4 Subsequence Sums I: the Davenport Constant

Here we turn our attention to a different type of combinatorial problem, namely subsequence sums. To set the stage, we begin by defining a fundamental parameter, first suggested by Davenport. Let G be a finite multiplicative group. We define the Davenport Constant of G, denoted $D(G)$, to be the smallest integer ℓ so that every sequence of $a_{1}, a_{2}, \ldots, a_{\ell}$ from G has a nontrivial subsequence with product equal to 1 (in the given order). We begin with a rather trivial upper bound on $D(G)$, and an easy lower bound on $D(G)$ for abelian groups.

Observation 4.1 $D(G) \leq|G|$ for every group G.

Proof: Let $|G|=n$ and let $a_{1}, a_{2}, \ldots, a_{n}$ be a sequence in G. Now for $k=1 \ldots, n$ let $b_{k}=\prod_{i=1}^{k} a_{i}$. If there exists $1 \leq k \leq n$ with $b_{k}=1$ then we are finished. Otherwise, there must exist $1 \leq j<k \leq n$ with $b_{j}=b_{k}$. Then $\prod_{i=j+1}^{k} a_{i}=b_{j}^{-1} b_{k}=1$.

Observation 4.2 If $G=\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \ldots \mathbb{Z}_{n_{r}}$, then $D(G) \geq 1+\sum_{i=1}^{r}\left(n_{i}-1\right)$.
Proof: A sequence consisting of $n_{i}-1$ copies of the vector with a 1 in the $i^{\text {th }}$ position and 0 elsewhere for every $1 \leq i \leq r$ has no nontrivial zero sum subsequence. This establishes the desired bound.

For \mathbb{Z}_{n}, our upper and lower bounds match, so we get the following.

Observation $4.3 D\left(\mathbb{Z}_{n}\right)=n$

We have now established the Davenport constant for cyclic groups. Shortly, we will see a beautiful theorem of Olson which establishes it for all abelian groups whose order is a power of a prime. Unfortunately, little more is known about this interesting parameter. For the remainder of this section, we fix a prime p, and we shall proceed toward Olson's theorem by first studying the groups \mathbb{Z}_{p} and \mathbb{Z}_{p}^{n}, where we will achieve somewhat stronger results. We begin with a nice property of \mathbb{Z}_{p} which follows easily from the Cauchy-Davenport Theorem.

Corollary 4.4 If $\alpha=a_{1}, a_{2}, \ldots, a_{p}$ is a sequence of nonzero elements in \mathbb{Z}_{p}, then for every $g \in \mathbb{Z}_{p}$ there is a nontrivial subsequence of α with sum equal to g.

Proof: Consider the sumset $A=\left\{a_{1}\right\}+\left\{0, a_{2}\right\}+\left\{0, a_{3}\right\}+\ldots+\left\{0, a_{p}\right\}$. Every member of A is the sum of a subsequence of α, and by repeatedly applying the Cauchy-Davenport theorem, we have $|A| \geq p$.

Next we shall consider the group \mathbb{Z}_{p}^{n}. This group may be viewed as a vector space over the field \mathbb{Z}_{p}, and this structure is the inspiration for our next theorem. A familiar fact from linear algebra is that the set of common solutions to a family of linear equations is a (possibly empty) affine subspace whenever there are more variables than equations. In a vector space over a field of characteristic p, this implies that the set of common solutions always has size a multiple of p (again assuming there are more variables then equations). Our next result is a generalization of this fact to polynomials of higher degree. For this, we'll need first one easy fact about finite fields.

Proposition 4.5 If \mathbb{F} is a field of order q, and $k<q-1$, then $\sum_{x \in \mathbb{F}} x^{k}=0$.
Proof: The multiplicative group of every finite field is cyclic (otherwise this group would have a subgroup of the form $\mathbb{Z}_{r} \times \mathbb{Z}_{r}$ and the polynomial $x^{r}-1$ would have too many roots). If $z \in \mathbb{F}$ is a generator of the multiplicative group, then we have

$$
\sum_{x \in \mathbb{F}} x^{k}=\sum_{i=0}^{q-2} z^{k i}=\frac{1-z^{k(q-1)}}{1-z^{k}}=0
$$

which completes the proof.
Theorem 4.6 (Chevalley-Warning) For $1 \leq i \leq n$ let $P_{i}\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be a polynomial of degree d_{i} over the field \mathbb{F} of characteristic p. If $\sum_{i=1}^{n} d_{i}<m$, then the number N of common zeros of $P_{1}, P_{2}, \ldots, P_{n}$ is a multiple of p.

