
4 Subsequence Sums I: the Davenport Constant

Here we turn our attention to a different type of combinatorial problem, namely subsequence

sums. To set the stage, we begin by defining a fundamental parameter, first suggested by

Davenport. Let G be a finite multiplicative group. We define the Davenport Constant of G,

denoted D(G), to be the smallest integer ` so that every sequence of a1, a2, . . . , a` from G

has a nontrivial subsequence with product equal to 1 (in the given order). We begin with a

rather trivial upper bound on D(G), and an easy lower bound on D(G) for abelian groups.

Observation 4.1 D(G) ≤ |G| for every group G.

Proof: Let |G| = n and let a1, a2, . . . , an be a sequence in G. Now for k = 1 . . . , n let

bk =
∏k

i=1 ai. If there exists 1 ≤ k ≤ n with bk = 1 then we are finished. Otherwise, there

must exist 1 ≤ j < k ≤ n with bj = bk. Then
∏k

i=j+1 ai = b−1
j bk = 1. �

Observation 4.2 If G = Zn1 × Zn2 . . . Znr , then D(G) ≥ 1 +
∑r

i=1(ni − 1).

Proof: A sequence consisting of ni − 1 copies of the vector with a 1 in the ith position and 0

elsewhere for every 1 ≤ i ≤ r has no nontrivial zero sum subsequence. This establishes the

desired bound. �

For Zn, our upper and lower bounds match, so we get the following.

Observation 4.3 D(Zn) = n

We have now established the Davenport constant for cyclic groups. Shortly, we will see a

beautiful theorem of Olson which establishes it for all abelian groups whose order is a power

of a prime. Unfortunately, little more is known about this interesting parameter. For the

remainder of this section, we fix a prime p, and we shall proceed toward Olson’s theorem by

first studying the groups Zp and Zn
p , where we will achieve somewhat stronger results. We

begin with a nice property of Zp which follows easily from the Cauchy-Davenport Theorem.

Corollary 4.4 If α = a1, a2, . . . , ap is a sequence of nonzero elements in Zp, then for every

g ∈ Zp there is a nontrivial subsequence of α with sum equal to g.
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Proof: Consider the sumset A = {a1}+{0, a2}+{0, a3}+ . . .+{0, ap}. Every member of A is

the sum of a subsequence of α, and by repeatedly applying the Cauchy-Davenport theorem,

we have |A| ≥ p. �

Next we shall consider the group Zn
p . This group may be viewed as a vector space over

the field Zp, and this structure is the inspiration for our next theorem. A familiar fact from

linear algebra is that the set of common solutions to a family of linear equations is a (possibly

empty) affine subspace whenever there are more variables than equations. In a vector space

over a field of characteristic p, this implies that the set of common solutions always has size

a multiple of p (again assuming there are more variables then equations). Our next result

is a generalization of this fact to polynomials of higher degree. For this, we’ll need first one

easy fact about finite fields.

Proposition 4.5 If F is a field of order q, and k < q − 1, then
∑

x∈F xk = 0.

Proof: The multiplicative group of every finite field is cyclic (otherwise this group would

have a subgroup of the form Zr×Zr and the polynomial xr−1 would have too many roots).

If z ∈ F is a generator of the multiplicative group, then we have

∑
x∈F

xk =

q−2∑
i=0

zki =
1− zk(q−1)

1− zk
= 0

which completes the proof. �

Theorem 4.6 (Chevalley-Warning) For 1 ≤ i ≤ n let Pi(x1, x2, . . . , xm) be a polynomial

of degree di over the field F of characteristic p. If
∑n

i=1 di < m, then the number N of

common zeros of P1, P2, . . . , Pn is a multiple of p.

Proof: If q = |F|, then we have

N ∼=
∑

x1,...,xm∈F

n∏
j=1

(1− Pj(x1, . . . , xm)q−1) (mod p).

Expanding the right hand side gives us a linear combination of monomomials of the form

m∏
i=1

xki
i with

m∑
i=1

ki < (q − 1)
n∑

j=1

dj < (q − 1)m
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so in each such monomial there exists an i with ki < q− 1. It now follows from the previous

proposition that each such monomial contributes 0 (mod p) to the sum in the above equation.

This completes the proof. �

An easy corollary of this result gives us the Davenport constant for any group of the form

Zn
p as follows.

Corollary 4.7 D(Zn
p ) = n(p− 1) + 1

Proof: Let m = n(p − 1) + 1 and let α = a1, a2, . . . , am be a sequence in Zn
p . For every

1 ≤ i ≤ m let ai = (ai1, ai2, . . . , ain) and for every 1 ≤ j ≤ n let Pj = Pj(x1, . . . , xm) be the

polynomial over Zp given by the following rule

Pj(x1, . . . , xm) =
m∑

i=1

ajix
p−1
i

Here each xi acts as a kind of indicator variable since xp−1
i = 1 if xi 6= 0. Since (x1, . . . , xm) =

(0, 0, . . . , 0) is a solution to this family of equations, it follows from the previous theorem that

there is another solution (z1, . . . , zm). Let I = {1 ≤ i ≤ m : zi 6= 0}. Then I is nonempty

and by construction,
∑

i∈I ai = 0. Thus, we have a nontrivial subsequence of α with zero

sum as required. �

Theorem 4.8 (Olson) If G = Zpn1 × Zpn2 . . .× Zpnr , then D(G) = 1 +
∑r

i=1(p
ni − 1).

Proof: Breaking our usual convention, we will use multiplicative notation for G, and we let

R denote the group ring of G over Zp (so the elements of R are formal sums of elements in

G with coefficients in Zp). Let m = 1 +
∑r

i=1(p
ni − 1) and let g1, g2, . . . , gm be a sequence in

G. Now consider the following expression (computed in R)

h = (1− g1) · (1− g2) · · · (1− gm)

We claim that h = 0. To see this, define zi to be the element in G with a 1 in coordinate i

and a 0 in every other coordinate (so the order of zi is pni . Since each gj can be written as a

product of the elements zi, by repeatedly applying the identity 1−uv = (1−u)+u(1−v) we

may expand each expression of the form (1− gj) into a linear combination (with coefficients
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in R) of the elements (1 − zi). Substituting this into the above equation and applying

commutativity, we conclude that the right-side is a linear combination of terms of the form

r∏
i=1

(1− zi)
ki where

r∑
i=1

ki > m

Thus, for each such term there is an i with ki > ni and in R, (1− zi)
pni = 0. It follows that

h = 0. But now observe that h cannot be 0 without there existing a nontrivial subsequence

of g1, . . . , gm with product 1. This completes the proof. �


