
HiSpMV: Hybrid Row Distribution and Vector Buffering for
Imbalanced SpMV Acceleration on FPGAs

Manoj B. Rajashekar
mba151@sfu.ca

Simon Fraser University
Burnaby, BC, Canada

Xingyu Tian
xingyu_tian@sfu.ca

Simon Fraser University
Burnaby, BC, Canada

Zhenman Fang
zhenman@sfu.ca

Simon Fraser University
Burnaby, BC, Canada

ABSTRACT
Sparse matrix-vector multiplication (SpMV) is a fundamental opera-
tion in numerous applications such as scientific computing, machine
learning, and graph analytics. While recent studies have made great
progress in accelerating SpMV on HBM-equipped FPGAs, there are
still multiple remaining challenges to accelerate imbalanced SpMV
where the distribution of non-zeros in the sparse matrix is imbal-
anced across different rows. These include (1) imbalanced workload
distribution among the parallel processing elements (PEs), (2) long-
distance dependency for floating-point accumulation on the output
vector, and (3) a new bottleneck due to the often-overlooked input
vector after the SpMV acceleration.

To address those challenges, we propose HiSpMV to accelerate
imbalanced SpMV on HBM-equipped FPGAs with the following
novel solutions: (1) a hybrid row distribution network to enable
both inter-row and intra-row distribution for better balance, (2) a
fully pipelined floating-point accumulation on the output vector
using a combination of an adder chain and register-based circular
buffer, (3) hybrid buffering to improve memory access for input vec-
tor, and (4) an automation framework to automatically generate the
optimized HiSpMV accelerator. Experimental results demonstrate
that HiSpMV achieves a geomean speedup of 15.31x (up to 61.66x)
for highly imbalanced matrices, compared to state-of-the-art SpMV
accelerator Serpens on the AMD-Xilinx Alveo U280 HBM-based
FPGA. Compared to Intel MKL running on a 24-core Xeon Silver
4214 CPU, HiSpMV achieves a geomean speedup of 8.30x. Com-
pared to cuSparse running on an Nvidia GTX 1080ti GPU, HiSpMV
achieves a geomean of 1.93x better performance per watt. HiSpMV
will be released soon at https://github.com/SFU-HiAccel/HiSpMV.

CCS CONCEPTS
• Hardware→ Hardware accelerators; Hardware-software
codesign; •Computer systems organization→Reconfigurable
computing; High-level language architectures.

KEYWORDS
SpMV,Workload Imbalance, Hybrid Design, Hybrid Buffering, FPGA

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FPGA ’24, March 3–5, 2024, Monterey, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0418-5/24/03. . . $15.00
https://doi.org/10.1145/3626202.3637557

ACM Reference Format:
Manoj B. Rajashekar, Xingyu Tian, and Zhenman Fang. 2024. HiSpMV:
Hybrid Row Distribution and Vector Buffering for Imbalanced SpMV Ac-
celeration on FPGAs. In Proceedings of the 2024 ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (FPGA ’24), March 3–5, 2024,
Monterey, CA, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3626202.3637557

1 INTRODUCTION
SpMV is a fundamental mathematical operation used in various
fields, including scientific computing [7, 12], circuit simulation [10],
machine learning [11, 15, 16, 29, 30], and graph analytics [3, 21]. It
mainly involves multiplying a sparse matrix (with a large number
of zero entries) by a dense vector, resulting in a new dense vector.
More specifically, the SpMV operation is described in Equation 1.

®𝑦 = 𝛼.A × ®𝑥 + 𝛽.®𝑦 (1)
where A is a sparse matrix, ®𝑥 and ®𝑦 are dense vectors, 𝛼 and 𝛽 are
scalar constants. Since the sparse matrix has no data reuse and has
irregular distribution of non-zero elements (i.e., random memory
access), it poses great challenges in accelerating SpMV on FPGAs.

Algorithm 1 Tiled SpMV acceleration w/ cyclic row-wise partition
1: for (𝑟 = 0; 𝑟 < 𝑅; 𝑟 = 𝑟 + 𝑅𝑡) do
2: 𝑦_𝐴𝑥 [𝑅𝑡] ← ®0 ⊲ buffer temporary output

−−−→
𝑦_𝐴𝑥

3: for (𝑝 = 0; 𝑝 < 𝑃 ; 𝑝 + +) do in parallel ⊲ P = #PEs
4: for (𝑐 = 0; 𝑐 < 𝐶 ; 𝑐 = 𝑐 +𝐶𝑡) do
5: 𝑏𝑢𝑓 _𝑥 [𝐶𝑡] ← 𝑥 [𝑐 : 𝑐 +𝐶𝑡) ⊲ load ®𝑥 buffer
6: for all (𝑟%𝑃 = 𝑝 , 𝑎𝑟𝑐 ∈ A, 𝑎𝑟𝑐 ≠ 0) do ⊲ stream 𝑎𝑟𝑐
7: 𝑦_𝐴𝑥 [𝑟%𝑅𝑡] + = 𝑎𝑟𝑐 ∗ 𝑏𝑢𝑓 _𝑥 [𝑐%𝐶𝑡] ⊲ A × ®𝑥
8: for (𝑖 = 𝑟 ; 𝑖 < 𝑟 + 𝑅𝑡 ; 𝑖 + +) do ⊲ stream & compute −−−−→𝑦_𝑜𝑢𝑡
9: 𝑦_𝑜𝑢𝑡 [𝑖] ← 𝛼 ∗ 𝑦_𝐴𝑥 [𝑖%𝑅𝑡] + 𝛽 ∗ 𝑦_𝑖𝑛[𝑖]

Recent studies [9, 20, 27] have made great progress in harnessing
HBM-based FPGAs to overcome those memory-bound challenges.
A common processing pattern in these approaches involves three
key techniques, as illustrated in Algorithm 1. Assume the sparse
matrix A has 𝑅 rows and 𝐶 columns, and each time one tile of A
is processed by 𝑃 number of processing elements (PEs): 𝑅𝑡 and
𝐶𝑡 are the tile sizes along rows and columns, respectively. First,
non-zero elements within a tile of A are streamed into 𝑃 PEs from
multiple HBM channels; line 6 in Algorithm 1 traverses all the (𝑟, 𝑐)
indices that have a non-zero in the A tile. A distinct set of rows
is usually cyclically assigned to each PE (and each HBM channel),
with the aim of a more balanced workload partition. Second, the
input vector ®𝑥 is tiled and buffered on-chip as 𝑏𝑢𝑓 _𝑥 [𝐶𝑡] (size of𝐶𝑡 ,
line 5 in Algorithm 1), and the temporary output vector 𝑦_𝐴𝑥 [𝑅𝑡]
(size of 𝑅𝑡 , line 2) for computing A × ®𝑥 (a tile) is processed on-chip
(line 7), which limit the random accesses to on-chip memory only.
The input vector buffer 𝑏𝑢𝑓 _𝑥 [𝐶𝑡] is either duplicated (example in

https://github.com/SFU-HiAccel/HiSpMV
https://doi.org/10.1145/3626202.3637557
https://doi.org/10.1145/3626202.3637557
https://doi.org/10.1145/3626202.3637557

FPGA ’24, March 3–5, 2024, Monterey, CA, USA Manoj B. Rajashekar, Xingyu Tian, and Zhenman Fang

(a) Non-Zero Structure

9119

1 10 100 1,000 10,000
#Non-Zeros

R
o

w
 In

d
ex

9119

1 10 100 1,000 10,000
#Non-Zeros

R
o

w
 In

d
ex

(b) Row Distribution
Figure 1: Motivation: highly imbalanced non-zero distribu-
tion of the hangGlider_3 matrix in optimal control solver [5]

Algorithm 1) or dynamically shared by multiple PEs. Lastly, a tile
of the output vector ®𝑦 (tile size of 𝑅𝑡) is streamed in (−−−→𝑦_𝑖𝑛) and out
(−−−−→𝑦_𝑜𝑢𝑡), and partitioned in the same cyclic fashion as matrix A.

However, existing approaches [9, 20, 27] no longer work effec-
tively when accelerating imbalanced SpMV where the distribution
of non-zeros in the sparse matrix is highly imbalanced across differ-
ent rows. For instance, Figure 1 illustrates the non-zero distribution
of the ℎ𝑎𝑛𝑔𝐺𝑙𝑖𝑑𝑒𝑟_3 matrix used in the optimal control solver [5],
where one row contains nearly 1,000 times more non-zero elements
compared to the average number of non-zeros in other rows. Such
imbalanced matrices are commonly used in multiple application
domains such as optimal control solver [5], orbit transfer [4], circuit
simulation [8], and natural language processing [8], which creates
multiple new challenges for efficient SpMV acceleration.
1). Imbalanced Workload: For the highly imbalanced matrices

such as the example in Figure 1, the cyclic row assignment strat-
egy used in existing SpMV accelerators [9, 20, 27] (illustrated in
Algorithm 1) results in a severe workload imbalance among PEs,
which can lead to up to 280x slowdown for the computation
time of A × ®𝑥 in our evaluated imbalanced matrices.

