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Abstract

Pressure drop of fully developed, laminar, incompress-
ible flow in smooth mini and microchannels of arbitrary
cross-section is investigated. A compact approximate model
is proposed that predicts the pressure drop for a wide vari-
ety of shapes. The model is only a function of geometrical
parameters of the cross-section, i.e., area, perimeter, and
polar moment of inertia. The proposed model is compared
with analytical and numerical solutions for several shapes.
Also, the comparison of the model with experimental data,
collected by several researchers, shows good agreement.

Nomenclature
A = cross-sectional area, m2

b, c = channel semi-axes, m
Dh = hydraulic diameter 4A/P , m
E (·) = complete elliptic integral of the second kind
f = Fanning friction factor, 2τ/ρw2

h = height of trapezoidal channel, m
Ip = polar moment of inertia, m4

I∗p = specific polar moment of inertia, Ip/A2

L = microtube length, m
n = number of sides, regular polygons
P = perimeter, m
Re√A = Reynolds number, ρw

√
A/µ

w = fluid velocity, m/s
w = mean fluid velocity, m/s
z = flow direction
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Greek
α∗ = aspect ratio trapezoidal duct, h/a
β = dimensionless parameter trapezoidal duct
² = aspect ratio, c/b
ρ = fluid density, kg/m3

µ = fluid viscosity, kg/m.s
τ = wall shear stress, N/m2

τ∗ = non-dimensional wall shear stress, [−]
φ = trapezoidal channel angle, rad
∆p = pressure drop, Pa
Γ = boundary of duct

Subscripts√
A = square root of cross-sectional area, m

1 INTRODUCTION

Advances in microfabrication make it possible to build
microchannels with small characteristic lengths, in the or-
der of micrometers. Micro and minichannels show promis-
ing potential for being incorporated in a wide variety of
unique, compact, and efficient cooling applications such as
in microelectronic devices. These micro heat exchangers
or heat sinks feature extremely high heat transfer surface
area per unit volume ratios, high heat transfer coefficients,
and low thermal resistances [1]. Microchannels can be pro-
duced directly by techniques such as chemical etching on
silicon wafers. As a result, the cross-section of the chan-
nels depends on a variety of factors, such as the crystal-
lographic nature of the silicon used. According to Morini
[2], when a KOH-anisotropic etching technique is employed,
it is possible to obtain microchannels which have a fixed
cross-section. Shape of the cross-section depends on the
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orientation of the silicon crystal planes. For instance, the
microchannels etched in 100 or in 110 silicon will have a
trapezoidal cross-section with an apex angle of 54.7◦ im-
posed by the crystallographic morphology of the silicon or
a rectangular cross-section, respectively [2].

Tuckerman and Pease [3] were the first to demonstrate
that planar integrated circuit chips can be effectively cooled
by laminar water flowing through microchannels with hy-
draulic diameters of 86 to 95 µm. However, due to small
scale channel sizes, the pressure drop and the required
pumping power dramatically increase. Therefore simultane-
ous hydrodynamic and thermal analyses must be performed
to investigate the effects of both flow and heat transfer in
micro or minichannels.

In recent years, a large number of papers have reported
pressure drop data for laminar flow of liquids in microchan-
nels with various cross-sections. However, published results
are often inconsistent. According to [4], some of these au-
thors conducted experiments in non-circular microchannels,
but compared their pressure drop data with the classical
values of fRe=16 or 64 of circular pipes. Some of the dis-
crepancies in the published data can be explained within the
limits of continuum fluid mechanics; Bahrami et al. [5] de-
veloped a model that captures the observed trends in rough
microchannels. Recently, Liu and Garimella [6] and Wu and
Cheng [7] conducted experiments in smooth rectangular and
trapezoidal microchannels, respectively; they reported that
the Navier-Stokes equations are valid for laminar flow in
smooth microchannels.

In the literature there are no comprehensive and encom-
passing models or correlations that predict pressure drop in
arbitrary cross-sections. Thus the objective of this work is
to develop a compact approximate model that provides the
pressure drop in micro and minichannels of arbitrary cross-
section. The model estimates the pressure drop (within 8%
accuracy) and provides tools for basic design, parametric
studies, and optimization analyses required for microchan-
nel heat exchangers and heat sinks.

2 PROBLEM STATEMENT

Consider fully developed, steady-state laminar flow in
a two dimensional channel with the boundary Γ, constant
cross-sectional area A, and constant perimeter P as shown
in Fig. 1. The flow is assumed to be incompressible and
have constant properties. Moreover, body forces such as
gravity, centrifugal, Coriolis, and electromagnetic do not
exist. Also, the rarefaction and surface effects are assumed
to be negligible and the fluid is considered to be a contin-
uum. For such a flow, the Navier-Stokes equations reduce
to the momentum equation which is also known as Pois-
son’s equation. In this case, the source term in Poisson’s

equation is the constant pressure gradient along the length
of the duct, ∆p/L. The governing equation for fully devel-
oped laminar flow in a constant cross-sectional area channel
is [8]:

∇2w = 1

µ

dp

dz
with w = 0 on Γ (1)

where w and z are the fluid velocity and the flow direction,
respectively. The boundary condition for the velocity is the
no-slip condition at the wall.

