′′). Since z′′ 6= 0 the

transform s → 1
z′′ s now fixes ∞ and 0 and sends z′′ to 1 bringing our triple to (∞, 0, 1) as

desired. Composing a function which sends (x, y, z) to (∞, 0, 1) with the inverse of a function

which sends (x′, y′, z′) to (∞, 0, 1) (in the right order) gives a function which sends (x, y, z)

to (x′, y′, z′) thus showing that this action is 3-transitive. To show that this action is sharply

3-transitive, we need only check that G(∞,0,1) is trivial (why?). However, the transformations

which fix ∞ are precisely those of the form s → as + b (with a 6= 0), those that fix (∞, 0)

are precisely those of the form s→ as and thus, only the identity can fix (∞, 0, 1). �

The Autmorphism Group: For a group G we let Aut(G) denote the set of all group

automorphisms of G. Note that if φ, ψ ∈ Aut(G) then φ ◦ ψ ∈ Aut(G), so Aut(G) forms a

group under composition.

Examples:

1. Consider the (additive) group Zn and let k be relatively prime to n. Then the function

φk : Zn → Zn given by φk(a) = ka is an automorphism. In this case Aut(Zn) = Z∗n.

2. Consider the (additive) group G = Z2 × Z2. This group has exactly three nonidentity

elements, say α, β, γ, each is its own inverse, and the sum of any two is the third. It

follows that any bijection from G to itself which fixes the identity is an automorphism,

so Aut(G) ∼= S3.

3. If n 6= 6 then every automorphism of Sn is of the form φg(x) = gxg−1 for some g ∈ Sn.

Then φg ◦φh(x) = g(hxh−1)g−1 = (gh)x(gh)−1 = φgh(x). It follows that Aut(Sn) ∼= Sn.

Centralizers & Normalizers: Let G be a group and let S ⊆ G. We let

Z(S) = {g ∈ G : gs = sg for every s ∈ S}

N(S) = {g ∈ G : gS = Sg}

It is immediate from the definitions that Z(S) ≤ N(S) ≤ G.
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Lemma 8.12 If H ≤ G then Z(H) / N(H) and N(H)/Z(H) is isomorphic to a subgroup

of Aut(H).

Proof: Consider the action of N(H) on H by the rule that g ∈ N(H) applied to x ∈ H is

given by g(x) = gxg−1. The Kernel of this action is Z(H), so it follows that N(H)/Z(H) is

embedded in Aut(H) (i.e. isomorphic to a subgroup of ). �

Lemma 8.13 If G acts sharply 4-transitively on X then |X| ≤ 11.

Proof: We may assume (without loss) that X = [n] and then associate G with its image in

Sn and let ι denote the identity permutation. We begin the proof with two easy claims.

Claim 1: If δ, ε ∈ G commute then δ fixes the set {x ∈ X : ε(x) = x}

This is immediate, if ε(x) = x and δ(x) = y then we have y = δε(x) = εδ(x) = ε(y) so y

is also a fixed point of ε.

Claim 2: If δ, ε ∈ G have order two, they are conjugate.

Now, since only the identity fixes four points, we may assume that δ has cycle structure

(12)(34) . . . and that ε has cycle structure (ab)(cd) . . .. Now choose an element φ ∈ G so

that φ(1) = a, φ(2) = b, φ(3) = c and φ(4) = d. Now we have that δφ−1εφ fixes 1, 2, 3, 4 so

it is the identity. Thus δ = φ−1εφ and these elements are conjugate as desired.

Now, let α, β, γ be the unique elements of G with α = (1)(2)(34) . . ., β = (12)(3)(4) . . .,

and γ = (12)(34) . . .. Then α2, β2, γ2 all fix the first four elements, so they are the identity.

Furthermore H = {ι, α, β, γ} is a subgroup of G which is isomorphic to Z2 × Z2. If α has a

fixed point other than 1,2, then we shall denote it by ∞. Note that since α, β, γ commute

it follows from the first claim that if ∞ exists, then it is also fixed by β and γ. Now,

γ must fix two other points 5, 6 6= ∞ (since it is conjugate to α - and therefore has the

same cycle structure). It then follows that α = (1)(2)(34)(56) . . ., β = (12)(3)(4)(56) . . .,

γ = (12)(34)(5)(6) . . ..

Next we shall prove that Z(H) = H. To see this, suppose that δ ∈ Z(H). Now by the

first claim δ must fix the sets {1, 2,∞}, {3, 4,∞}, {5, 6,∞} so it must be that δ fixes ∞ (if

it exists) and either transposes or fixes each of {1, 2}, {3, 4}, {5, 6}. If it fixes two of these

sets, then δ = ι, and otherwise it has the same behavior as one of α, β, γ on 4 elements. Thus
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δ ∈ H as desired. It now follows from the previous lemma that N(H)/Z(H) = N(H)/H is

isomorphic to a subgroup of Aut(Z2 × Z2) ∼= S3 so in particular, |N(H)| ≤ 24.

Now, set W = {1, 2, 3, 4, 5, 6,∞} and consider the action of H on X. Since W is a union

of orbits which contains all fixed points of α, β, γ it follows that every other orbit has size

exactly four, say Y = {a, b, c, d} and each of α, β, γ gives a distinct permutation on Y with

two cycles of size two. Let K = GY . Now, by assumption, K ∼= S4 and H ≤ K. But then

H /K so it must be that K = N(H). Now, choose an element ν ∈ N(H) \H with order 2.

It then follows that ν must fix two points in Y an transpose the other two. If |X| ≥ 12 then

the action of H on X must have another orbit Y ′ ⊆ X \ (W ∪ Y ) of size four, and by the

same argument, the element ν must fix two points in Y ′ and transpose the other two. But

then ν has four fixed points, giving us a contradiction. It follows that |X| ≤ 11 as claimed.

�

Theorem 8.14 If G acts 4-transitively on X and does not give the set of all or all even

permutations of X, then one of the following holds (here Mn denotes a Matthieu Group):

(i) |X| = 11 and G ∼= M11 and the action is sharply 4-transitive

(ii) |X| = 12 and G ∼= M12 and the action is sharply 5-transitive

(iii) |X| = 23 and G ∼= M23

(iv) |X| = 24 and G ∼= M24 and the action is 5-transitive.