2). Long-DistanceRAWDependency: Inside each PE, the floating-
point accumulation on the temporary output vector𝑦_𝐴𝑥 [𝑟%𝑅𝑡]
(line 7 in Algorithm 1) causes a read-after-write (RAW) depen-
dency when processing multiple non-zero elements from the
same row (i.e., same 𝑟 , different 𝑐) consecutively. Due to the long
latencies (10 clock cycles) involved in the floating-point addition
and read/write operations on the large buffer 𝑦_𝐴𝑥 , this RAW
dependency inhibits effective pipeline (leading to pipeline stalls)
to process non-zero elements from the same row.
Existing studies [9, 27] usually use re-ordering techniques to
schedule the processing of non-zeros from other rows to fill in
the pipeline gap (stalls) during the RAW dependency waiting
cycles. However, this no longer works effectively for highly
imbalanced matrices such as the example in Figure 1, as there
are significantly fewer non-zeros in other rows available to fill
in the pipeline stalls between the non-zeros in the densest row.

3). Input Dense Vector Buffering: In matrices with extremely
low density (e.g., 10−4 or lower), the off-chip memory access for
the input dense vector ®𝑥 buffer could become a new performance
bottleneck after the acceleration of SpMV, which is often over-
looked in prior studies [9, 20, 27]. While ping-pong buffering
looks like a straightforward solution, it necessitates additional

on-chip memory resources, which could result in a lower num-
ber of PEs and potentially compromise performance for other
matrices where computation is still the primary bottleneck.
In this paper, we propose HiSpMV to accelerate imbalanced

SpMV on HBM-equipped FPGAs, with the following novel features:
1). Hybrid Row Distribution Network: To achieve a more bal-

anced workload distribution, we design a hybrid row distribu-
tion network such that the same set of PEs can either work on
different rows (inter-row distribution) or collaboratively work
on a single row (intra-row distribution).

2). Fully Pipelined Floating-Point Accumulation: To address
the long-distance RAW dependency issue, we propose two tech-
niques to achieve fully pipelined floating-point accumulation.
First, to conceal the read/write latency to the large buffer 𝑦_𝐴𝑥 ,
we design a small register-based circular buffer in each PE
for fast access of intermediate accumulation result. This could
essentially reduce the dependency distance from 10 to 5. Second,
to hide the latency of the single floating-point adder for accu-
mulation, we implement a small adder chain (thanks to the
reduced dependency distance) to independently pre-add results
from the same row before accumulation, thus avoiding pipeline
stalls without the need of scheduling non-zeros from other rows.

3). Hybrid Buffering for Input Vector: We propose a hybrid
buffering technique to enable the same set of on-chip buffers to
be dynamically utilized by two PEs, either as private partitioned
buffers or as shared ping-pong buffers. As a result, it enables
the same HiSpMV accelerator to effectively hide the latency
bottleneck caused by input vector loading in very low-density
matrices (using shared ping-pong buffering), without affecting
the performance of denser matrices where computation is still
the primary bottleneck (using duplicate private buffering).

4). Automation Tool: To enable users to conduct fast design space
exploration on a given FPGA platform, we develop an automa-
tion tool to automatically generate the optimized HiSpMV de-
sign in Vitis high-level synthesis (HLS), where users can select
specific aforementioned optimizations and configure the de-
sign size (e.g., number of HBM channels) based on their needs.
The automation tool is integrated with the recent scalable task-
parallel HLS programming framework PASTA [22] to improve
the timing closure on modern multi-die FPGAs and leverage its
buffer channel feature to realize hybrid buffering.
We build HiSpMV on top of state-of-the-art open-source SpMV

accelerator Serpens [27] due to its superior performance among
existing studies, with the aforementioned new features to accelerate
imbalanced matrices. We evaluated the performance of HiSpMV
using a dataset comprising 10 balanced and 10 imbalanced matrices
from the widely used SuiteSparse [8], with the balanced matrices
chosen from prior SpMV studies [20, 27]. On the AMD-Xilinx Alveo
U280 HBM-based FPGA, our 128 PE design, HiSpMV-16, achieves
geomean speedups of 15.31x, 14.70x, and 19.26x over prior studies
Serpens-16 [27], HiSparse-PB [9], and Hi-Sparse-RI [9], respectively,
for imbalanced matrices. Even for balanced matrices, our HiSpMV-
16 outperforms others with geomean speedups of 1.18x, 3.97x, and
4.00x compared to Serpens-16, HiSparse-PB, and HiSparse-RI. Our
160 PE design, HiSpMV-20, achieves a geomean speedup of 12.82x
compared to Serpens-24 (192 PEs) [27] for imbalanced matrices,

HiSpMV: Hybrid Row Distribution and Vector Buffering for Imbalanced SpMV Acceleration on FPGAs FPGA ’24, March 3–5, 2024, Monterey, CA, USA

Table 1: Comparison of HiSpMV with recent SpMV accelerators on HBM-based FPGA

Accelerator #PEs
(P)

Imbalanced
Workload

RAW Dependency Input Vector Buffering GFLOPS
Distance Resolution PE Latency Balanced Imbalanced
Reduction Technique Access Hiding (mouse_gene) (trans5)

Serpens-16 [27] 128 X No Optimization Re-Ordering Private X 42.26 0.31(Distance: 10)

Serpens-24 [27] 192 X No Optimization Re-Ordering Private X 57.96 0.31(Distance: 10)

HiSparse-PB [9] 128 X IFWQ Additional Dynamic X 25 0.82(Distance: 7) Buffers Sharing

HiSparse-RI [9] 128 X IFWQ Re-Ordering Dynamic X 13.1 0.18(Distance: 7) Sharing

AMD design [20] 128 X N / A Dynamic Stall Dynamic X 38 N / ASharing

HiSpMV-16 (ours) 128 Hybrid Row Circular Buffer Adder Hybrid Hybrid 43.11 18.76Distribution (Distance: 5) Chain Buffering Buffering

HiSpMV-20 (ours) 160 Hybrid Row Circular Buffer Re-Ordering Hybrid Hybrid 50.56 16.73Distribution (Distance: 5) Buffering Buffering

and geomean speedups of 1.31x and 1.10x compared to the recent
AMD design [20] and Serpens-24 [27] for balanced matrices.

Moreover, HiSpMV-16 achieves geomean speedups of 4.27x and
8.30x over Intel MKL running on a 24-core Xeon Silver 4214 CPU, for
balanced and imbalancedmatrices, respectively. It also achieves a ge-
omean of 2.21x and 1.93x better performance perwatt (GFLOPS/watt)
compared to Nvidia cuSparse running on the GTX 1080ti GPU, for
balanced and imbalanced matrices, respectively.

2 MOTIVATION AND HIGH-LEVEL IDEAS
In this section, we present an in-depth analysis of new challenges in
accelerating imbalanced SpMV and our high-level ideas to address
those challenges. Table 1 summarizes novel contributions of our
HiSpMV design with a comparison to three state-of-the-art (bal-
anced) SpMV accelerator designs on HBM-based FPGAs, including
Serpens [27], HiSparse [9], and the latest AMD design [20].