The velocity profile is constant in the longitudinal di-
rection; thus the pressure gradient applied at the ends of
the channel must be balanced by the shear stress on the
wall of the channel

τPL = ∆p A (2)

where

τ =
1

A

Z
Γ

τ dA

  

p p

  L

z
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  τ

τ
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Figure 1. MICROCHANNEL OF ARBITRARY CONSTANT CROSS-

SECTION, LÀ
√
A

3 EXACT SOLUTIONS

In this section, relationships are derived for pressure
drop and the product of Reynolds number and Fanning fric-
tion factor, fRe, of fully developed laminar flow for some
cross-sections using existing analytical solutions. The ana-
lytical solutions for the relevant flow fields can be found in
fluid mechanics textbooks such as White [9] and [10]. The
proceeding method, described for the elliptical microchan-
nels, can be applied for other shapes listed in Table 1.
Therefore, it is left to the reader to follow the steps for
other cross-sections.

The governing equation is the Poisson’s equation, Eq.
(1). An analytical solution exists for the laminar fluid flow
in elliptical microchannels with the following mean velocity

w =
b2c2

4 (b2 + c2)

∆p

µ L
(3)
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where b and c are the major and minor semi-axes of the
cross-section, b ≥ c. An aspect ratio is defined for the
elliptical microchannel

0 < ² ≡ c
b
≤ 1 (4)

For an elliptical microchannel, the cross-sectional area and
the perimeter are ½

A = πbc

P = 4b E
¡√
1− ²2

¢ (5)

where E (·) 4is the complete elliptic integral of the second
kind. The mean velocity can be presented in terms of the
aspect ratio, ²,

w =
c2

4 (1 + ²2)

∆p

µL
(6)

which can be re-arranged as

∆p

L
=
4
¡
1 + ²2

¢
c2

µw (7)

Combining Eqs. (2) and (7), the mean wall shear stress is

τ =
4µ
¡
1 + ²2

¢
w

c2
A

P
(8)

The ratio of the cross-sectional area over perimeter for el-
liptical microchannels is

A

P
=

πc

4E
³p

1− ²2
´ (9)

The mean wall shear stress becomes

τ =
πµ
¡
1 + ²2

¢
w

cE
¡√
1− ²2

¢ (10)

A relationship can be found between the minor axis c and
the area, Eq. (5),

c =

r
Aε

π
(11)

Substituting Eq. (11) in Eq. (10), one finds

τ =
π
√
π
¡
1 + ²2

¢
√
²E
¡√
1− ²2

¢ µw√
A

(12)

It is conventional to use the ratio of area over perimeter
Dh = 4A/P, known as the hydraulic diameter, as the char-
acteristic length scale for non-circular channels. However,
as can be seen in Eq. (12), a more appropriate length scale is

4E (x) =
R π/2
0

p
1− x2 sin2 t dt

the square root of area,
√
A. Muzychka and Yovanovich [11]

showed that the apparent friction factor is a weak function
of the shape of the geometry of the channel by defining as-
pect ratios for various cross-sections. Later, it will be shown
that the selection of the square root of area as the charac-
teristic length leads to similar trends in fRe√A for elliptical
and rectangular channels with identical cross-sectional area.

With the square root of area
√
A as the characteris-

tic length scale, a non-dimensional wall shear stress can be
defined as:

τ∗ ≡ τ
√
A

µw
=

π
√
π
¡
1 + ²2

¢
√
²E
¡√
1− ²2

¢ (13)

It should be noted that the right hand side of Eq. (13) is
only a function of the aspect ratio (geometry) of the chan-
nel.

The Fanning friction factor is defined as

f ≡ τ
1

2
ρw2

(14)

Using Eq. (12), the Fanning friction factor of elliptical mi-
crochannels becomes

f =
2π
√
π
¡
1 + ²2

¢
√
²E
³p

1− ²2
´ µ

ρw
√
A

(15)

Reynolds number can be defined based on the square root
of area

√
A

Re√A =
ρw
√
A

µ
(16)

Equation (15) becomes

fRe√A =
2π
√
π
¡
1 + ²2

¢
√
² E

³p
1− ²2

´ (17)

Similar to τ∗, fRe√A is only a function of the geometry of
the channel. Thus, a relationship can be found between the
non-dimensional friction factor τ∗ and fRe√A

fRe√A = 2τ
∗ (18)

Following the same steps described above, relationships
for fRe√A are determined for other microchannel cross-
sections and they are summarized in Table 1. With respect
to Table 1, the following should be noted:

1) the original analytical solution for the mean velocity
in rectangular channels is in the form of a series. However,
when ² = 1 (square), the first term of the series gives the
value fRe√A = 14.132 compared with the exact value (full
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Table 1. ANALYTICAL SOLUTIONS OF fRe FOR VARIOUS CROSS-SECTIONS

cross-section Area, Perimeter mean velocity (analytical) w [9; 10] fRe√A

b

c
xo   

  

A = πbc

P = 4bE
¡√
1− ²2

¢ c2

4 (1 + ²2)

∆p

µL

2π
√
π
¡
1 + ²2

¢
√
²E
³p

1− ²2
´

b
c

xo   

  

A = 4bc

P = 4 (b+ c)

∆p c2

µL

∙
1

3
− 64

π5
c

b
tanh

µ
πb

2c

¶¸
12∙

1− 192
π5
² tanh

³ π
2²

´¸
(1 + ²)

√
²

a

2a
◊3x

y

o   

A = a2/
√
3

P = 6a/
√
3

1

60

∆p a2

µL
20
31/4

= 15.197

a

r
o

  
  f   

q

A = φ a2

P = 2a (1 + φ)

∆p a2

µL
g (φ)

[1] φ
p
φ

(1 + φ) g (φ)
[1]

    
  c

br

o

A = π
¡
b2 − c2

¢
P = 2π (b+ c)

∆p b2

8µL

µ
²2 − 1 + 2 ln (1/²) + ²

2 − 1
ln (1/²)

¶
8
√
π (1− ²)

p
1− ²2µ

²2 − 1 + 2 ln (1/²) + ²
2 − 1

ln (1/²)

¶
1g (φ) =

tan (2φ)− 2φ
16φ

− 128φ
3

π5

∞X
n=1

"
1

(2n− 1)2 (2n− 1 + 4φ/π)2 (2n− 1− 4φ/π)

#
² = c/b

series solution) of 14.23. The maximum difference of ap-
proximately 0.7% occurs at ² = 1. For smaller values of ²,
the agreement with the full series solution is even better.
Therefore, only the first term is employed in this study.

2) for rectangular microchannels, two asymptotes can
be recognized, i.e., the very narrow rectangular and square
channels [12]

fRe√A =
12√
²

²→ 0

fRe√A = 14.132 ² = 1

(19)

3) for elliptical microchannels, the asymptotes are the very
narrow elliptical and circular microchannels [12]

fRe√A =
11.15√
²

²→ 0

fRe√A = 14.179 ² = 1

(20)

Note that the fRe√A values and trends for elliptical and
rectangular channels are very close at both asymptotes.
Figure 2 shows the comparison between fRe√A relation-
ships for the rectangular and elliptical microchannels re-
ported in Table 1. In spite of the different forms of the
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fRe√A for rectangular and elliptical microchannels, trends
of both formulae are very similar as the aspect ratio varies
between 0 < ² ≤ 1. The maximum relative difference is less
than 8%.

Elliptical and rectangular cross-sections cover a wide
range of singly-connected microchannels. With the similar-
ity in the trends of solutions for these cross-sections, one
can conclude that a general, purely geometrical, relation-
ship may exist that predicts fRe√A for arbitrary singly-
connected cross-sections. Based on this observation, an ap-
proximate model is developed in the next section.

4 APPROXIMATE SOLUTION

Exact relationships for fRe√A are reported for the el-
liptical, rectangular, and some other shapes in the previous
section. However, finding exact solutions for many practi-
cal singly-connected cross-sections, such as trapezoidal mi-
crochannels, is complex and/or impossible. In many practi-
cal instances such as basic design, parametric study, and op-
timization analyses, it is often required to obtain the trends
and a reasonable estimate of the pressure drop. Moreover,
as a result of recent advances in fabrication technologies
in MEMS and microfluidic devices, cross-sections such as
trapezoidal have become more important. Therefore, an
approximate compact model that estimates pressure drop
of arbitrary cross-sections will be of great value.

Torsion in beams and fully developed laminar flow in
ducts are similar because the governing equation for both
problems is Poisson’s equation, Eq. (1). Comparing various
singly connected cross-sections, Saint-Venant (1880) found
that the torsional rigidity of a shaft could be accurately
approximated by using an equivalent elliptical cross-section,
where both cross-sectional area and polar moment of inertia
are maintained the same as the original shaft [13]. With a
similar approach as Saint-Venant, a model will be developed
for predicting pressure drop in channels of arbitrary cross-
section based on the solution for an elliptical duct.

