
2 Generating Functions

Generating Functions: A generating function is a formal power series of the form

f(x) =
∞∑

k=0

fkx
k

So f0, f1, f2, . . . is just a sequence of numbers, but we interpret fk as the coefficient of xk.

Accordingly, we define f(0) = f0.

Exp and Log: We define exp(x) =
∑∞

k=0
xk

k!
and log(1 + x) =

∑∞
k=1(−1)k xk

k

C[[x]] : We define C[[x]] to be the collection of formal power series with the variable x and

complex coefficients. If f(x), g(x) ∈ C[[x]] then f(x) + g(x) and f(x)g(x) are defined in the

obvious manner, and this gives C[[x]] the structure of a commutative ring.

Rule: An expression evaluating to an element of C[[x]] is only valid if for every k ∈ N it is

a finite procedure to determine the coefficient of xk.

Substitution: Let f(x) =
∑∞

k=0 fkx
k, g(x) ∈ C[[x]] and assume that g(0) = 0. Then we

define f(g(x)) =
∑∞

k=0 fk(g(x))k.

Note: In general, and expression of the form f(x) =
∑∞

k=0 fkx
k may be viewed either as

a function from a subset of C to C or as a generating function. If it converges only when

x = 0 it is meaningless in the first. Conversely, if it violates the above rule, it is invalid in

C[[x]]. So, for instance the equation
∑∞

k=0
(1+x)k

k!
= exp(1 + x) = e · exp(x) = e

∑∞
k=0

xk

k!
is

valid for functions but not for C[[x]].

Observation 2.1 If f(x) ∈ C[[x]] then f(x) is invertible if and only if f(0) 6= 0.

Proof: Let f(x) =
∑∞

k=0 fkx
k. If f0 = 0 then the constant term of f(x)g(x) is zero for

every g(x), so f(x) has no inverse. Conversely, if f0 6= 0 then we can construct an inverse

g(x) =
∑∞

k=0 gkx
k recursively as follows: set g0 = 1

f0
and if we have chosen g0, g1, . . . , gj so

that the first j + 1 terms of g(x)f(x) are 1 + 0x+ 0x2 . . .+ 0xj then we choose gj+1 so that

the coefficient of xj+1 in f(x)g(x) which is given by

j+1∑
i=0

figj+1−i
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is equal to zero (this is possible since f0 6= 0 and all other terms have already been chosen).

�

Example:

1 = exp(x) exp(−x) =
∞∑

k=0

(−x)k

k!

∞∑
k=0

xk

k!

This expression is, of course, valid for functions and converges everywhere. Since it does not

violate the rule, it follows that this also holds for C[[x]]. Note that this identity is equivalent

to:
∑k

j=0(−1)j 1
j!(k−j)!

= 0 if k > 0 and is one for k = 0. This last equation is recognized as

the binomial expansion of 1
k!

(1− 1)k.

The Fibonacci Sequence: This sequence is given by f0 = f1 = 1 and fn = fn−1 + fn−2

for n ≥ 2. Setting f(x) =
∑∞

k=0 fkx
k to be the corresponding generating function we have:

f(x) = 1 + x+
∞∑

k=2

fkx
k

= 1 + x+
∞∑

k=2

fk−1x
k +

∞∑
k=2

fk−2x
k

= 1 + x+ x
∞∑

j=1

fjx
j + x2

∞∑
j=0

fjx
j

= 1 + x+ x(f(x)− 1) + x2f(x)

Rearranging, we find

f(x) =
−1

x2 + x− 1

so f(x) is −1 times the inverse of the generating function −1 + x + x2 and to find f(x) we

simply need to invert −1 + x + x2. To do this, we note that this polynomial is equal to

(x− α)(x− β) where α = −1−
√

5
2

and β = −1+
√

5
2

so by partial fractions

f(x) =
−1

x2 + x− 1

= − 5−1/2

α− x
+

5−1/2

β − x

= −5−1/2α−1

∞∑
k=0

(α−1)kxk + 51/2β−1

∞∑
k=0

(β−1)kxk �
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Making Change: Observe that for a positive integer n, the number of distinct collections

of coins which have total value n is given by the coefficient of xn in the power series(
∞∑

k=0

xk

)(
∞∑

k=0

x5k

)(
∞∑

k=0

x10k

)(
∞∑

k=0

x25k

)
=

(
1

1− x

)(
1

1− x5

)(
1

1− x10

)(
1

1− x25

)
To see this, observe that each term which contributes to xn in the above product arises by

choosing a power of x, say k1 from the first function, a power of x5, say k2 from the second,

a power of x10, say k3 from the third, and a power of x25, say k4 from the fourth in such a

way that k1 + 5k2 + 10k3 + 25k4 = n.

Theorem 2.2 Fix a finite field Fq and let Nd be the number of monic irreducible polynomials

of degree d over F. Then

qn =
∑
d|n

dNd

Proof: First note that the number of monic polynomials of degree n is precisely qn, so the

generating series given by this sequence is precisely

1 + qx+ (qx)2 + . . . =
1

1− qx
(1)

Now, enumerate the monic irreducible polynomials as f1(x), f2(x), . . . where deg(fi) ≤
deg(fi+1) for all i ≥ 1 and let di = deg(fi). Every monic polynomial of degree n has a

unique factorization as f1(x)k1f2(x)k2 . . . where
∑∞

i=1 k1 = n, so (as in the previous example)

the number of monic polynomials of degree n is equal to the coefficient of xn in

∞∏
i=1

(
1 + xdi + x2di + . . .

)
=
∞∏
i=1

1

1− xdi
=
∞∏

d=1

(
1

1− xd

)Nd

Now, equating the expressions we have for the generating function of monic polynomials

found in (1) and above and then taking formal logarithms gives us the following: (here we

use log 1
1−x

= x+ 1
2
x2 + 1

3
x3 + . . .)

∞∑
n=1

(qx)n

n
=
∞∑

d=1

Nd

∞∑
j=1

xjd

j

Comparing the coefficient of xn in each of these series gives us (here we note that the only

terms on the right which contribute are those for which d|n and in this case we have j = n/d):

qn

n
=
∑
d|n

Nd
1

n/d
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From which we get qn =
∑

d|n dNd as required. �

Exponential Generating Functions: A formal power series of the form f(x) =
∑∞

k=0 fk
xk

k!

is called an exponential generating function for the sequence f0, f1, . . ..

Differentiation: For f(x) ∈ C[[x]] we define f ′(x) in the obvious manner. This gives C[[x]]

the structure of a formal calculus.

Derangements: For every i ∈ N let di denote the number of derangements of [n] (permu-

tations π ∈ Sn for which π(i) 6= i for all i ∈ [n]). Let n ≥ 2 let π ∈ Sn be a derangement

and consider its cycle representation. If there is a cycle of the form (n, j), then removing

this term results in a derangement of [n − 1] \ {j} (and there are exactly dn−2 of these) so

the total number of derangements with such a term is precisely (n − 1)dn−2. If there is no

cycle of this form, then we may remove n from the cycle containing it to get a derangement

of [n− 1]. Since every derangement of [n− 1] gives rise to n− 1 derangements of [n] in this

manner (as n may be inserted in any of n− 1 places) we find that

dn = (n− 1)(dn−1 + dn−2)

Now, set D(x) =
∑∞

k=0 dk
xk

k!
. Then by elementary manipulations, we find

(1− x)D′(x) = xD(x)

From which it follows that D(x) = exp(−x)/(1− x) so

dn = n!
n∑

i=0

(−1)i

i!


