2 Generating Functions

Generating Functions: A generating function is a formal power series of the form
oo
flw) =Y frz*
k=0

So fo, f1, fa, ... is just a sequence of numbers, but we interpret f; as the coefficient of z*.
Accordingly, we define f(0) = f.

Exp and Log: We define exp(z) = Y52, 27 and log(1 + ) = >3°, (—1)+2"
C[[x]] : We define C[[z]] to be the collection of formal power series with the variable 2 and
complex coefficients. If f(x), g(z) € C[[z]] then f(z)+ g(z) and f(x)g(x) are defined in the

obvious manner, and this gives C[[z]] the structure of a commutative ring.

Rule: An expression evaluating to an element of C[[z]] is only valid if for every k € N it is

a finite procedure to determine the coefficient of z*.

Substitution: Let f(z) = Y =, frz*, g(z) € C[[z]] and assume that g(0) = 0. Then we
define f(g(z)) = 372, fr(g(2))"-

Note: In general, and expression of the form f(z) = > p, fr2* may be viewed either as
a function from a subset of C to C or as a generating function. If it converges only when
x = 0 it is meaningless in the first. Conversely, if it violates the above rule, it is invalid in

L) — exp(1+2) = e exp(z) = e Ypog & is

C|[[z]]. So, for instance the equation > -,

valid for functions but not for C[[z]].
Observation 2.1 If f(x) € C|[z]] then f(z) is invertible if and only if f(0) # 0.

Proof: Let f(xz) = > 2, fex®. If fo = 0 then the constant term of f(x)g(x) is zero for

every g(x), so f(z) has no inverse. Conversely, if fy # 0 then we can construct an inverse

1
f_O .

that the first j 4+ 1 terms of g(x)f(z) are 1 + 0x 4+ 0z%... 4 027 then we choose g;;1 so that

g(x) = >0, grx” recursively as follows: set go = + and if we have chosen go, g1, ..., g; 0

the coefficient of ;1 in f(z)g(x) which is given by

Jj+1

Z fz'gj+1—i
i=0
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is equal to zero (this is possible since fy # 0 and all other terms have already been chosen).
O

Example:

1 = exp(r) exp(—a) = 3

k=0 =0
This expression is, of course, valid for functions and converges everywhere. Since it does not
violate the rule, it follows that this also holds for C[[z]]. Note that this identity is equivalent
to: Z?ZO(—l)jm =01if £ > 0 and is one for £ = 0. This last equation is recognized as

the binomial expansion of (1 —1)".

The Fibonacci Sequence: This sequence is given by fo = fi = 1 and f, = fo1 + fu_o
for n > 2. Setting f(x) = > p, fx@® to be the corresponding generating function we have:

flz) = 1+x+kaxk
k=2

=14z+ ) feazb+ ) fraak
k=2 k=2
= 1+a:+fojxj+xQijxj
j=1 =0
=1+a+az(f(z)—1)+2°f(2)

Rearranging, we find
—1
J(@) = >+ —1
so f(x) is —1 times the inverse of the generating function —1 + = + z? and to find f(x) we
simply need to invert —1 4+ x 4+ 22. To do this, we note that this polynomial is equal to

(r — a)(z — B) where a = %5 and = #5 so by partial fractions

—1
2240 —1
5-1/2 5-1/2

fz) =

a—x ﬁ—x

— _5-1/2 flz 71k k+51/25 Z 0
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Making Change: Observe that for a positive integer n, the number of distinct collections

of coins which have total value n is given by the coefficient of 2™ in the power series

(5o (5 (5 () - (75) (25) () ()

To see this, observe that each term which contributes to ™ in the above product arises by

choosing a power of , say k; from the first function, a power of 2%, say ks from the second,
a power of x'°, say ks from the third, and a power of 2%°, say ks from the fourth in such a
way that kl + 5k}2 + 10]{73 + 25/{74 =nN.

Theorem 2.2 Fiz a finite field Fy and let Ny be the number of monic irreducible polynomials

of degree d over IF. Then
¢ = dNy

din
Proof: First note that the number of monic polynomials of degree n is precisely ¢”, so the

generating series given by this sequence is precisely

1
S 1—gx

1+ qr + (qz)* + ...

(1)

Now, enumerate the monic irreducible polynomials as fi(z), fo(z),... where deg(f;) <
deg(fiy1) for all ¢ > 1 and let d; = deg(f;). Every monic polynomial of degree n has a
unique factorization as fi(x)" fo(z)* ... where Y ;° ki = n, so (as in the previous example)

the number of monic polynomials of degree n is equal to the coefficient of 2™ in

o] . . o] 1 o] 1 Ny
g(1+xdl+x%+...):gl_xdi :g(l—xd>

Now, equating the expressions we have for the generating function of monic polynomials
found in (1) and above and then taking formal logarithms gives us the following: (here we
use log = =+ 322 + 3% + .. )

0 o jd

Z(qz) :;Nd;T

n=1

Comparing the coefficient of 2™ in each of these series gives us (here we note that the only

terms on the right which contribute are those for which d|n and in this case we have j = n/d):

- 1
W= 2N

din



From which we get ¢" = > din dNy as required. 0

Exponential Generating Functions: A formal power series of the form f(z) = > 7, fkffﬁ—};

is called an exponential generating function for the sequence fo, fi,.. ..

Differentiation: For f(z) € C[[z]] we define f’(z) in the obvious manner. This gives C[[z]]

the structure of a formal calculus.

Derangements: For every i € N let d; denote the number of derangements of [n] (permu-
tations m € S, for which 7(i) # i for all i € [n]). Let n > 2 let 7 € S,, be a derangement
and consider its cycle representation. If there is a cycle of the form (n,j), then removing
this term results in a derangement of [n — 1] \ {j} (and there are exactly d,_» of these) so
the total number of derangements with such a term is precisely (n — 1)d,,_5. If there is no
cycle of this form, then we may remove n from the cycle containing it to get a derangement
of [n — 1]. Since every derangement of [n — 1] gives rise to n — 1 derangements of [n] in this

manner (as n may be inserted in any of n — 1 places) we find that
dy=(n—1)(dy—1 + dp—2)
Now, set D(z) = > /2, dkzk—];. Then by elementary manipulations, we find
(1—2)D'(z) = 2D(x)

From which it follows that D(x) = exp(—z)/(1 — z) so

d, = n! E ( ")
7!
i=0