The elliptical channel is considered, not because it is
likely to occur in practice, but rather to utilize the unique
geometrical property of its velocity solution. The mean ve-
locity of elliptical channels is known, Eq. (3). The polar
moment of inertia, Ip5 , for an ellipse is

Ip =
πbc

¡
b2 + c2

¢
4

(21)

Equation (7) can be re-arranged in terms of the polar mo-
ment of inertia, about its center, as follows:

∆p

L
=
16π2µw

A3
Ip =

16π2µw

A
I∗p (22)

5Ip =
R ¡
x2 + y2

¢
dA, where x and y are distances from x and y

axes.

where I∗p = Ip/A
2 is a non-dimensional geometrical para-

meter which we call the specific polar moment of inertia.
Combining Eqs. (2) and (22), one can write

τ =
16π2µw√

A

√
A

P
I∗p (23)

Note that
√
A/P is also a non-dimensional parameter. Us-

ing Eq. (23), the Fanning friction factor, Eq. (14), can be
determined

f = 32π2
µ

ρw
√
A| {z }

1/Re√A

√
A

P
I∗p (24)

or

fRe√A = 32π
2 I∗p

√
A

P
(25)

Using Eq. (18), one can find the non-dimensional shear
stress

τ∗ =
1

2
fRe√A = 16π

2 I∗p

√
A

P
(26)

The right hand side of Eqs. (25) and (26) are general geo-
metrical functions since Ip, A, and P are general geometri-
cal parameters. Therefore the approximate model assumes
that for constant fluid properties and flow rate in a constant
cross-section channel, τ∗ and fRe√A are only functions of
the non-dimensional geometric parameter, I∗p

√
A/P, of the

cross-section.
Employing Eq. (25), one only needs to compute the

non-dimensional parameter I∗p
√
A/P of the channel to de-

termine the fRe√A value. On the other hand, using the
conventional method, Poisson’s equation must be solved to
find the velocity field and the mean velocity; then the pro-
cedure described in the previous section should be followed
to find fRe√A. This clearly shows the convenience of the
approximate model.

To validate the approximate model, the exact values of
fRe√A for some cross-sections are compared with the ap-
proximate model, i.e., Eq. (25), in Table 2 (in Appendix).
Also the geometric parameter I∗p

√
A/P is reported for a va-

riety of cross-sections in Table 2. The approximate model
shows relatively good agreement, within 8% relative differ-
ence, with the exact solutions for the cross-sections consid-
ered, except for the equilateral triangular channel. More-
over, the non-dimensional geometric parameter is derived
for regular polygons and trapezoidal channels; the approxi-
mate model is compared with the numerical values for these
shapes published by Shah and London [8].

4.1 Regular Polygons

Figure 3 illustrates a regular polygon microchannel of
the side length a. For regular polygons, cross-sectional area,
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Figure 3. CROSS-SECTION OF A REGULAR POLYGON CHANNEL

perimeter, and the polar moment of inertia are

A =
na2

4 tan
³π
n

´ (27)

P = na (28)

Ip =
na4

96 tan
³π
n

´
⎡⎣1 + 3

tan2
³π
n

´
⎤⎦ (29)

Therefore,

I∗p =
Ip
A2

=
tan

³π
n

´
6n

⎡⎣1 + 3

tan2
³π
n

´
⎤⎦ (30)

√
A

P
=

1

2

r
n tan

³π
n

´ (31)

Finally, one can obtain fRe√A

fRe√A =
8π2 tan

³π
n

´
3n

r
n tan

³π
n

´
⎡⎣1 + 3

tan2
³π
n

´
⎤⎦ (32)

Table 3. GEOMETRIC PARAMETER FOR REGULAR POLYGONS

n I∗p
√
A/P fRe√A

model numerical [8]

3 0.19245 0.2193 13.328 15.196

4 0.16666 0.2500 13.138 14.227

5 0.16181 0.2623 13.391 14.044

6 0.16037 0.2686 13.612 14.009

7 0.15979 0.2723 13.830 14.055

10 0.15929 0.2773 13.960 14.060

∞ 0.15915 0.2821 14.181 14.180

Table 3 lists the geometric parameter I∗p ,
√
A/P, and fRe√A

for regular polygons. Table 3 also shows the comparison
between the approximate model with the numerical results
reported for regular polygons by Shah and London [8]. The
following relationship is used to convert the Reynolds num-
ber Fanning friction factor product based on Dh to

√
A

fRe√A =
P

4
√
A
fReDh

(33)

The approximate model shows good agreement, within 8%
relative difference, with the numerical results of [8] except
for the equilateral triangular (n = 3); the agreement im-
proves as the number of sides increases toward the circu-
lar channel (n → ∞). Using a mapping approach, a com-
pact model is developed in Appendix A which predicts the
fRe√A for isosceles triangular channels with a maximum
difference less than 3.5%.