2.1 Imbalanced Workload
2.1.1 Analysis of the Problem: First of all, we analyze how much
impact the workload imbalance can have on the performance of
existing SpMV accelerators [9, 20, 27] that cyclically assign rows
onto 𝑃 number of PEs. Assume the input matrix has 𝑅 rows and 𝐶
columns, 𝑁𝑁𝑍 is the number of non-zeroes, and the density 𝜌 of
the matrix is 𝜌 = 𝑁𝑁𝑍/(𝑅 ∗𝐶). Using the cyclic row assignment,
each PE gets 𝑅/𝑃 rows. To illustrate the inefficiency in prior SpMV
accelerators, we define the matrix imbalance ratio 𝛿 as:

𝛿 = 𝑎𝑐𝑡𝑢𝑎𝑙_𝑃𝐸_𝑙𝑜𝑎𝑑 / 𝑖𝑑𝑒𝑎𝑙_𝑃𝐸_𝑙𝑜𝑎𝑑 (2)
The ideal PE workload is evenly divided among all the PEs:

𝑖𝑑𝑒𝑎𝑙_𝑃𝐸_𝑙𝑜𝑎𝑑 = 𝑁𝑁𝑍/𝑃 = 𝑅 ∗𝐶 ∗ 𝜌/𝑃 (3)
In the worst case, all the non-zeros could be allocated to one PE.
But since a PE only gets 𝑅/𝑃 rows, it can only have a maximum of
𝑅 ∗𝐶/𝑃 non-zeroes. Hence, the upper limit for actual PE load is:

𝑎𝑐𝑡𝑢𝑎𝑙_𝑃𝐸_𝑙𝑜𝑎𝑑 ≤ 𝑀𝑖𝑛(𝑁𝑁𝑍, 𝑅 ∗𝐶/𝑃) (4)
If we substitute equation 3 and 4 in equation 2, we get:

𝛿 ≤ 𝑀𝑖𝑛(𝑃, 1/𝜌) (5)
From equation 5, we observe that: 1) as the matrix density 𝜌

becomes lower, the imbalance ratio’s upper bound becomes higher;
2) having more PEs also increases the imbalance ratio upper bound.
We have profiled a set of sparse matrices from the widely used
SuiteSparse [8] with a different imbalance ratio 𝛿 (Table 2 in Sec-
tion 4.1). For imbalanced matrices with 𝛿 ≥ 2, state-of-the-art

SpMV accelerator Serpens-16 [27] only achieves a geomean of 1.22
GFLOPS, which is about 27.2x lower than that for balanced matrices.

2.1.2 Proposed Solution: To address this imbalanced workload is-
sue, we propose a novel hybrid row distribution network to
allow the same set of PEs to work in two different modes: 1) inter-
row distribution where the PEs work on different rows assigned
cyclically, and 2) intra-row distribution where all the PEs collec-
tively work on the same row. Its detailed design and implementation
will be presented in Section 3.3 and 3.4.

2.2 Long-Distance RAW Dependency
2.2.1 Analysis of the Problem: In line 7 of Algorithm 1, a floating-
point (FP) accumulation on 𝑦_𝐴𝑥 [𝑟%𝑅𝑡] occurs. In FPGAs lacking
dedicated hardware for FP addition, soft IPs require multiple clock
cycles for this addition. Moreover, read and write latencies are
incurred for on-chip buffers like BRAM and URAM.

Consider a PE load scenario with 𝑎00, 𝑎01, 𝑎02, 𝑎09, 𝑎12, 𝑎23, where
𝑎𝑟𝑐 represents the value in the 𝑟𝑡ℎ row and 𝑐𝑡ℎ column of the sparse
matrix 𝐴 in Figure 2(a). In the second iteration, a read-after-write
(RAW) dependency occurs on 𝑦_𝐴𝑥 [0], preventing the pipeline
from achieving an initiation interval (II) of 1. The total latency,
including reading, writing, and accumulation, defines the depen-
dency distance (𝑑𝑑) across loop iterations. Maintaining element
order would introduce 𝑑𝑑 − 1 pipeline bubbles between elements
of the same row, severely impacting performance.

Prior studies such as Serpens [27] and HiSparse-RI [9] adopt
an out-of-order scheduling, shown in Figure 2(b), to schedule non-
zeros from other rows to fill pipeline gaps. While effective for bal-
ancedmatrices, this method faces challenges with imbalancedmatri-
ces like hangGlider_3 in Figure 1: when dealing with a much denser
row, there are not enough non-zeros available from other rows to
fill this pipeline gap. On the other hand, HiSparse-PB [9] introduces
additional 𝑦_𝐴𝑥 buffer copies to resolve this issue, which incurs
more on-chip buffer overhead. The latest AMD design [20] dynam-
ically stalls the pipeline using a hazard resolution back-pressure
unit, which does not effectively avoid the stalls.

Another alternative is to reduce this dependency distance 𝑑𝑑 ,
which is crucial to minimize pipeline gaps. While FP addition la-
tency is unavoidable in FPGAs without hardened FP IPs, read/write
latency could be eliminated by storing a few recent 𝑦_𝐴𝑥 results
in local registers. For example, HiSparse [9] uses an in-flight-wait-
queue (IFWQ) to store results in local registers and reduces 𝑑𝑑 from

FPGA ’24, March 3–5, 2024, Monterey, CA, USA Manoj B. Rajashekar, Xingyu Tian, and Zhenman Fang

Rd
y_Ax[0]

PE Load: a00, a01, a02, a09, a12, a23

Acc
y_Ax[0] += a00.x[0]

Wr
y_Ax[0]

RAW
Dependency

Dependency Distance
(a) RAW dependency and dependency distance

a01

a12

(b) Out of order scheduling

a00

#Bubbles =
Dependency Distance - 3

Rd
y_Ax[0]

Acc
y_Ax[0] += a01.x[1]

Wr
y_Ax[0]

Rd
y_Ax[0]

Acc
y_Ax[0] += a00.x[0]

Wr
y_Ax[0]

Rd
y_Ax[1]

Acc
y_Ax[1] += a12.x[2]

Wr
y_Ax[1]

Rd
y_Ax[2]

Acc
y_Ax[2] += a23.x[3]

Wr
y_Ax[2]

a23

Rd
y_Ax[0]

Acc
y_Ax[0] += a01.x[1]

Wr
y_Ax[0]

a00

a01

Figure 2: RAW dependency for floating-point accumulation
on 𝑦_𝐴𝑥 [𝑟%𝑅𝑡] and out-of-order scheduling to avoid stalls

10 (in Serpens [27]) to 7. However, to ensure correct values are
used, it needs to check whether the required result is in the queue
by comparing row indices with every single element in the queue.
This leads to unnecessary resource overhead.

2.2.2 Proposed Solution: In HiSpMV, we propose two novel tech-
niques to address this long-distance RAW dependency. First, we
design a register-based circular buffer to reduce the dependency
distance to 5. Compared to an IFWQ in HiSparse [9], it only requires
a row index check in one location in the buffer to ascertain the
presence of a 𝑦_𝐴𝑥𝑖 value. Second, we employ an adder chain to
independently pre-add A × ®𝑥 product results during the last 𝑑𝑑
iterations (including the current 𝑖𝑡ℎ iteration) while waiting for the
accumulation of 𝑦_𝐴𝑥𝑖−𝑑𝑑 to finish. In the next cycle, we can add
𝑦_𝐴𝑥𝑖−𝑑𝑑 (retrieved from the circular buffer) with the pre-added
result to get the new accumulation result 𝑦_𝐴𝑥𝑖 . Therefore, we can
achieve full pipelining of the FP accumulation process without the
need for out-of-order scheduling or bubbles in the pipeline. The
detailed design and implementation will be presented in Section 3.5.

2.3 New Bottlenecks on Dense Vectors
2.3.1 Analysis of the Problem: After streaming the sparse matrix A
and optimizing the compute of A× ®𝑥 , we profile the execution cycle
breakdown for each component of the SpMV accelerator described
in Algorithm 1. As shown in Figure 3, an interesting observation
was made: for very low-density matrices (e.g., 𝜌 ≤ 10−4), two
new bottlenecks arise in 1) loading the input dense vector ®𝑥 (line
5 in Algorithm 1), and 2) streaming and computing the output
dense vector −−−−→𝑦_𝑜𝑢𝑡 (line 9 in Algorithm 1). Unfortunately, these
new bottlenecks are often overlooked in prior studies [9, 20, 27].

For the first bottleneck, ping-pong buffering looks like a straight-
forward solution to hide the off-chip access latency of loading the
input vector ®𝑥 . However, it doubles on-chip memory resource usage
for buffering ®𝑥 , which could result in a lower number of PEs and
thus potentially compromise performance for other matrices where
computation is still the primary bottleneck. For the second bottle-
neck, it could be easily addressed by using more HBM channels
for streaming −−−→𝑦_𝑖𝑛 and −−−−→𝑦_𝑜𝑢𝑡 , and duplicating the PEs to compute
−−−−→
𝑦_𝑜𝑢𝑡 , which will be detailed in Section 3.1.

96.4
81.9
96.2
93.7
26.9

91.1
77.3
85.5
98.0
49.6
39.9

19.5
48.9
30.0

24.8
44.4
36.9

21.2
33.7
20.8

0% 20% 40% 60% 80% 100%

M1
M2
M3
M4
M5
M6
M7
M8
M9

M10
M11
M12
M13
M14
M15
M16
M17
M18
M19
M20

Load x Init y_Ax Compute y_Ax Compute y_out = α.y_Ax + β.y_in

Figure 3: Execution cycle breakdown for each component in
the well-optimized SpMV accelerator

2.3.2 Proposed Solution: To address the first bottleneck of loading
the input dense vector ®𝑥 , we propose a hybrid buffering technique
to enable the same set of on-chip buffers to be dynamically utilized
by two PEs in two modes. In the private partitioned buffering
mode, loading the two input vector buffers and computing A × ®𝑥
happen sequentially; but each PE has access to its own private
buffer copy. In the ping-pong buffering mode, while it loads one
input vector buffer, it computes on the other input vector buffer in
parallel; but two PEs have to share one input vector buffer during
the computation. As a result, the same HiSpMV accelerator can
effectively work for all matrices whether the loading of the input
vector becomes a bottleneck or not.

