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Sparse-Matrix Vector Multiplication (SpMV) 

▪ Equation of SpMV operation:

▪ Fundamental kernel in many scientific and engineering applications 

Graph Analytics Circuit Simulation

0

1

2

3

0

1

2

𝒘𝟎𝟐

𝒘𝟏𝟎

𝒘𝟐𝟎

𝒘𝟑𝟏

0 𝑤10 𝑤20 0

0 0 0 𝑤31

𝑤02 0 0 0

Sparse Neural Network

𝒚 = 𝜶. 𝑨 × 𝒙 + 𝜷. 𝒚



3

SpMV Example

▪ Equation of SpMV operation:

▪ In SpMV, only non-zero elements are used in the computation
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#1 Random memory access

Challenges to Accelerate SpMV and Prior Solutions
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#1 Random memory access

▪ On-chip buffers for dense vectors

Challenges to Accelerate SpMV and Prior Solutions
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#1 Random memory access

▪ On-chip buffers for dense vectors

#2 High bandwidth requirement

▪ Multiple HBM channels to stream encoded sparse matrix 

Challenges to Accelerate SpMV and Prior Solutions

Row ID Col ID Value

64 Bit

One element of sparse matrix in COO format
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#1 Random memory access

▪ On-chip buffers for dense vectors

#2 High bandwidth requirement

▪ Multiple HBM channels to stream encoded sparse matrix 

#3 Workload distribution

Challenges to Accelerate SpMV and Prior Solutions
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Challenges to Accelerate SpMV and Prior Solutions

PE 0
x[0:3]

y[0], y[2]

PE 1
x[0:3]

y[1], y[3]

0 1 2 3

a b

c

d

e f

0

1

2

3

ab

c

d

ef

Duplicate 𝒙 Disjoint 𝒚

But this is still 

NOT PERFECT!!

#1 Random memory access

▪ On-chip buffers for dense vectors

#2 High bandwidth requirement

▪ Multiple HBM channels to stream encoded sparse matrix 

#3 Workload distribution
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Remaining Challenge #1: Imbalanced Row Distribution

Imbalanced workload distribution
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ed

Our Solution for Imbalanced Row Distribution
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Make the hardware operate in 2 modes to achieve balance
i. Inter-Row: Individual PEs work on different rows as usual

ii. Intra-Row: All the PEs work on the same row for dense rows

Imbalanced workload distribution
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Our Hybrid Row Distribution (HRD) Network
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HRD 

Network

Our Hybrid Row Distribution (HRD) Network
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Our Hybrid Row Distribution (HRD) Network
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HRD 

Network

Our Hybrid Row Distribution (HRD) Network
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HRD 

Network

Our Hybrid Row Distribution (HRD) Network
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HRD 

Network

Our Hybrid Row Distribution (HRD) Network
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i. Inter-Row Mode: Simple Forwarding

ii. Intra-Row Mode: 
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HRD 
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Our Hybrid Row Distribution (HRD) Network
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HRD 

Network

Our Hybrid Row Distribution (HRD) Network

PE 0

x[0:3]
y_Ax Buffer 0

y[0], y[2]

PE 1

x[0:3]
y_Ax Buffer 1

y[1], y[3]

b

c

a

b c d e

f

i. Inter-Row Mode: Simple Forwarding

ii. Intra-Row Mode: Reduce and Route

𝒃𝒙𝟎

𝒄𝒙𝟏

𝒃𝒙𝟎
+
𝒄𝒙𝟏



19

Scaling up for larger design, e.g., 8 PEs

▪ Modular and flexible

Our Hybrid Row Distribution (HRD) Network
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Remaining Challenge #2: FP Accumulation Dependency

In FPGAs without hardened floating point accumulators, 

the accumulation takes multiple clock cycles
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Our Solution Part 1: Reduce Dependency Distance
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Pre-accumulation adder chain

▪ Store and accumulate DD – 1 results 

▪ Achieve II = 1

Our Solution Part 2: Pre-Accumulation Adder Chain

HRD 

Network

y_Ax Buffer

y buffer

Same Row

PE
x buffer

Adder Chain



23

New Performance Bottleneck

Dense vectors loading and storing
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Our Solution: Hybrid Buffer
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Sequential Mode