4.2 Trapezoidal Microchannel

The cross-section of a trapezoidal microchannel is
shown in Fig. 4. This is an important shape since some
microchannels are manufactured with trapezoidal cross-
sections as a result of the etching process in silicon wafers.
Furthermore, in the limit when the top side length, a, goes
to zero; it yields an isosceles triangle. At the other limit
when a = b, it yields rectangular; and a square microchan-
nel when a = b = h. The cross-sectional area, perimeter,
and polar moment of inertia (about its center) are

A =
h

2
(a+ b) (34)

P = a+ b+ 2c (35)

Ip =
h

144 (a+ b)

n¡
a2 + b2

¢ h
3 (a+ b)

2
+ 4h2

i
+ 16h2ab

o
(36)
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Figure 4. CROSS-SECTION OF AN ISOSCELES TRAPZOIDAL CHANNEL

Table 4. LIMITING CASES OF ISOSCELES TRAPEZOID

cross-section ² β I∗p
√
A/P

triangular1
b

2h
0

3²2 + 1

18²

√
²

2
¡
²+
√
²2 + 1

¢
triangular2

1√
3

0

√
3

9

√
3

6 (3)1/4

rectangular
b

h
1

1 + ²2

12²

√
3

2 (1 + ²)

square 1 1
1

6

1

4

1isosceles 2equilateral

An aspect ratio is defined

² ≡ a+ b
2h

(37)

The aspect ratio should work for all above-mentioned lim-
iting cases. As shown in Table 4, the defined aspect ra-
tio covers the triangular, rectangular, and square limiting
cases. The polar moment of inertia can be re-arranged and
presented as

Ip =
A2
£
2
¡
3²2 + 1

¢
+ β

¡
1− 3²2

¢¤
36 ²

(38)

where β, another non-dimensional parameter, is defined as

β ≡ h
2ab

A2
=

4ab

(a+ b)
2 (39)

Note that the parameter β is zero for triangular and 1 for
rectangular and square channels. The angle φ, see Fig. 4,
can be found from ² and β

sinφ =
1p

²2 − β²2 + 1
(40)

The specific polar moment of inertia is

I∗p =
Ip
A2

=
2
¡
3²2 + 1

¢
+ β

¡
1− 3²2

¢
36 ²

(41)

The perimeter, Eq. (35), in terms of non—dimensional geo-
metrical parameters is

P = 2h
³
²+

p
²2 − β²2 + 1

´
(42)

From the cross-sectional area, Eq. (34), one can obtain,
A = ²h2; thus, one can write:

√
A

P
=

√
²

2
³
²+

p
²2 − β²2 + 1

´ (43)

fRe√A =
8π2

¡
3²2 + 1

¢
+ β

¡
1− 3²2

¢
9
√
²
³
²+

p
²2 − β²2 + 1

´ (44)

Shah and London [8] reported numerical values for fReDh

for laminar fully developed flow in trapezoidal channel.
They presented fReDh

values as a function of α∗ = h/a for
different values of angles φ. The non-dimensional geomet-
rical parameters ² and β, defined in this work, are related
to α∗ and φ as follows:

² =
1

α∗
+

1

tanφ

β = 1− 1

²2 tan2 φ

(45)

Table 5 shows the comparison between the approximate
model and the numerical data reported by [8]. As can be
seen, except for a few points, the agreement between the
approximate model and the numerical values is reasonable
(less than 10%).

5 COMPARISON WITH EXPERIMENTAL DATA

The present model is compared with experimental data
collected by several researchers [7; 6; 14] for microchannels.
The accuracy of the experimental data is in the order of
10%.

Wu and Cheng [7] conducted experiments and mea-
sured the friction factor of laminar flow of deionized wa-
ter in smooth silicon microchannels of trapezoidal cross-
sections. Table 6 summarizes geometric parameters of their
microchannels.

Figures 5 and 6 are examples of the comparison between
the approximate model and the data of [7] for channels N1-
100 and N2-200, respectively. As shown the approximate
model shows good agreement with these data.

The frictional resistance fRe√A is not a function of Re
number, i.e., it remains constant for the laminar regime as
the Reynolds number varies. Therefore, the experimental
data for each set are averaged over the laminar region. As
a result, for each experimental data set, one ², one β, and
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Table 5. MODEL VS DATA [8], TRAPEZOIDAL CHANNELS

fRe√A
6

α∗ fReDh
² β model [8] %dif.

φ=85◦

8 17.474 0.212 0.830 23.384 23.054 1.41
4 16.740 0.337 0.933 18.563 19.325 -4.11
2 15.015 0.587 0.978 14.516 15.587 -7.38

4/3 14.312 0.837 0.989 13.318 14.398 -8.11
1 14.235 1.087 0.994 13.203 14.274 -8.11

3/4 14.576 1.421 0.996 13.774 14.825 -7.63
1/2 15.676 2.087 0.998 15.806 16.770 -6.10
1/4 18.297 4.087 1.000 22.648 23.038 -1.72
1/8 20.599 8.087 1.000 33.804 32.926 2.60

φ=75◦

8 14.907 0.393 0.535 15.745 16.982 -7.85
4 14.959 0.518 0.732 14.725 16.142 -9.62
2 14.340 0.768 0.878 13.499 14.754 -9.30

4/3 14.118 1.018 0.931 13.244 14.365 -8.46
1 14.252 1.268 0.955 13.520 14.576 -7.81

3/4 14.697 1.601 0.972 14.304 15.311 -7.04
1/2 15.804 2.268 0.986 16.430 17.332 -5.49
1/4 18.313 4.268 0.996 23.165 23.505 -1.47
1/8 20.556 8.268 0.999 34.155 33.254 2.64

φ=60◦

8 13.867 0.702 0.324 13.540 15.364 -13.47
4 13.916 0.827 0.513 13.544 15.162 -11.95
2 13.804 1.077 0.713 13.623 14.842 -8.95

4/3 13.888 1.327 0.811 13.953 14.960 -7.21
1 14.151 1.577 0.866 14.484 15.392 -6.26

3/4 14.637 1.911 0.909 15.384 16.230 -5.49
1/2 15.693 2.577 0.950 17.482 18.241 -4.34
1/4 18.053 4.577 0.984 23.908 24.184 -1.15
1/8 20.304 8.577 0.995 34.582 33.735 2.45

φ=45◦

8 13.301 1.125 0.210 14.669 15.921 -8.53
4 13.323 1.250 0.360 14.796 15.874 -7.28
2 13.364 1.500 0.556 15.123 15.899 -5.13

4/3 13.541 1.750 0.673 15.573 16.194 -3.99
1 13.827 2.000 0.750 16.125 16.691 -3.51

3/4 14.260 2.333 0.816 16.973 17.492 -3.06
1/2 15.206 3.000 0.889 18.869 19.377 -2.69
1/4 17.397 5.000 0.960 24.760 24.952 -0.77
1/8 19.743 9.000 0.988 34.958 34.268 1.97

φ=30◦

8 12.760 1.857 0.130 17.923 18.058 -0.75
4 12.782 1.982 0.236 18.013 18.077 -0.35
2 12.875 2.232 0.398 18.277 18.235 0.23

4/3 13.012 2.482 0.513 18.633 18.509 0.66
1 13.246 2.732 0.598 19.062 18.961 0.53

3/4 13.599 3.065 0.681 19.720 19.672 0.25
1/2 14.323 3.732 0.785 21.220 21.249 -0.14
1/4 16.284 5.732 0.909 26.178 26.295 -0.44
1/8 18.479 9.732 0.968 35.489 34.747 2.09

one fRe√A value can be obtained. Table 6 presents the pre-
dicted fRe√A values by the approximate model and the av-
eraged values of the reported experimental values of fRe√A
[7]. As shown, the agreement between the predicted values
and the experimental values are good and within the exper-
iment uncertainty. The channels considered by [7] cover a
wide range of geometrical parameters, i.e., 0.71 ≤ ² ≤ 97.70
and 0 ≤ β ≤ 1, as a result the data include triangular and

Table 6. TRAPEZOIDAL MICROCHANNELS DATA [7]

channel b a h ² β fRe√A
µm µm µm − − model data %dif

N1-100 100 20.1 56.4 1.06 0.56 13.85 14.48 -4.5
N1-150 150 70.1 56.4 1.95 0.87 15.61 15.95 -2.2
N1-200 200 120.2 56.4 2.84 0.94 18.34 18.74 -2.2
N1-500 500 420 56.5 8.14 0.99 33.38 31.55 5.5
N1-1000 1000 920 56.5 16.99 1.00 50.86 45.76 10.0
N1-4000 4000 3920 56.5 70.10 1.00 108.32 93.13 14.0
N2-50 50 0 35.3 0.71 0.00 13.50 13.95 -3.3
N2-100 100 39.9 42.4 1.65 0.82 14.83 14.91 -0.6
N2-150 150 89.9 42.4 2.83 0.94 18.29 18.22 0.4
N2-200 200 140 42.4 4.01 0.97 22.06 22.30 -1.1
N2-500 500 440 42.4 11.09 1.00 39.95 38.08 4.7
N2-1000 1000 940 42.4 22.89 1.00 59.94 54.60 8.9
N2-4000 4000 3940 42.4 93.70 1.00 125.76 110.70 12.0
N3-50 50 0 35.3 0.71 0.00 13.50 13.62 -0.9
N3-100 100 0 70.6 0.71 0.00 13.50 14.29 -5.8
N3-150 150 0 105.9 0.71 0.00 13.50 14.03 -3.9
N3-200 200 0 141.2 0.71 0.00 13.50 14.66 -8.6
N3-500 500 284 152.5 2.57 0.92 17.48 17.47 0.0
N3-1000 1000 784 152.5 5.85 0.99 27.46 26.45 3.7
N3-2000 2000 1784 152.5 12.40 1.00 42.59 39.57 7.1
N3-4000 4000 3784 152.5 25.52 1.00 63.57 57.07 10.2
N4-100 100 0 70.6 0.71 0.00 13.50 13.98 -3.5
N4-200 200 27.2 122.0 0.93 0.42 13.76 15.10 -9.7
N4-500 500 327 122.2 3.38 0.96 20.08 20.99 -4.5
N4-1000 1000 827 122.2 7.48 0.99 31.75 31.54 0.6
N4-4000 4000 3828 121.5 32.22 1.00 72.07 69.88 3.0
N5-150 150 47.4 72.5 1.36 0.73 14.24 14.87 -4.5
N6-500 500 279 156.1 2.50 0.92 17.24 17.07 1.0
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Wu and Cheng [7] data
channel # N1-100 (trapezoidal cross-section)
channel material: silicon
de-ionized water
a = 100 µm b = 20.10 µm h = 56.42 µm
ε = 1.064 β = 0.557