It is non-trivial to implement this hybrid buffering in the original
Vitis HLS, which would require extensive code transformations.
In this paper, we implement the hybrid buffering by leveraging
the novel buffer channel feature proposed in the recent scalable
task-parallel HLS programming framework PASTA [22]. Its detailed
design and implementation will be presented in Section 3.2.

3 HISPMV DESIGN AND IMPLEMENTATION
3.1 HiSpMV Architecture Overview
We build HiSpMV based on state-of-the-art open-source SpMV
accelerator Serpens [27], with the support of novel features sum-
marized in Section 2 and an automation tool support in Section 3.6.
Figure 4 presents an overview of the HiSpMV architecture.

Initially, we divide the loading of input vectors into a distinct
module, isolating it from the processing engine group (PEG), and
introduce a buffer channel to facilitate the communication between
these two modules and implement our hybrid buffering technique.
We relocate the accumulation and output buffer from the PEG into
their dedicated 𝑦_𝐴𝑥 handler module. Additionally, we introduce
new modules, including the adder chain groups (ACG) and a hybrid
row distribution network between the PEGs and 𝑦_𝐴𝑥 handlers.

We use a single HBM channel to load input dense vector ®𝑥 , then
chain broadcast to all the load modules that buffer ®𝑥 on-chip. We
employ a total of 𝑁 channels for streaming sparse matrix 𝐴, with
each channel serving 4 PEGs where each PEG includes 2 PEs. Fur-
thermore, we have𝑀 channels designated for streaming in −→𝑦𝑖𝑛 and

HiSpMV: Hybrid Row Distribution and Vector Buffering for Imbalanced SpMV Acceleration on FPGAs FPGA ’24, March 3–5, 2024, Monterey, CA, USA

Read A
Ch 0

Read x

Read y_in ch 0

Write y_out ch 0

PEG
0

ACG
0

y_Ax
Handler

0

A
rb

ite
r

Compute y_out
0

y_Ax
Handler
8*N - 1

Load 0

PEG
3

ACG
3 Load 3

Read A
Ch N-1

PEG
0

ACG
0Load 0

PEG
3

ACG
3Load 3

y_Ax
Handler

1
Hybrid Row
Distribution

Network

FIFO Channel Buffer Channel

Read y_in ch M-1

Write y_out ch M-1
Compute y_out

M-1

PEG: PE Group of 2 PEs ACG: Adder Chain Group

Figure 4: HiSpMV architecture overview

streaming out −−−→𝑦𝑜𝑢𝑡 to improve its performance. All these channels
are 512 bits wide, a choice made due to its optimal performance [25].

The PEs perform the multiplication of non-zero elements 𝑎𝑟𝑐
with 𝑥𝑐 in the input vector buffer, described as 𝑎𝑟𝑐 ∗ 𝑏𝑢𝑓 _𝑥 [𝑐%𝐶𝑡]
in line 7 of Algorithm 1. PEs also decode to which 𝑦_𝐴𝑥 handler
(i.e., bank ID) the multiplication product should be routed, based
on the encoded inter-row and intra-row distribution info (encoded
during preprocessing). Based on the decoded bank ID, a hybrid row
distribution network routes the product to the corresponding 𝑦_𝐴𝑥
handler for accumulation. Note each PE corresponds to one 𝑦_𝐴𝑥
handler, so there are 8 × 𝑁 𝑦_𝐴𝑥 handlers in total.

Adder chains are optionally placed after the PEGs to indepen-
dently pre-add products before they are routed to the𝑦_𝐴𝑥 handlers
to avoid pipeline stalls caused by the long-distance RAW depen-
dency. In addition, each 𝑦_𝐴𝑥 handler also employs the register-
based circular buffer to reduce the dependency distance to 5.

Upon computing 𝑦_𝐴𝑥 [𝑅𝑡] = A × ®𝑥 , it streams in −→𝑦𝑖𝑛 , computes
−−−→𝑦𝑜𝑢𝑡 (line 9 of Algorithm 1), and streams out −−−→𝑦𝑜𝑢𝑡 .

3.2 Hybrid Buffering for Input Vector
3.2.1 Hybrid Buffering Using PASTA Buffer Channels: The recent
scalable task-parallel HLS programming framework PASTA [22]
introduced support for buffer channels based on top of prior TAPA
and Autobridge framework [13, 14]. We leverage this task-parallel
programming and buffer channel support to implement our novel
hybrid buffering technique in HiSpMV, which would require ex-
tensive coding efforts to implement using the original Vitis HLS.
Specifically, PASTA provides an explicit acquireAPI and an implicit
release API to easily control the buffer channel access.

Algorithm 2 shows the pseudo-code to implement our hybrid
buffering. We separate loading 𝑥 and PEG computation into indi-
vidual PASTA tasks, which communicate with each other via an
array of two buffer channels (𝑏𝑢𝑓 _𝑐ℎ[2] declared in line 2).
1). In ping-pong buffering mode, while the load task acquires one

buffer channel and writes it (lines 5-8), the PEG task can acquire
the other buffer channel and reads it (lines 17-20). This allows

Algorithm 2 Pseudo-code of load and PEG w/ hybrid buffering
1: tapa::buffer 𝑏𝑢𝑓 _𝑐ℎ[2] ⊲ PASTA supports acquire & release
2: load task: 𝑖 ← 0
3: for (𝑟 = 0; 𝑟 < 𝑅; 𝑟 = 𝑟 + 𝑅𝑡) do
4: for (𝑐 = 0; 𝑐 < 𝐶 ; 𝑐 = 𝑐 +𝐶𝑡) do
5: if 𝑃𝐼𝑁𝐺_𝑃𝑂𝑁𝐺 then
6: 𝑏𝑢𝑓 _𝑥 ← acquire(𝑏𝑢𝑓 _𝑐ℎ[𝑖%2])
7: write to 𝑏𝑢𝑓 _𝑥 [𝐶𝑡]
8: release(𝑏𝑢𝑓 _𝑐ℎ[𝑖++%2])
9: else
10: 𝑏𝑢𝑓 _𝑥0 ← acquire(𝑏𝑢𝑓 _𝑐ℎ[0])
11: 𝑏𝑢𝑓 _𝑥1 ← acquire(𝑏𝑢𝑓 _𝑐ℎ[1])
12: write to 𝑏𝑢𝑓 _𝑥0 [𝐶𝑡], 𝑏𝑢𝑓 _𝑥1 [𝐶𝑡]
13: release(𝑏𝑢𝑓 _𝑐ℎ[0], 𝑏𝑢𝑓 _𝑐ℎ[1])
14: PEG task: 𝑖 ← 0
15: for (𝑟 = 0; 𝑟 < 𝑅; 𝑟 = 𝑟 + 𝑅𝑡) do
16: for (𝑐 = 0; 𝑐 < 𝐶 ; 𝑐 = 𝑐 +𝐶𝑡) do
17: if 𝑃𝐼𝑁𝐺_𝑃𝑂𝑁𝐺 then ⊲ Both PEs share a channel
18: 𝑏𝑢𝑓 _𝑥 ← acquire(𝑏𝑢𝑓 _𝑐ℎ[𝑖%2])
19: 𝑃𝐸0 , 𝑃𝐸1 read 𝑏𝑢𝑓 _𝑥 [𝐶𝑡]
20: release(𝑏𝑢𝑓 _𝑐ℎ[𝑖++%2])
21: else ⊲ Each PE has a private channel
22: 𝑏𝑢𝑓 _𝑥0 ← acquire(𝑏𝑢𝑓 _𝑐ℎ[0])
23: 𝑏𝑢𝑓 _𝑥1 ← acquire(𝑏𝑢𝑓 _𝑐ℎ[1])
24: 𝑃𝐸0 read 𝑏𝑢𝑓 _𝑥0 [𝐶𝑡], 𝑃𝐸1 read 𝑏𝑢𝑓 _𝑥1 [𝐶𝑡]
25: release(𝑏𝑢𝑓 _𝑐ℎ[0], 𝑏𝑢𝑓 _𝑐ℎ[1])

the two tasks to run in parallel and two PEs to share one buffer
channel during the computation.

2). In private partitioned buffering mode, the load task first acquires
both buffer channels and writes them (lines 10-13). Only after
the load task releases both buffer channels, the PEG task can
acquire them and read them (lines 22-25). This allows each PE
to access its own private buffer channel, but the load and PEG
tasks run sequentially.

The buffering mode can be dynamically switched by configuring
the 𝑃𝐼𝑁𝐺_𝑃𝑂𝑁𝐺 flag (lines 5 and 17) based on the bottleneck.
3.2.2 When to Use Each Mode: When two PEs share one buffer
channel in the ping-pong bufferingmode, it can no longer guarantee
that they will operate without stalls. While we can dynamically
stall/pause the PE pipeline (still with II=1), it impacts the compute
time. Our buffer channel width is set to 512 bits, meaning each cycle
it can access 16 floating-point numbers packed together. Therefore,
if the accessed values by two PEs are in the same pack, they can
work in parallel; otherwise, a stall is required between them. Let
𝑡𝑐 denote the compute time without stalls (PEG task with private
buffer), 𝑡𝑏 denote the buffer time (load task), and 𝑡 ′𝑐 denote the
compute time in the worst case where a stall occurs in every cycle,
doubling the compute time, i.e., 𝑡 ′𝑐 = 2.𝑡𝑐 .

Let 𝑡𝑠 and 𝑡𝑝 represent the total time for buffering and computing
in private partitioning and ping-pong buffering modes, then:

𝑡𝑠 = 𝑡𝑐 + 𝑡𝑏 ; 𝑡𝑝 = 𝑀𝑎𝑥
(
𝑡 ′𝑐 , 𝑡𝑏

)
= 𝑀𝑎𝑥 (2.𝑡𝑐 , 𝑡𝑏) (6)

We can decide when to ping-pong buffering with equation 7:

Buffer method =

{
ping-pong buffering if 𝑡𝑝 ≤ 𝑡𝑠

private buffering otherwise
(7)

By substituting equation 6 in equation 7 and simplifying it, we get

Buffer method =

{
ping-pong buffering if 𝑡𝑐 ≤ 𝑡𝑏

private buffering otherwise
(8)

Note when 𝑡𝑐 > 𝑡𝑏 , ping-pong buffering may still get better perfor-
mance as two PEs may access values in the same 512-bit pack in
one cycle. However, such behavior is dynamic and it is infeasible

FPGA ’24, March 3–5, 2024, Monterey, CA, USA Manoj B. Rajashekar, Xingyu Tian, and Zhenman Fang

A in
64

a valuecol idrow id SRRETE

32b13b1b1b1b16b

Xa value

x[col id]

Product
32

3
Flags

Row Idx
16

128 64

64

PE 0
A in 16

3

32

Flags

PE 1

Row Idx 0
Product 0

x
Load 0

BRAM
Buffer
Ch 0

BRAM
Buffer
Ch 1

512b

BRAM
Buffer Ch

PEG

Bank
Idx

Decoder

16
4

32

Flags
Row Idx0

8 Bank Idx0

16
4

32

Flags
Row Idx1

8 Bank Idx1

Adder
Chain

0

Adder
Chain

1

60

60

Product 1

Product 0

ACG

32 Product 1
16 Row Idx 1

TE: Tile End, RE: Row End, SR: Split Row

Figure 5: Architecture of the processing element (PE) and PE group (PEG) design in HiSpMV

to derive the actual compute time. Therefore, we conservatively
assume the worst case and choose private buffering when 𝑡𝑐 > 𝑡𝑏 .

3.3 Processing Element Group (PEG) Design
For each read A channel that is 512-bit wide, it serves 4 PEGs. So
each cycle, as shown in Figure 5, each PEG reads in 128-bit ofA, and
each PE inside the PEG reads in 64-bit ofA. This 64-bit data includes
the 16-bit row id 𝑟 , a 13-bit column id 𝑐 , and a 32-bit non-zero value
𝑎𝑟𝑐 , as well as three flag bits (Tile End, Row End, and Split Row).
Using the column id 𝑐 , each PE fetches the corresponding (32-bit)
𝑥𝑐 value from the ®𝑥 buffer (𝑏𝑢𝑓 _𝑥 [𝐶𝑡]) and performs the floating-
point multiplication of 𝑎𝑟𝑐 .𝑥𝑐 . The product, row index, and flags
are then sent to the bank index decoder. Note that the ®𝑥 buffer is
set to 512-bit wide for two reasons: 1) it achieves the best off-chip
bandwidth during the load from the HBM channel [25]; 2) in the
ping-pong buffering mode, it reduces the actual PE pipeline stalls
since two PEs may share two values in the same 512-bit pack.

3.3.1 Bank Index Decoder: The bank index determines the specific
𝑦_𝐴𝑥 handler the product should be routed to for accumulation,
which is encoded during preprocessing based on the intra-row and
inter-row distribution. Basically, no special encoding is needed for
inter-row distribution, the row indices do not change and the bank
index for the𝑦_𝐴𝑥 handler is the same as the PE index. For an intra-
row distribution that works on the same row 𝑟 , for every pair of
adjacent non-zeros 𝑎𝑟𝑐0 and 𝑎𝑟𝑐1 , we encode their bank index in the
row id of 𝑎𝑟𝑐0 and their row index in the row id of 𝑎𝑟𝑐1 . Accordingly,
the decoder logic in Figure 5 works as follows:
if (SR): // Split Row: intra-row distribution

bank_idx0, bank_idx1 = row_idx0, row_idx0
row_idx0, row_idx1 = row_idx1, row_idx1

else: // inter-row distribution
bank_idx0, bank_idx1 = PE_idx0, PE_idx1
row_idx0, row_idx1 = row_idx0, row_idx1

Besides the 3 flags received from the PE, the bank index decoder
also sends an additional flag called "Last," indicating termination for
other tasks. The specific functionality of these flags is not crucial
to the novelty of the work and is omitted due to space constraints.

3.4 Hybrid Row Distribution Network
Based on the decoded bank ID, a hybrid row distribution network
routes the product from each PE to its corresponding 𝑦_𝐴𝑥 handler
for accumulation. Since there are 8×𝑁 PEs and 8×𝑁 𝑦_𝐴𝑥 handlers
in total, this network has 8 × 𝑁 inputs and 8 × 𝑁 outputs. To make
it easy for placement and routing, we build this network based on
small blocks with 2 inputs and 2 outputs. Figure 6a illustrates the
functionality of an example 8x8 network in two modes.

i) Inter-row distribution: When PEs work on separate rows (cycli-
cally), all the blocks forward packets directly from inputs 0 and 1
to outputs 0 and 1, respectively, without any additional processing.

ii) Intra-row distribution: When PEs work on the same row, the
network first accumulates all products using a reduction tree and
then routes the sum to the corresponding 𝑦_𝐴𝑥 handler using a
reversed reduction tree; the route is highlighted in red in Figure 6a.

Shown in Figure 6a, the network is constructed using the follow-
ing small blocks. Adder blocks ’A’ and ’A*’ add the results from
two inputs and direct the sum to one output 1 and 0, respectively.
The other output will just be a dummy packet. Switch blocks ’S’
switch the outputs, forwarding results from input 0 to output 1 and
from input 1 to output 0. Routing blocks ’R’ and ’R*’ facilitate
proper 𝑦_𝐴𝑥 handler routing: they route input 1 for ’R’ and input
0 for ’R*’ to either output 0 or 1 based on the target 𝑦_𝐴𝑥 handler
(bank index). Fused block ’X’ combines the functionalities of both
adder and routing blocks: it adds the results from two inputs and
routes the sum to the appropriate output (0 or 1) based on the target
𝑦_𝐴𝑥 handler (bank index).
3.4.1 When to Use Each Distribution Mode: In the preprocessing,
we decide in which mode (inter-row or intra-row distribution)
each row should be processed to achieve a good balance. An initial
imbalance ratio 𝛿 is first calculated assuming all rows are assigned in
the inter-rowmode. Then we iteratively refine 𝛿 until the decrease
on 𝛿 between two consecutive iterations becomes marginal, i.e.,
less than a predefined threshold Δ (Δ = 0.01 in our design). Within
each iteration, the row with the highest number of non-zeros in
the inter-rowmode is identified. A new 𝛿 ′ is then recalculated for
all remaining rows in the inter-row mode without considering
the identified row. If 𝛿 − 𝛿 ′ < Δ, stop the process. Otherwise, the
identified row is moved from inter-rowmode to intra-rowmode.
Then it updates 𝛿 = 𝛿 ′ and continues to the next iteration.

3.5 Pipelined Floating-Point Accumulation
To achieve a fully pipelined floating-point accumulation, we employ
a combination of a register-based circular buffer and an adder chain.
3.5.1 Circular Buffer: Accumulating directly on buffers like URAM
or BRAM introduces read/write latencies. Therefore, as shown in
Figure 6b.(ii), we utilize a local register-based circular buffer to
store temporary accumulation values to avoid such latencies. As
presented in Section 2.2, one common approach is to schedule
𝑑𝑑 − 1 (𝑑𝑑 : dependency distance) non-zeros from other rows to fill
the pipeline gap during the floating-point accumulation. Therefore,
the size of this circular buffer is set to be 𝑑𝑑 , so that it can buffer
𝑑𝑑 − 1 accumulation results for other rows and one for the current

HiSpMV: Hybrid Row Distribution and Vector Buffering for Imbalanced SpMV Acceleration on FPGAs FPGA ’24, March 3–5, 2024, Monterey, CA, USA

A

S

R

R*

R

R*

R

R*

A*

A

A*

A

A*

S

S

S

X

+

+
+

+

+
+

+

(i) Inter-row

(ii) Intra-row

(a) 8x8 hybrid row distribution network

 y_Ax
URAM
Buffer

+

5

1
0

FP Adder with
latency = 4

Register-Based
Circular-Buffer

1

==

0
1

0 +

Row Idxi-1

4

Row Idx

write
data
write

address

==

Row Idx

read
address

read
data

16

4

32

Flags

Row Idx
8 Bank Idx

Product

1

0

Connected
via Hybrid

Row
Distribution

Network

(i) Adder Chain in ACG (ii) Accumulator in y_Ax Handler

+

dd-1 = 4

yi-dd

yi

Prodi

Prodi-1

Prodi-(dd-1)
 S

hi
ft

R
eg

is
te

rs

dd = dependency distance

(b) Fully pipelined floating-point accumulation with adder chain and circular buffer

Figure 6: (a) An example 8x8 hybrid row distribution network. 𝐴,𝐴* are adder blocks, 𝑅, 𝑅* are routing blocks, 𝑆 is switch block,
and 𝑋 is fused block. (b) Fully pipelined floating-point accumulation with adder chain and circular buffer.

row that started 𝑑𝑑 cycles ago. When a new product for the current
row comes, it knows the prior accumulation result for this row
started 𝑑𝑑 cycles ago (if it is not a new row) and can precisely find
its location in the circular buffer. Thus, it only needs one row index
check to confirm if it is a new row: if not, it can use the result
retrieved from the circular buffer to add with the new product;
otherwise, it starts the accumulation for a new row.

Vitis HLS synthesizes the floating-point adder with a minimum
latency of 4 cycles, and an additional cycle is needed to write the
output, resulting in a total dependency distance of 𝑑𝑑 = 5.

3.5.2 Adder Chain: Here we consider a scenario when products
sent from the PEs belong to the same row and there is no out-of-
order scheduling. Let 𝑃𝑟𝑜𝑑𝑖 be the 𝑖𝑡ℎ product in that row and 𝑦𝑖 be
the accumulated sum of all these products up to that iteration. This
time the circular buffer could store 𝑦 results from the same row.

The key idea here is to employ an adder chain to independently
pre-addA×®𝑥 product results during the last𝑑𝑑 iterations (including
the current 𝑖𝑡ℎ iteration) while waiting for the accumulation of
𝑦𝑖−𝑑𝑑 to finish. Let us denote the pre-added result 𝑄 of the adder
chain as: 𝑄 =

∑𝑖
𝑖−(𝑑𝑑−1) 𝑃𝑟𝑜𝑑𝑖 . Then in the next cycle, we can

retrieve 𝑦𝑖−𝑑𝑑 that started 𝑑𝑑 cycles ago from the circular buffer,
and add it with the pre-added result𝑄 to get the new accumulation
result 𝑦𝑖 = 𝑄 + 𝑦𝑖−𝑑𝑑 . As a result, we can achieve full pipelining
of the floating-point accumulation process without the need for
out-of-order scheduling or bubbles in the pipeline.

To implement this adder chain in hardware, as shown in Fig-
ure 6b.(i), we employ 𝑑𝑑 −1 = 4 shift registers along with 𝑑𝑑 −1 = 4
adders. The shift registers are used as temporary memory to hold
products from the previous 𝑑𝑑 − 1 iterations. These products are
then summed together using an adder chain consisting of 𝑑𝑑 − 1
adders. Additionally, we store the row indices of the products, en-
suring that while adding previous products, only the ones belonging
to the current row that we are operating on are included.

3.6 Automation Tool
Shown in Figure 7, we develop a user-friendly automation tool to
generate optimized HiSpMV accelerators on HBM-based FPGAs.

FPGA Platform Details
resource &

#HBM_channels

Configurations
w/ optional

optimization flags

PASTA
Framework

(invoking Vitis)

HiSpMV Full
Design in

PASTA
Host Code

Optimized
FPGA

Accelerator

HiSpMV Component
Template in PASTA
Tasks & Channels

Code Generator

USER INPUT Our Tool

Existing
Tool

Figure 7:HiSpMVautomationflow, integratedwith the recent
PASTA [22] programming framework

Given FPGA platform information, including available resources,
the number of HBM channels, and user configurations, our code
generator can generate HiSpMV designs for any number of sparse
matrix (A) and output vector (−−−→𝑦_𝑖𝑛 and −−−−→𝑦_𝑜𝑢𝑡) channels (denoted
as M and N, respectively). Additionally, users have the flexibility to
opt for designs with or without each of our presented optimizations
to perform design space exploration and gain architecture insights.
These parameters will be decided by our code generator based on
available resources, if not specified by users.

Utilizing the PASTA [22] task-parallel HLS programming model,
including APIs for defining tasks and buffer and FIFO channels, we
build each type of the HiSpMV components as a template. When
scaling up or down, only the quantity of these components and
their connections change. With profiled resource utilization metrics
of each component, our code generator can make a highly reliable
estimation for the full design. Users can also customize the con-
figuration based on the estimation. Finally, the optimized HiSpMV
accelerator is built with the PASTA framework, which performs
coarse-grained floorplanning and pipelining optimizations before
invoking Vitis to generate the bitstream.

Building on top of the PASTA programming framework makes it
easier to 1) realize hybrid buffering using its buffer channel feature,
2) scale the design based on the task-parallel programming model,
and 3) improve the timing closure on modern multi-die FPGAs.

FPGA ’24, March 3–5, 2024, Monterey, CA, USA Manoj B. Rajashekar, Xingyu Tian, and Zhenman Fang

Table 2: Benchmark matrices and their properties (size, number of non-zeros, density, and imbalance ratio), speedup breakdown
of HiSpMV-16 over Serpens-16, and HiSpMV-16 performance and bandwidth

Matrix Properties Speedup Breakdown (based-on Cycle Counts) Performance Bandwidth

ID Matrix Name Size
(Rows=Cols) NNZ Density

(𝜌)
Imb.

Ratio (𝛿)
Row
Distri.

Reduced
Dep. Dist.

Adder
Chain

Comp.
y_out

Hybrid
Buffer GFLOPS GB/S

Balanced Matrices Geomean→ 1.00 1.15 1.00 1.05 1.01 39.14 176.90
M1 TSOPF_RS_b2383 38,120 16,171,169 1.11E-02 1.01 1.00 1.13 1.00 1.01 1.00 50.75 207.09
M2 crystk03 24,696 1,751,178 2.87E-03 1.01 1.00 1.16 1.00 1.05 1.00 45.51 186.95
M3 nd6k 18,000 6,897,316 2.13E-02 1.05 1.00 1.11 1.00 1.01 1.00 49.05 207.10
M4 crankseg_2 63,838 14,148,858 3.47E-03 1.07 1.00 1.52 1.00 1.02 1.00 47.45 203.48
M5 ford2 100,196 544,688 5.43E-05 1.08 1.00 1.05 1.00 1.22 1.12 21.54 100.52
M6 thread 29,736 4,444,880 5.03E-03 1.09 1.00 1.18 1.00 1.02 1.00 45.69 200.06
M7 PFlow_742 742,793 37,138,461 6.73E-05 1.14 1.00 1.00 1.00 1.06 1.00 39.06 180.89
M8 Si41Ge41H72 185,639 15,011,265 4.36E-04 1.21 1.00 1.08 1.00 1.04 1.00 39.66 192.40
M9 mouse_gene 45,101 28,967,291 1.42E-02 1.21 1.00 1.01 1.00 1.01 1.00 43.17 209.32
M10 soc-Pokec 1,632,803 30,622,564 1.15E-05 1.22 1.00 1.38 1.00 1.09 1.00 23.86 125.54

Imbalanced Matrices Geomean→ 9.15 1.33 1.18 1.20 1.10 18.72 104.60
M11 c-52 23,948 202,708 3.53E-04 2.28 3.51 1.42 1.03 1.18 1.00 22.27 114.22
M12 language 399,130 1,216,334 7.64E-06 2.29 2.26 1.17 1.03 1.25 1.32 16.17 88.99
M13 analytics 303,813 2,006,126 2.17E-05 3.05 1.31 2.72 2.12 1.14 1.00 14.29 132.17
M14 nxp1 414,604 2,655,880 1.55E-05 4.39 9.81 1.03 1.00 1.21 1.04 22.05 103.68
M15 poli_large 15,575 33,033 1.36E-04 4.40 1.97 1.48 1.45 1.23 1.19 12.38 107.41
M16 lowThrust_7 17,378 211,561 7.01E-04 5.05 17.52 1.02 1.01 1.16 1.00 27.73 120.16
M17 hangGlider_3 10,260 92,703 8.81E-04 13.47 44.17 1.02 1.01 1.19 1.00 24.63 106.72
M18 boyd2 466,316 1,500,397 6.90E-06 18.40 16.63 1.42 1.29 1.24 1.27 15.51 88.78
M19 trans5 116,835 749,800 5.49E-05 20.30 34.08 1.33 1.14 1.20 1.00 19.17 101.87
M20 ASIC_680k 682,862 2,638,997 5.66E-06 32.82 46.74 1.23 1.07 1.24 1.28 18.54 90.35

4 EVALUATION
4.1 Experimental Setup
We extensively compare the performance of our design with state-
of-the-art open-source SpMV FPGA designs such as Serpens [27]
andHiSparse [9], as well as optimized IntelMKL library onCPU [18]
and Nvidia cuSparse library on GPU [26]. We evaluate them using
a diverse set of 20 matrices from the widely used SuiteSparse [8],
including 10 balanced and 10 imbalanced matrices. Our selection of
balanced matrices aligns with those used in Serpens [27]. For imbal-
anced matrices, we deliberately choose a variety of matrices with
varying imbalance ratios and densities from different applications.
Details about these matrices and their properties are presented in
Table 2. Our code generator has been rigorously tested on AMD-
Xilinx Alveo U280 and U50 platforms using Vitis versions 2021.2
and 2022.2 to get the best configurations. For the FPGA results
reported in this paper, we mainly use the Alveo U280 FPGA that
is used in prior studies [9, 20, 27] unless otherwise specified. We
leave the detailed CPU and GPU configuration in Section 4.5.

4.2 Performance Breakdown of Optimizations
A detailed breakdown of the speedup achieved by each optimiza-
tion for our 128-PE design (HiSpMV-16), with Serpens-16 [27] as
the baseline, is provided in Table 2. First, we apply the hybrid row
distribution network to address imbalances, yielding a geometric
mean speedup of 9.15x (up to 46.74x) for imbalanced matrices, with
no effect on balanced matrices. Second, we reduce the dependency
distance to 5 and utilize a more efficient re-ordering algorithm,
resulting in a geometric mean speedup of 1.15x (up to 1.38x) for
balanced matrices and a geometric mean of 1.33x (up to 2.72x) for
imbalanced matrices. Third, the introduction of the adder chain to
remove re-ordering contributes to a geometric mean speedup of
1.18x (up to 2.12x). After these compute optimizations, we focus on
optimizing dense vector access. Initially, we deploy two compute

0

10

20

30

40

50

60

70

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 GMN

G
FL
O
P
S

HiSparse-RI HiSparse-PB Serpens-16 Serpens-24 HiSpMV-16 HiSpMV-20

Figure 8: FPGA kernels on balanced matrices

0
5

10
15
20
25
30
35
40

M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 GMN

G
FL
O
P
S

HiSparse-RI HiSparse-PB Serpens-16 Serpens-24 HiSpMV-16 HiSpMV-20

Figure 9: FPGA kernels on imbalanced matrices
−−−−→
𝑦_𝑜𝑢𝑡 modules, providing a geometric mean speedup of 1.05x (up
to 1.22x) for balanced matrices and a geometric mean of 1.2x (up to
1.25x) for imbalanced matrices. Hybrid buffering, introduced subse-
quently, yields a geometric mean speedup of 1.1x (up to 1.32x) for
imbalanced matrices and 1.01x (up to 1.12x) for balanced matrices.
These optimizations are cumulative, and the total speedup is the
product of all individual speedups. The overall geometric mean
speedup estimated from clock cycle counts for balanced and im-
balanced matrices is 1.22x and 15.84x (excluding M20) respectively.
The actual run’s speedup closely aligns with this cycle analysis.

4.3 Overall Performance vs. Prior FPGA Studies
The formula we use to compute GFLOPS is given by

𝐺𝐹𝐿𝑂𝑃𝑆 =
2 × (𝑁𝑁𝑍 + 𝑅)

109 × execution time
which is a direct reflection of the execution time as 𝑁𝑁𝑍 +𝑅 comes
from the matrix and remains the same across implementations.

HiSpMV: Hybrid Row Distribution and Vector Buffering for Imbalanced SpMV Acceleration on FPGAs FPGA ’24, March 3–5, 2024, Monterey, CA, USA

We conducted extensive benchmarking on the Alveo U280 FPGA
board, running the matrices with kernels HiSparse-RI, HiSparse-PB,
Serpens-16, Serpens-24, HiSpMV-16, and HiSpMV-20 for 10,000
iterations to ensure consistent execution times across all matrices.

The performance comparisons are illustrated in Figure 8 for bal-
anced matrices and Figure 9 for imbalanced matrices. For balanced
matrices, HiSpMV-16 achieves a geomean speedup of 1.18x (up
to 1.54x), 3.97x (up to 9.19x), and 4.00x (up to 7.52x) compared to
Serpens-16, HiSparse-PB, and HiSparse-RI, respectively. Addition-
ally, HiSpMV-20 achieves a geomean speedup of 1.1x (up to 1.55x)
over Serpens-24. For imbalanced matrices, HiSpMV-16 outperforms
Serpens-16, HiSparse-PB, and HiSparse-RI with a geomean speedup
of 15.31x (up to 61.66x), 14.7x (up to 23.38x), and 7.52x (up to
104.54x), respectively. HiSpMV-20 achieves a geomean speedup
of 12.82x (up to 58.08x) over Serpens-24.

Notably, prior works failed to run certain imbalanced matrices
due to the exceeding of the HBMmemory capacity limit. The reason
is that their out-of-order scheduling sometimes added too many
bubbles (dummy data) which increases the memory footprint. Our
hybrid row distribution and adder chain can effectively avoid such
out-of-order scheduling and its overhead.

4.4 Resource Utilization and Design Frequency
Table 3 presents the resource utilization and kernel frequency
of HiSpMV-16 and HiSpMV-20, featuring 16 and 20 channels for
streaming the sparse matrix. Both designs incorporate 2 compute
−−−−→
𝑦_𝑜𝑢𝑡 modules. Notably, HiSpMV-20 circumvents the dependency
distance challenge by employing re-ordering techniques, as it does
not possess adder chains due to resource constraints.

Table 3: HiSpMV resource utilization and frequency

Design Name Resource Utilization Freq.
LUT FF BRAM URAM DSP (MHz)

HiSpMV-16 (U280) 56.8% 30.2% 60.9% 40.0% 25.7% 221
HiSpMV-20 (U280) 57.2% 28.1% 73.7% 33.3% 17.2% 225

HiSpMV-56 est (VH1782) 40.5% 17.5% 57.9% 23.27% 6.51% 400

To fully leverage themaximumbandwidth of theHBMat 450MHz
with 512-bit ports, our kernels only need to achieve a frequency of
225MHz [25]. Both designs are on track with this goal: HiSpMV-16
achieved 221MHz, and HiSpMV-20 reached 225MHz. The primary
resource constraints in our current designs are LUTs and BRAMs.

4.5 Comparison to CPU and GPU
We conducted benchmarking on both CPU and GPU platforms
using the Intel MKL library [18] on a Xeon Silver 4214 CPU with 24
cores and the Nvidia cuSparse library [26] on GTX 1080ti and A100
GPUs. For a fair GPU and FPGA comparison, we compare 1) the
16nm U280 FPGA with 460GB/s bandwidth against the 16nm 1080ti
GPU with 484.4GB/s bandwidth, and 2) the 7nm Versal (largest
HBM-based) VH1782 FPGA [2] with 819.2GB/s bandwidth against
the 7nm A100 GPU with 1,555GB/s bandwidth. Besides the VH1782
FPGA, all performance and power results aremeasured on the actual
boards. The power consumption is measured using vendor tools
(nvml for GPUs and xbutil for FPGAs) during the kernel runtime.