▪ Load to both buffers

Hybrid Buffer: Sequential Mode
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x buffer 1

x buffer 0
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Hybrid Buffer: Sequential Mode

𝒕𝒔 = 𝒕𝑳 + 𝒕𝑪

PEG 

x buffer 1

x buffer 0
x 

Loader

Sequential mode time 

is Load time + Compute time

Sequential Mode

▪ Load to both buffers

▪ Consume from both buffers
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Hybrid Buffer: Ping-Pong Mode
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Ping-Pong Mode

▪ Load to buffer 0 and consume from buffer 1
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Hybrid Buffer: Ping-Pong Mode
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Hybrid Buffer Implementation and Selection

Implemented using PASTA buffer channels [FCCM 2023]

Condition for Ping-Pong mode:

▪ 𝒕𝑺 > 𝒕𝑷 ⇒ 𝒕𝑳 + 𝒕𝑪 > 𝐦𝐚𝐱 𝒕𝑳, 𝒕𝑪
′

▪ When 𝐦𝐚𝐱 𝒕𝑳, 𝒕𝑪
′ = 𝒕𝑪

′ ; 𝒕𝑳 + 𝒕𝑪 > 𝒕𝑪
′

▪ Worst case compute time 𝒕𝑪
′ = 𝟐𝒕𝑪

▪ When 𝒕𝑳 > 𝒕𝑪, Ping-Pong mode will be dynamically picked
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HiSpMV Overall Architecture: Put It Together

➢ N channels to stream 

sparse matrix A

➢ M channels for dense 

vector y

➢ 1 channel for dense 

vector x, with

chain broadcast

➢ Both M and N are 

scalable
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HiSpMV Code Generator

❑ Choose to build w/

or w/o Adder Chains 

and Hybrid Buffer

❑ Get estimated 

runtimes for DSE

❑ Generate HiSpMV

design with custom 

values for M and N

❑ Open source: https://github.com/SFU-HiAccel/HiSpMV

https://github.com/SFU-HiAccel/HiSpMV
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Experimental Setup 1

FPGA Designs (Alveo U280)

➢ HiSpMV-16 (This Work)

▪ 128 PEs (All Optimizations)

➢ HiSpMV-20 (This Work)

▪ 160 PEs (No Adder Chains)

➢ Serpens-16 [DAC 2022]

▪ 128 PEs

➢ Serpens-24 [DAC 2022]

▪ 192 PEs

Process Technology 16 nm

HBM Bandwidth 460 GB/S
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Name GPU 1 FPGA 1

Image

Device
NVIDIA GTX 

1080Ti
AMD Alveo U280

Kernel NVIDIA CuSparse HiSpMV-16

Memory 

Bandwidth
484 GB/s 460 GB/s

Process 

Technology
16 nm 16 nm

Experimental Setup 2
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Name GPU 1 FPGA 1 GPU 2 FPGA 2 (est)

Image

Device
NVIDIA GTX 

1080Ti
AMD Alveo U280 NVIDIA A100 AMD Versal VH1782

Kernel NVIDIA CuSparse HiSpMV-16 NVIDIA CuSparse HiSpMV-56

Memory 

Bandwidth
484 GB/s 460 GB/s 1,555 GB/s 819 GB/s

Process 

Technology
16 nm 16 nm 7 nm 7 nm

Experimental Setup 2
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Energy Efficiency Comparison
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Conclusion

Key contributions in HiSpMV

▪ Hybrid row distribution for imbalanced workload

▪ Adder chains and register forwarding for FP accumulation dependency

▪ Hybrid buffering for dense vector access bottleneck

▪ Code generator for customizable Hardware

Experimental results on Alveo U280 FPGA

▪ 15.3x geomean speedup over Serpens (SOTA) for imbalanced matrices

▪ 1.93x geomean better performance per watt over 1080ti GPU

Open source: https://github.com/SFU-HiAccel/HiSpMV

https://github.com/SFU-HiAccel/HiSpMV
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Thank You!

HiAccel group website: http://www.sfu.ca/~zhenman/group.html

http://www.sfu.ca/~zhenman/group.html

