
HiSpMV: Hybrid Row Distribution and Vector Buffering
for Imbalanced SpMV Acceleration on FPGAs

Manoj B. Rajashekar, Xingyu Tian, Zhenman Fang

HiAccel Lab, Simon Fraser University, Canada

https://www.sfu.ca/~zhenman

https://www.sfu.ca/~zhenman

2

Sparse-Matrix Vector Multiplication (SpMV)

▪ Equation of SpMV operation:

▪ Fundamental kernel in many scientific and engineering applications

Graph Analytics Circuit Simulation

0

1

2

3

0

1

2

𝒘𝟎𝟐

𝒘𝟏𝟎

𝒘𝟐𝟎

𝒘𝟑𝟏

0 𝑤10 𝑤20 0

0 0 0 𝑤31

𝑤02 0 0 0

Sparse Neural Network

𝒚 = 𝜶. 𝑨 × 𝒙 + 𝜷. 𝒚

3

SpMV Example

▪ Equation of SpMV operation:

▪ In SpMV, only non-zero elements are used in the computation

5 0 0 0

0 0 0 0

0 0 0 8

1 2 3 4

𝑨

𝒙
𝒚

𝒚 = 𝜶. 𝑨 × 𝒙 + 𝜷. 𝒚

5

1 4

8 (8*4)

(5*1) 5

32

4

#1 Random memory access

Challenges to Accelerate SpMV and Prior Solutions

5 0 0 0

0 0 0 0

0 0 0 8

1 2 3 4

5

0

32

𝑨

𝒙
𝒚

5

#1 Random memory access

▪ On-chip buffers for dense vectors

Challenges to Accelerate SpMV and Prior Solutions

5 0 0 0

0 0 0 0

0 0 0 8

1 2 3 4

5

0

32

𝑨

𝒙
𝒚

6

#1 Random memory access

▪ On-chip buffers for dense vectors

#2 High bandwidth requirement

▪ Multiple HBM channels to stream encoded sparse matrix

Challenges to Accelerate SpMV and Prior Solutions

Row ID Col ID Value

64 Bit

One element of sparse matrix in COO format

7

#1 Random memory access

▪ On-chip buffers for dense vectors

#2 High bandwidth requirement

▪ Multiple HBM channels to stream encoded sparse matrix

#3 Workload distribution

Challenges to Accelerate SpMV and Prior Solutions

Store y

to

Off-chip

PE 0
x buffer

y buffer

PE 1
x buffer

y buffer

Stream A

from

off-chip

Load x

from

Off-chip
0 1 2 3

a b

c

d

e f

0

1

2

3

a b

c

d

e f

Cyclic row-wise distribution

8

Challenges to Accelerate SpMV and Prior Solutions

PE 0
x[0:3]

y[0], y[2]

PE 1
x[0:3]

y[1], y[3]

0 1 2 3

a b

c

d

e f

0

1

2

3

ab

c

d

ef

Duplicate 𝒙 Disjoint 𝒚

But this is still

NOT PERFECT!!

#1 Random memory access

▪ On-chip buffers for dense vectors

#2 High bandwidth requirement

▪ Multiple HBM channels to stream encoded sparse matrix

#3 Workload distribution

9

Remaining Challenge #1: Imbalanced Row Distribution

Imbalanced workload distribution
PE 0

x[0:3]

y[0], y[2]

PE 1
x[0:3]

y[1], y[3]

0 1 2 3

a

b c d e

f

0

1

2

3

a

b c d e

f

10

ed

Our Solution for Imbalanced Row Distribution

PE 0
x[0:3]

y[0], y[2]

PE 1
x[0:3]

y[1], y[3]

0 1 2 3

a

b c d e

f

0

1

2

3

a

b c

f

Make the hardware operate in 2 modes to achieve balance
i. Inter-Row: Individual PEs work on different rows as usual

ii. Intra-Row: All the PEs work on the same row for dense rows

Imbalanced workload distribution

11

Our Hybrid Row Distribution (HRD) Network

PE 0

x[0:3]
y_Ax Buffer 0

y[0], y[2]

PE 1

x[0:3]
y_Ax Buffer 1

y[1], y[3]

12

HRD

Network

Our Hybrid Row Distribution (HRD) Network

PE 0

x[0:3]
y_Ax Buffer 0

y[0], y[2]

PE 1

x[0:3]
y_Ax Buffer 1

y[1], y[3]

13

HRD

Network

Our Hybrid Row Distribution (HRD) Network

PE 0

x[0:3]
y_Ax Buffer 0

y[0], y[2]

PE 1

x[0:3]
y_Ax Buffer 1

y[1], y[3]

a

f

a

b c d e

f

i. Inter-Row Mode

14

HRD

Network

Our Hybrid Row Distribution (HRD) Network

PE 0

x[0:3]
y_Ax Buffer 0

y[0], y[2]

PE 1

x[0:3]
y_Ax Buffer 1

y[1], y[3]

a

f

a

b c d e

f

i. Inter-Row Mode

𝒂𝒙𝟏

𝒇𝒙𝟑

15

HRD

Network

Our Hybrid Row Distribution (HRD) Network

PE 0

x[0:3]
y_Ax Buffer 0

y[0], y[2]

PE 1

x[0:3]
y_Ax Buffer 1

y[1], y[3]

a

f

a

b c d e

f

i. Inter-Row Mode: Simple Forwarding

𝒂𝒙𝟏

𝒇𝒙𝟑

16

HRD

Network

Our Hybrid Row Distribution (HRD) Network

PE 0

x[0:3]
y_Ax Buffer 0

y[0], y[2]

PE 1

x[0:3]
y_Ax Buffer 1

y[1], y[3]

b

c

a

b c d e

f

i. Inter-Row Mode: Simple Forwarding

ii. Intra-Row Mode:

17

HRD

Network

Our Hybrid Row Distribution (HRD) Network

PE 0

x[0:3]
y_Ax Buffer 0

y[0], y[2]

PE 1

x[0:3]
y_Ax Buffer 1

y[1], y[3]

b

c

a

b c d e

f

i. Inter-Row Mode: Simple Forwarding

ii. Intra-Row Mode:

𝒃𝒙𝟎

𝒄𝒙𝟏

Both need to be

added to y[1]

18

HRD

Network

Our Hybrid Row Distribution (HRD) Network

PE 0

x[0:3]
y_Ax Buffer 0

y[0], y[2]

PE 1

x[0:3]
y_Ax Buffer 1

y[1], y[3]

b

c

a

b c d e

f

i. Inter-Row Mode: Simple Forwarding

ii. Intra-Row Mode: Reduce and Route

𝒃𝒙𝟎

𝒄𝒙𝟏

𝒃𝒙𝟎
+
𝒄𝒙𝟏

19

Scaling up for larger design, e.g., 8 PEs

▪ Modular and flexible

Our Hybrid Row Distribution (HRD) Network

20

Remaining Challenge #2: FP Accumulation Dependency

In FPGAs without hardened floating point accumulators,

the accumulation takes multiple clock cycles

0 1 2 3

a b

c d

0

1

2

3

A Matrix

Read

y[0]

Compute

y[0] + a*x[1]

Write

y[0]

Read

y[0]

Compute

y[0] + b*x[3]

Write

y[0]

RAW Dependency

HRD

Network

y_Ax Buffer

y buffer

Dependency Distance

21

Our Solution Part 1: Reduce Dependency Distance

0 1 2 3

a b

c d

0

1

2

3

A Matrix

HRD

Network

y_Ax Buffer

y buffer

Same Row

Read

y[0]

Compute

y[0] + a*x[1]

Write

y[0]

Read

y[0]

Compute

y[0] + b*x[3]

Write

y[0]

RAW Dependency

Dependency Distance

Read

y[0]

Compute

y[0] + a*x[1]

Write

y[0]

Read

y[0]

Compute

y[0] + b*x[3]

Write

y[0]

Forwarding

Dependency

Distance

Local data forwarding reduces

the Dependency Distance (DD);

but still cannot achieve II = 1

Remove buffer

access latency

22

Pre-accumulation adder chain

▪ Store and accumulate DD – 1 results

▪ Achieve II = 1

Our Solution Part 2: Pre-Accumulation Adder Chain

HRD

Network

y_Ax Buffer

y buffer

Same Row

PE
x buffer

Adder Chain

23

New Performance Bottleneck

Dense vectors loading and storing

24

Our Solution: Hybrid Buffer

PE 0

x buffer

PE 1

x buffer

PEG

x buffer 1

x buffer 0

x

Loader

Old Design New Design

25

Sequential Mode

▪ Load to both buffers

Hybrid Buffer: Sequential Mode

PEG

x buffer 1

x buffer 0
x

Loader

26

Hybrid Buffer: Sequential Mode

𝒕𝒔 = 𝒕𝑳 + 𝒕𝑪

PEG

x buffer 1

x buffer 0
x

Loader

Sequential mode time

is Load time + Compute time

Sequential Mode

▪ Load to both buffers

▪ Consume from both buffers

27

Hybrid Buffer: Ping-Pong Mode

PEG

x buffer 1

x buffer 0
x

Loader

Ping-Pong Mode

▪ Load to buffer 0 and consume from buffer 1

28

Hybrid Buffer: Ping-Pong Mode

PEG

x buffer 1

x buffer 0
x

Loader

𝒕𝑷 = 𝐦𝐚𝐱 𝒕𝑳, 𝒕𝒄
′

𝒕𝑪 ≤ 𝒕𝑪
′ ≤ 𝟐𝒕𝑪

Ping-Pong mode time is the

maximum between Load

time and Compute time

Compute time will vary

Ping-Pong Mode

▪ Load to buffer 0 and consume from buffer 1

▪ Load to buffer 1 and Consume from buffer 0

29

Hybrid Buffer Implementation and Selection

Implemented using PASTA buffer channels [FCCM 2023]

Condition for Ping-Pong mode:

▪ 𝒕𝑺 > 𝒕𝑷 ⇒ 𝒕𝑳 + 𝒕𝑪 > 𝐦𝐚𝐱 𝒕𝑳, 𝒕𝑪
′

▪ When 𝐦𝐚𝐱 𝒕𝑳, 𝒕𝑪
′ = 𝒕𝑪

′ ; 𝒕𝑳 + 𝒕𝑪 > 𝒕𝑪
′

▪ Worst case compute time 𝒕𝑪
′ = 𝟐𝒕𝑪

▪ When 𝒕𝑳 > 𝒕𝑪, Ping-Pong mode will be dynamically picked

30

HiSpMV Overall Architecture: Put It Together

➢ N channels to stream

sparse matrix A

➢ M channels for dense

vector y

➢ 1 channel for dense

vector x, with

chain broadcast

➢ Both M and N are

scalable

31

HiSpMV Code Generator

❑ Choose to build w/

or w/o Adder Chains

and Hybrid Buffer

❑ Get estimated

runtimes for DSE

❑ Generate HiSpMV

design with custom

values for M and N

❑ Open source: https://github.com/SFU-HiAccel/HiSpMV

https://github.com/SFU-HiAccel/HiSpMV

32

Experimental Setup 1

FPGA Designs (Alveo U280)

➢ HiSpMV-16 (This Work)

▪ 128 PEs (All Optimizations)

➢ HiSpMV-20 (This Work)

▪ 160 PEs (No Adder Chains)

➢ Serpens-16 [DAC 2022]

▪ 128 PEs

➢ Serpens-24 [DAC 2022]

▪ 192 PEs

Process Technology 16 nm

HBM Bandwidth 460 GB/S

33

0

5

10

15

20

25

30

35

40

M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 GMN

G
F

L
O

P
S

Serpens-16 HiSpMV-16 Serpens-24 HiSpMV-20

Performance Comparison: Imbalanced Matrices

15.3x

34

0

5

10

15

20

25

30

35

40

M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 GMN

G
F

L
O

P
S

Serpens-16 HiSpMV-16 Serpens-24 HiSpMV-20

Performance Comparison: Imbalanced Matrices

13.1x

35

0

5

10

15

20

25

30

35

40

M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 GMN

G
F

L
O

P
S

Serpens-16 HiSpMV-16 Serpens-24 HiSpMV-20

Performance Comparison: Imbalanced Matrices

Serpens Failed

36

0

10

20

30

40

50

60

70

80

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 GMN

G
F

L
O

P
S

Serpens-16 HiSpMV-16 Serpens-24 HiSpMV-20

Performance Comparison: Balanced Matrices

1.18x

1.1x

37

0

10

20

30

40

50

60

70

80

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 GMN

G
F

L
O

P
S

Serpens-16 HiSpMV-16 Serpens-24 HiSpMV-20

Performance Comparison: Balanced Matrices

More PEs

38

Name GPU 1 FPGA 1

Image

Device
NVIDIA GTX

1080Ti
AMD Alveo U280

Kernel NVIDIA CuSparse HiSpMV-16

Memory

Bandwidth
484 GB/s 460 GB/s

Process

Technology
16 nm 16 nm

Experimental Setup 2

39

Name GPU 1 FPGA 1 GPU 2 FPGA 2 (est)

Image

Device
NVIDIA GTX

1080Ti
AMD Alveo U280 NVIDIA A100 AMD Versal VH1782

Kernel NVIDIA CuSparse HiSpMV-16 NVIDIA CuSparse HiSpMV-56

Memory

Bandwidth
484 GB/s 460 GB/s 1,555 GB/s 819 GB/s

Process

Technology
16 nm 16 nm 7 nm 7 nm

Experimental Setup 2

40

1
E+

4
1

E+
5

1
E+

6
1

E+
7

1
E+

8
1

E+
9

0

50

100

150

200

250

300

350

400

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20

N
o

. o
f

FP
 O

p
e

ra
ti

o
n

s

P
e

rf
o

rm
an

ce
 in

 G
FL

O
P

S

FPGA 1 (HiSpMV-16:U280) GPU 1 (CuSparse:1080ti)

FPGA 2 (HiSpMV-56:VH1782) est GPU 2 (CuSparse:A100)

No. of FP Operations

Performance Comparison

41

Energy Efficiency Comparison

0

1

2

3

4

5

6

7

8
M

1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

M
11

M
12

M
13

M
14

M
15

M
16

M
17

M
18

M
19

M
20

G
F

L
O

P
S

/W
at

t
G

ai
n

U280 / 1080ti VH1782 (est) / A100

42

Conclusion

Key contributions in HiSpMV

▪ Hybrid row distribution for imbalanced workload

▪ Adder chains and register forwarding for FP accumulation dependency

▪ Hybrid buffering for dense vector access bottleneck

▪ Code generator for customizable Hardware

Experimental results on Alveo U280 FPGA

▪ 15.3x geomean speedup over Serpens (SOTA) for imbalanced matrices

▪ 1.93x geomean better performance per watt over 1080ti GPU

Open source: https://github.com/SFU-HiAccel/HiSpMV

https://github.com/SFU-HiAccel/HiSpMV

43

Thank You!

HiAccel group website: http://www.sfu.ca/~zhenman/group.html

http://www.sfu.ca/~zhenman/group.html