model ± 10%

Figure 5. COMPARISON OF EXPERIMENTAL DATA [7] WITH MODEL

rectangular microchannels. It should be noted that, in spite
of the different dimensions, channels N2-50, N3-50, N3-100,
N3-150, N3-200, and N4-100 have the same values of β and
²; thus they are geometrically equivalent. It is interesting
to observe that the predicted and the measured fRe√A val-
ues are identical for these channels, as expected. Figure 7
illustrates the comparison between all trapezoidal data [7]
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Wu and Cheng data [7]
channel # N2-200 (trapezoidal cross-section)
channel material: silicon
de-ionized water
b = 200 µm a = 140 µm h = 42.37 µm
ε = 4.012 β = 0.969

model ± 10%

Figure 6. COMPARISON OF EXPERIMENTAL DATA [7] WITH MODEL
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fRe√A = 32 π2 I*p √A / P
I*p = Ip / A2

Figure 7. COMPARISON BETWEEN MODEL AND ALL TRAPEZOIDAL

DATA [7]

and the proposed model. The ±10% bounds are also shown
in the plot, to better demonstrate the agreement between
the data and the model.

Liu and Garimella [6] carried out experiments and mea-
sured the friction factor in rectangular microchannels. They
did not observe any scale-related phenomena in their exper-
iments and concluded that the conventional theory can be
used to predict the flow behavior in microchannels in the
range of dimensions considered. They [6] measured and
reported the relative surface roughness of the channels to
be negligible, thus their channels can be considered smooth
(see Fig. 8 for channels dimensions). Figure 8 also shows
the comparison between the model and the channel L3 of

Re√A
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20
rectangular microchannel: L3
channel material: plexiglass
de-ionized water

Liu and Garimella data [6]
rectangular channels dimensions
# b (µm) c (µm) ε
S1 433 170 0.39
S2 551 180 0.33
S3 731 285 0.39
S4 885 310 0.35
S5 480 460 0.96
L1 597 222 0.37
L2 942 323 0.34
L3 450 384 0.85
L4 1061 900 0.85

model
± 10%

Figure 8. COMPARISON OF EXPERIMENTAL DATA [6] WITH MODEL
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channel 5 data

Gao et al. data [14]
rectangular channels dimensions
demineralized water of pH= 7.8
# b (mm) c (mm) ε
3 25.0 0.5 0.02
4 25.0 0.4 0.016
5 25.0 0.3 0.012
6 25.0 0.2 0.008
7 25.0 0.1 0.004

model
± 10%

Figure 9. COMPARISON OF EXPERIMENTAL DATA [14] WITH MODEL

data [6].
Gao et al. [14] experimentally investigated laminar

fully developed flow in rectangular microchannels. They
designed their experiments to be able to change the height
of the channels tested while the width remained constant
at 25 mm. They conducted several experiments with sev-
eral channel heights, see Fig. 9 for the channels dimensions
used in this study. Gao et al. [14] measured the roughness
of the channel and reported negligible relative roughness,
thus their channels can be considered smooth. Figure 9
shows the comparison of the model and data [14].

Following the same method described for trapezoidal
data, the reported values of fRe√A for rectangular mi-
crochannels are averaged and plotted against both approxi-
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Figure 10. COMPARISON BETWEEN MODEL AND ALL RECTANGULAR

DATA [6,7,14]

mate and exact models in Fig. 10. As previously discussed,
the maximum difference between the exact and approxi-
mate solutions for the rectangular channel is less than 8%.
As shown in Fig. 10, the collected data cover a wide range
of the aspect ratio ² = c/b, almost three decades; also the
relative difference between the data and model is within the
accuracy of the experiments.

