2 Generating Functions

Generating Functions: A generating function is a formal power series of the form

$$
f(x)=\sum_{k=0}^{\infty} f_{k} x^{k}
$$

So $f_{0}, f_{1}, f_{2}, \ldots$ is just a sequence of numbers, but we interpret f_{k} as the coefficient of x^{k}. Accordingly, we define $f(0)=f_{0}$.
Exp and Log: We define $\exp (x)=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$ and $\log (1+x)=\sum_{k=1}^{\infty}(-1)^{k} \frac{x^{k}}{k}$
$\mathbb{C}[[\mathbf{x}]]:$ We define $\mathbb{C}[[x]]$ to be the collection of formal power series with the variable x and complex coefficients. If $f(x), g(x) \in \mathbb{C}[[x]]$ then $f(x)+g(x)$ and $f(x) g(x)$ are defined in the obvious manner, and this gives $\mathbb{C}[[x]]$ the structure of a commutative ring.

Rule: An expression evaluating to an element of $\mathbb{C}[[x]]$ is only valid if for every $k \in \mathbb{N}$ it is a finite procedure to determine the coefficient of x^{k}.

Substitution: Let $f(x)=\sum_{k=0}^{\infty} f_{k} x^{k}, g(x) \in \mathbb{C}[[x]]$ and assume that $g(0)=0$. Then we define $f(g(x))=\sum_{k=0}^{\infty} f_{k}(g(x))^{k}$.

Note: In general, and expression of the form $f(x)=\sum_{k=0}^{\infty} f_{k} x^{k}$ may be viewed either as a function from a subset of \mathbb{C} to \mathbb{C} or as a generating function. If it converges only when $x=0$ it is meaningless in the first. Conversely, if it violates the above rule, it is invalid in $\mathbb{C}[[x]]$. So, for instance the equation $\sum_{k=0}^{\infty} \frac{(1+x)^{k}}{k!}=\exp (1+x)=e \cdot \exp (x)=e \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$ is valid for functions but not for $\mathbb{C}[[x]]$.

Observation 2.1 If $f(x) \in \mathbb{C}[[x]]$ then $f(x)$ is invertible if and only if $f(0) \neq 0$.
Proof: Let $f(x)=\sum_{k=0}^{\infty} f_{k} x^{k}$. If $f_{0}=0$ then the constant term of $f(x) g(x)$ is zero for every $g(x)$, so $f(x)$ has no inverse. Conversely, if $f_{0} \neq 0$ then we can construct an inverse $g(x)=\sum_{k=0}^{\infty} g_{k} x^{k}$ recursively as follows: set $g_{0}=\frac{1}{f_{0}}$ and if we have chosen $g_{0}, g_{1}, \ldots, g_{j}$ so that the first $j+1$ terms of $g(x) f(x)$ are $1+0 x+0 x^{2} \ldots+0 x^{j}$ then we choose g_{j+1} so that the coefficient of x_{j+1} in $f(x) g(x)$ which is given by

$$
\sum_{i=0}^{j+1} f_{i} g_{j+1-i}
$$

is equal to zero (this is possible since $f_{0} \neq 0$ and all other terms have already been chosen).

Example:

$$
1=\exp (x) \exp (-x)=\sum_{k=0}^{\infty} \frac{(-x)^{k}}{k!} \sum_{k=0}^{\infty} \frac{x^{k}}{k!}
$$

This expression is, of course, valid for functions and converges everywhere. Since it does not violate the rule, it follows that this also holds for $\mathbb{C}[[x]]$. Note that this identity is equivalent to: $\sum_{j=0}^{k}(-1)^{j} \frac{1}{j!(k-j)!}=0$ if $k>0$ and is one for $k=0$. This last equation is recognized as the binomial expansion of $\frac{1}{k!}(1-1)^{k}$.

The Fibonacci Sequence: This sequence is given by $f_{0}=f_{1}=1$ and $f_{n}=f_{n-1}+f_{n-2}$ for $n \geq 2$. Setting $f(x)=\sum_{k=0}^{\infty} f_{k} x^{k}$ to be the corresponding generating function we have:

$$
\begin{aligned}
f(x) & =1+x+\sum_{k=2}^{\infty} f_{k} x^{k} \\
& =1+x+\sum_{k=2}^{\infty} f_{k-1} x^{k}+\sum_{k=2}^{\infty} f_{k-2} x^{k} \\
& =1+x+x \sum_{j=1}^{\infty} f_{j} x^{j}+x^{2} \sum_{j=0}^{\infty} f_{j} x^{j} \\
& =1+x+x(f(x)-1)+x^{2} f(x)
\end{aligned}
$$

Rearranging, we find

$$
f(x)=\frac{-1}{x^{2}+x-1}
$$

so $f(x)$ is -1 times the inverse of the generating function $-1+x+x^{2}$ and to find $f(x)$ we simply need to invert $-1+x+x^{2}$. To do this, we note that this polynomial is equal to $(x-\alpha)(x-\beta)$ where $\alpha=\frac{-1-\sqrt{5}}{2}$ and $\beta=\frac{-1+\sqrt{5}}{2}$ so by partial fractions

$$
\begin{aligned}
f(x) & =\frac{-1}{x^{2}+x-1} \\
& =-\frac{5^{-1 / 2}}{\alpha-x}+\frac{5^{-1 / 2}}{\beta-x} \\
& =-5^{-1 / 2} \alpha^{-1} \sum_{k=0}^{\infty}\left(\alpha^{-1}\right)^{k} x^{k}+5^{1 / 2} \beta^{-1} \sum_{k=0}^{\infty}\left(\beta^{-1}\right)^{k} x^{k}
\end{aligned}
$$