Proof: If $q=|\mathbb{F}|$, then we have

$$
N \cong \sum_{x_{1}, \ldots, x_{m} \in \mathbb{F}} \prod_{j=1}^{n}\left(1-P_{j}\left(x_{1}, \ldots, x_{m}\right)^{q-1}\right) \quad(\bmod p) .
$$

Expanding the right hand side gives us a linear combination of monomomials of the form

$$
\prod_{i=1}^{m} x_{i}^{k_{i}} \quad \text { with } \quad \sum_{i=1}^{m} k_{i}<(q-1) \sum_{j=1}^{n} d_{j}<(q-1) m
$$

so in each such monomial there exists an i with $k_{i}<q-1$. It now follows from the previous proposition that each such monomial contributes $0(\bmod p)$ to the sum in the above equation. This completes the proof.

An easy corollary of this result gives us the Davenport constant for any group of the form \mathbb{Z}_{p}^{n} as follows.

Corollary 4.7 $D\left(\mathbb{Z}_{p}^{n}\right)=n(p-1)+1$
Proof: Let $m=n(p-1)+1$ and let $\alpha=a_{1}, a_{2}, \ldots, a_{m}$ be a sequence in \mathbb{Z}_{p}^{n}. For every $1 \leq i \leq m$ let $a_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)$ and for every $1 \leq j \leq n$ let $P_{j}=P_{j}\left(x_{1}, \ldots, x_{m}\right)$ be the polynomial over \mathbb{Z}_{p} given by the following rule

$$
P_{j}\left(x_{1}, \ldots, x_{m}\right)=\sum_{i=1}^{m} a_{j i} x_{i}^{p-1}
$$

Here each x_{i} acts as a kind of indicator variable since $x_{i}^{p-1}=1$ if $x_{i} \neq 0$. Since $\left(x_{1}, \ldots, x_{m}\right)=$ $(0,0, \ldots, 0)$ is a solution to this family of equations, it follows from the previous theorem that there is another solution $\left(z_{1}, \ldots, z_{m}\right)$. Let $I=\left\{1 \leq i \leq m: z_{i} \neq 0\right\}$. Then I is nonempty and by construction, $\sum_{i \in I} a_{i}=0$. Thus, we have a nontrivial subsequence of α with zero sum as required.

Theorem 4.8 (Olson) If $G=\mathbb{Z}_{p^{n_{1}}} \times \mathbb{Z}_{p^{n_{2}}} \ldots \times \mathbb{Z}_{p^{n_{r}}}$, then $D(G)=1+\sum_{i=1}^{r}\left(p^{n_{i}}-1\right)$.
Proof: Breaking our usual convention, we will use multiplicative notation for G, and we let R denote the group ring of G over \mathbb{Z}_{p} (so the elements of R are formal sums of elements in G with coefficients in $\left.\mathbb{Z}_{p}\right)$. Let $m=1+\sum_{i=1}^{r}\left(p^{n_{i}}-1\right)$ and let $g_{1}, g_{2}, \ldots, g_{m}$ be a sequence in G. Now consider the following expression (computed in R)

$$
h=\left(1-g_{1}\right) \cdot\left(1-g_{2}\right) \cdots\left(1-g_{m}\right)
$$

We claim that $h=0$. To see this, define z_{i} to be the element in G with a 1 in coordinate i and a 0 in every other coordinate (so the order of z_{i} is $p^{n_{i}}$. Since each g_{j} can be written as a product of the elements z_{i}, by repeatedly applying the identity $1-u v=(1-u)+u(1-v)$ we may expand each expression of the form $\left(1-g_{j}\right)$ into a linear combination (with coefficients
in R) of the elements $\left(1-z_{i}\right)$. Substituting this into the above equation and applying commutativity, we conclude that the right-side is a linear combination of terms of the form

$$
\prod_{i=1}^{r}\left(1-z_{i}\right)^{k_{i}} \quad \text { where } \quad \sum_{i=1}^{r} k_{i}>m
$$

Thus, for each such term there is an i with $k_{i}>n_{i}$ and in $R,\left(1-z_{i}\right)^{p^{n_{i}}}=0$. It follows that $h=0$. But now observe that h cannot be 0 without there existing a nontrivial subsequence of g_{1}, \ldots, g_{m} with product 1 . This completes the proof.