6 SUMMARY AND CONCLUSIONS

Pressure drop of fully developed laminar flow in smooth
arbitrary cross-sections channels is studied. Using existing
analytical solutions for fluid flow, relationships are derived
for fRe√A for selected cross-sections. It is observed through
analysis that the square root of area

√
A, as the character-

istic length scale, is superior to the conventional hydraulic
diameter, Dh. Thus it is recommended to use

√
A instead

of Dh.
A compact approximate model is proposed that pre-

dicts the pressure drop of fully developed, laminar flow in
channels of arbitrary cross-section. The model is only a
function of geometrical parameters of the cross-section, i.e.,
area, perimeter, and polar moment of inertia. The proposed
model is compared with analytical and numerical solutions
for several shapes. Except for the equilateral triangular
channel (with 14% difference), the present model success-
fully predicts the pressure drop for a wide variety of shapes
with a maximum difference on the order of 8%. Moreover,
a compact model is developed using a mapping approach,
which predicts the fRe√A for isosceles triangular channels
with a maximum difference less than 3.5%

The proposed model is also validated with either ex-

perimental data or exact analytical solutions for rectangu-
lar, trapezoidal, triangular (isosceles), square, and circu-
lar cross-sections collected by several researchers and shows
good agreement.
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A ISOSCELES TRIANGULAR CHANNELS

To calculate the pressure drop in isosceles triangular
channels, a mapping approach is used. Shah and London [8]
reported numerical values of fReDh

for isosceles triangular
channels as a function of the aspect ratio defined as α∗

α∗ =
h

b
(46)

The reported numerical values [8] were converted to fRe√A.
Plotting fRe√A versus α

∗ reveals that the solution has two
asymptotes corresponding to the angle φ as it approaches 0
and 180◦ as shown in Fig. 11. It is interesting to observe
that these two asymptotes are both similiar to very narrow
rectangular channels. Thus Eq. (19) can be used to predict
fRe√A in both limits. Equation (19) can be written in
terms of α∗, defined by [8], as follows:

fRe√A =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
12√
2α∗

α∗ → 0

12
√
α∗√
2

α∗ →∞
(47)

To find relationships between α∗ of triangular channel and
² of equivalent rectangular channel, the cross-sectional area
of the equivalent rectangular is set equal to the triangu-
lar channel, see Fig. 11. Using the blending technique of
Churchill and Usagi [15], a compact correlation can be de-
veloped by combining the above asymptotes as follows:

fRe√A = 6

"µ
2

α∗

¶n/2
+ (2α∗)n/2

#1/n
(48)

The value of the fitting parameter n can be obtained by
comparing the compact correlation with the numerical val-
ues for α∗ in the range [0.5, 2]. If we choose α∗ = 1, then

fRe√A = 15.24, and the value of n = 1.184 gives excellent
agreement at this point. If we select n = 1.20, the maximum
difference of about 3.5% occurs at α∗ = 0.3. For the equi-
lateral triangle where α∗ =

√
3/2, the compact model with

n = 1.20, gives fRe√A = 15.24 which is about 0.3% greater
than the numerical value of 15.19. Figure 12 presents the

  

  h

  

h
b

  

  

φ →  0

φ →  180

ε  =  2  / α

ε  =  2  α

*

*

Figure 11. TWO LIMITS OF ISOSCELES TRIANGULAR CHANNEL

numerical values of fRe√A reported by [8], the two asymp-
totes, and the compact model, Eq. (48), with n = 1.20.

α* = h / b
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Figure 12. fRe√A FOR ISOSCELES TRIANGULAR CHANNELS
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Table 2. GEOMETRIC PARAMETER AND APPROXIMATE MODEL FOR VARIOUS CROSS SECTIONS

cross-section I∗p
√
A/P fRe√A

32π2I∗p
√
A/P exact

a

x

y

o   
1

2π

1

2
√
π

14.18 14.18

a xo     

1

6

1

4
13.16 14.13

a

2a
◊3x

y

o   
√
3

9

√
3

6 (3)1/4
13.33 15.19

a

o

  
  f   

9φ2 − 8 sin2 φ
18φ3

√
φ

2 (1 + φ)

¡
9φ2 − 8 sin2 φ

¢√
φ

36φ3 (1 + φ)

φ
p
φ

(1 + φ) g (φ)[∗]

  

p/3

    
a

o

  
circular sector φ =

π

6
13.57 14.92

    
x

o

semi-circle φ =
π

2
15.67 16.17

b

c
xo   

  

1 + ²2

4π²

√
π²

4E
¡√
1− ²2

¢ 2π
√
π
¡
1 + ²2

¢
√
²E
¡√
1− ²2

¢ 2π
√
π
¡
1 + ²2

¢
√
²E
¡√
1− ²2

¢

b
c

xo   

  

1 + ²2

12²

√
²

2 (1 + ²)

4π2
¡
1 + ²2

¢
3
√
² (1 + ²)

12∙
1− 192

π5
² tanh

³ π
2²

´¸
(1 + ²)

√
²

² = c/b [*] see Table 1
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