Making Change: Observe that for a positive integer n, the number of distinct collections of coins which have total value n is given by the coefficient of x^{n} in the power series

$$
\left(\sum_{k=0}^{\infty} x^{k}\right)\left(\sum_{k=0}^{\infty} x^{5 k}\right)\left(\sum_{k=0}^{\infty} x^{10 k}\right)\left(\sum_{k=0}^{\infty} x^{25 k}\right)=\left(\frac{1}{1-x}\right)\left(\frac{1}{1-x^{5}}\right)\left(\frac{1}{1-x^{10}}\right)\left(\frac{1}{1-x^{25}}\right)
$$

To see this, observe that each term which contributes to x^{n} in the above product arises by choosing a power of x, say k_{1} from the first function, a power of x^{5}, say k_{2} from the second, a power of x^{10}, say k_{3} from the third, and a power of x^{25}, say k_{4} from the fourth in such a way that $k_{1}+5 k_{2}+10 k_{3}+25 k_{4}=n$.

Theorem 2.2 Fix a finite field \mathbb{F}_{q} and let N_{d} be the number of monic irreducible polynomials of degree d over \mathbb{F}. Then

$$
q^{n}=\sum_{d \mid n} d N_{d}
$$

Proof: First note that the number of monic polynomials of degree n is precisely q^{n}, so the generating series given by this sequence is precisely

$$
\begin{equation*}
1+q x+(q x)^{2}+\ldots=\frac{1}{1-q x} \tag{1}
\end{equation*}
$$

Now, enumerate the monic irreducible polynomials as $f_{1}(x), f_{2}(x), \ldots$ where $\operatorname{deg}\left(f_{i}\right) \leq$ $\operatorname{deg}\left(f_{i+1}\right)$ for all $i \geq 1$ and let $d_{i}=\operatorname{deg}\left(f_{i}\right)$. Every monic polynomial of degree n has a unique factorization as $f_{1}(x)^{k_{1}} f_{2}(x)^{k_{2}} \ldots$ where $\sum_{i=1}^{\infty} k_{1}=n$, so (as in the previous example) the number of monic polynomials of degree n is equal to the coefficient of x^{n} in

$$
\prod_{i=1}^{\infty}\left(1+x^{d_{i}}+x^{2 d_{i}}+\ldots\right)=\prod_{i=1}^{\infty} \frac{1}{1-x^{d_{i}}}=\prod_{d=1}^{\infty}\left(\frac{1}{1-x^{d}}\right)^{N_{d}}
$$

Now, equating the expressions we have for the generating function of monic polynomials found in (1) and above and then taking formal logarithms gives us the following: (here we use $\log \frac{1}{1-x}=x+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\ldots$)

$$
\sum_{n=1}^{\infty} \frac{(q x)^{n}}{n}=\sum_{d=1}^{\infty} N_{d} \sum_{j=1}^{\infty} \frac{x^{j d}}{j}
$$

Comparing the coefficient of x^{n} in each of these series gives us (here we note that the only terms on the right which contribute are those for which $d \mid n$ and in this case we have $j=n / d$):

$$
\frac{q^{n}}{n}=\sum_{d \mid n} N_{d} \frac{1}{n / d}
$$

From which we get $q^{n}=\sum_{d \mid n} d N_{d}$ as required.
Exponential Generating Functions: A formal power series of the form $f(x)=\sum_{k=0}^{\infty} f_{k} \frac{x^{k}}{k!}$ is called an exponential generating function for the sequence f_{0}, f_{1}, \ldots.

Differentiation: For $f(x) \in \mathbb{C}[[x]]$ we define $f^{\prime}(x)$ in the obvious manner. This gives $\mathbb{C}[[x]]$ the structure of a formal calculus.

Derangements: For every $i \in \mathbb{N}$ let d_{i} denote the number of derangements of [n] (permutations $\pi \in S_{n}$ for which $\pi(i) \neq i$ for all $\left.i \in[n]\right)$. Let $n \geq 2$ let $\pi \in S_{n}$ be a derangement and consider its cycle representation. If there is a cycle of the form (n, j), then removing this term results in a derangement of $[n-1] \backslash\{j\}$ (and there are exactly d_{n-2} of these) so the total number of derangements with such a term is precisely $(n-1) d_{n-2}$. If there is no cycle of this form, then we may remove n from the cycle containing it to get a derangement of $[n-1]$. Since every derangement of $[n-1]$ gives rise to $n-1$ derangements of $[n]$ in this manner (as n may be inserted in any of $n-1$ places) we find that

$$
d_{n}=(n-1)\left(d_{n-1}+d_{n-2}\right)
$$

Now, set $D(x)=\sum_{k=0}^{\infty} d_{k} \frac{x^{k}}{k!}$. Then by elementary manipulations, we find

$$
(1-x) D^{\prime}(x)=x D(x)
$$

From which it follows that $D(x)=\exp (-x) /(1-x)$ so

$$
d_{n}=n!\sum_{i=0}^{n} \frac{(-1)^{i}}{i!}
$$