4.5.1 Projection for VH1782 FPGA Results. Compared to U280,
VH1782 has significant improvements. First, it improves the HBM
bandwidth from 460GB/s to 819.2GB/s and the HBM frequency

from 450MHz to 3.2GHz. It has 16 HBM channels, each with a
bus width of 128-bit. Second, it has a hardened network-on-chip
(NoC) running at 1GHz which connects all HBM channels and up
to 76 AXI ports. To fully utilize the bandwidth, each HBM chan-
nel can be shared by four 256-bit AXI ports at 400MHz (128-bit *
3.2GHz/400MHz / 4 ports = 256-bit). Each AXI port provides up to
256-bit * 400MHz = 102.4Gb/s = 12.8GB/s bandwidth and 64 AXI
ports use up all available HBM bandwidth. With such a 256-bit AXI
port (instead of 512-bit in U280), the number of PEs required to
saturate each AXI port’s bandwidth is halved to 4.

Third, it has hardened floating-point (FP) units: one DSP58 [1]
unit can process one FP multiply, add, or fused multiply-add in one
cycle in a pipelined fashion, running at higher than 500MHz. Each
PE uses roughly 1/3 of DSPs compared to that (DSP48) in U280;
and VH1782 has 20.2% more DSPs than U280. Moreover, the latency
for FP add is only one cycle, which eliminates long-distance RAW
dependency and resources for the adder chain. Lastly, VH1782 has
1.86x more BRAM banks than U280 for buffering dense vectors.

Based on the above analysis, we project a HiSpMV-56 design
running at 400MHz on the VH1782 FPGA: 56 AXI ports for stream-
ing in matrix A, 4 AXI ports for loading ®𝑥 and streaming in −−−→𝑦_𝑖𝑛
(time-multiplexing at different stages), and 4 AXI ports for stream-
ing out −−−−→𝑦_𝑜𝑢𝑡 (under-utilized). The total number of PEs is 56 ports *
4 PEs/port = 224 PEs; in contrast, HiSpMV-16 on U280 has a total of
16 * 8 = 128 PEs. Its resource utilization and frequency estimation
are summarized in Table 3. The design is bottlenecked by the off-
chip bandwidth. If there was 1.5x more bandwidth (1,228.8GB/s),
the design could be further scaled up by 1.5x to HiSpMV-84, where
BRAM would become the new bottleneck (86.9% BRAM utilization).

For this projected HiSpMV-56 design on VH1782, we can ac-
curately estimate its performance for an input matrix using an
analytical model, as it is a fully pipelined design with II=1. For the
power consumption, we assume the static power is the same as that
of U280, and estimate its dynamic power via a linear model based
on multiple U280 design points: we assume the dynamic power
scales linearly with the frequency and the numbers of PEs.

4.5.2 Comparison Results. Figure 10 compares the performance
(GFLOPS) between Intel MKL, Nividia cuSparse on 1080ti (GPU 1)
and A100 (GPU 2), HiSpMV-16 on U280 (FPGA 1) and estimation of
HiSpMV-56 on VH1782 (FPGA 2). Compared to the CPU, HiSpMV-
16 achieves a geomean speedup of 4.26x (up to 7.67x) for balanced
matrices and 8.3x (up to 47.62x) for imbalanced matrices.
1080ti GPU vs. U280 FPGA. For performance, on average (ge-
omean), 1080ti GPU is 1.6x better for balanced matrices and 2.1x
better for imbalanced matrices, compared to U280 FPGA. On the
other hand, Figure 11 compares their energy efficiency in terms of
GFLOPS/Watt: U280 achieves better energy efficiency over 1080ti
across all matrices; the geomean energy efficiency improvement
for balanced and imbalanced matrices is 2.21x and 1.9x.
A100 GPU vs. VH1782 FPGA. For performance, on average, A100
GPU is 1.6x better for balanced matrices and 1.1x better for im-
balanced matrices, compared to VH1782 FPGA. If VH1782 FPGA
had 1.5x more bandwidth (1,228.8GB/s), this gap would become
marginally 1.2x and 0.8x. Even with the current VH1782, for certain
imbalanced matrices M11, M15, M16, and M17, VH1782 has better
performance than A100. The reason is that these matrices have a

FPGA ’24, March 3–5, 2024, Monterey, CA, USA Manoj B. Rajashekar, Xingyu Tian, and Zhenman Fang

1
E+

4
1

E+
6

1
E+

8

0

50

100

150

200

250

300

350

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20

N
o

. o
f

FP
 O

p
e

ra
ti

o
n

s

P
e

rf
o

rm
an

ce
 in

 G
FL

O
P

S CPU (MKL) FPGA 1 (HiSpMV-16:U280)

GPU 1 (CuSparse:1080ti) FPGA 2 (HiSpMV-56:VH1782) est

GPU 2 (CuSparse:A100) No. of FP Operations

Figure 10: CPU, FPGA, and GPU performance comparison

0
1
2
3
4
5
6
7
8

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

M
11

M
12

M
13

M
14

M
15

M
16

M
17

M
18

M
19

M
20

GF
LO

PS
/W

at
t G

ai
n U280 / 1080ti VH1782 (est) / A100

Figure 11: Energy efficiency improvement of FPGA over GPU

much lower number of floating-point (FP) operations (shown in the
line of Figure 10); thus, A100 has lower utilization of GPU cores and
larger performance overhead. This also leads to that A100 performs
worse than the older 1080ti GPU (with fewer cores) for these ma-
trices. On average, A100 GPU has improved the performance over
1080ti GPU by 3.3x and 1.4x for balanced and imbalanced matrices.
Meanwhile, VH1782 FPGA has improved its performance over U280
FPGA by 3.2x and 2.7x for balanced and imbalanced matrices.
On the other hand, Figure 11 compares their energy efficiency. For
balanced matrices, VH1782 and A100 achieve similar energy effi-
ciency. For imbalanced matrices that have a much lower number
of FP operations, i.e., M11, M15, M16, and M17, VH1782 achieves
better energy efficiency (4.4x on average) as the GPU cores are un-
derutilized and achieve lower performance. For other imbalanced
matrices, A100 achieves better energy efficiency (2.1x on average).

5 RELATEDWORK
SpMVAccelerator Design: For the three latest SpMV accelerators
on HBM-based FPGAs, including Serpens [27], HiSparse [9], and
the latest AMD design [20], we have compared them with in-depth
analysis and quantitative comparison to showcase our advantage
in Section 2 and 4.

Prior to Serpens, GraphLily [17] aims for graph applications
presented in SpMV and designs a general SpMV accelerator with
an overlay design, but it only reaches 165MHz with limited per-
formance. HitGraph [32] proposes a graph processing acceleration
framework that can perform SpMV. ThunderGP [6] is an HLS-based
graph processing framework that can perform graph partition au-
tomatically for various graph algorithms. Both HitGraph and Thun-
derGP only utilize DDR memory and none of the above designs is
specialized for SpMV. Jain et al. [19] present an accelerator design
based on the Xilinx GEMX SpMV engine but the performance is
much lower. Liu et al. [24] reorder the data to solve the input vector
conflict and design an adder tree to resolve the write conflict when
multiple PEs work on the same row. However, their design does not
address RAW dependency for accumulation and can hardly scale to

larger FPGA. Li et al. [23] propose a novel compressed format tack-
ling inefficient memory access, but how such an approach scales
up is not addressed. Other SpMV-related accelerator designs, like
SpaceA [31] and GraphR [28], are only evaluated in simulation.

Timing Optimization for HLS Designs: HBM and multiple-dies
have been adopted into modern datacenter FPGAs such as AMD-
Xilinx Alveo U280. Interconnection crossing dies with long delay
introduces more challenges to improve the quality of placement and
routing. To tackle this problem, we utilize the recent PASTA [22]
framework, which is built on top of TAPA/Autobridge [13, 14].
TAPA/Autobridge proposes a task-parallel HLS programmingmodel
with a coarse-grained floorplanning approach to improve the timing
closure and clock frequency. Based on TAPA/Autobridge, PASTA
further extends the task communication channel support from
FIFOs to both FIFOs and buffers, greatly improving its programma-
bility for a wider range of applications.

6 CONCLUSION
In this work, we have conducted an in-depth analysis of the new
challenges to accelerate imbalanced SpMV on HBM-based FPGAs
and proposed the HiSpMV design to address those challenges. First,
we designed a hybrid row distribution network to achieve a more
balanced workload partition via both inter-row and intra-row dis-
tribution. Second, we implemented two techniques—register-based
circular buffer and adder chain—to achieve fully pipelined floating-
point accumulation. Third, we realized a hybrid buffering tech-
nique to dynamically switch between private partitioned buffering
and shared ping-pong buffering to optimize the buffer loading. In
addition, we developed an automation framework that automat-
ically generates the optimized HiSpMV accelerator design based
on the user configurations. Extensive experimental results demon-
strated the performance advantage of our design over state-of-the-
art SpMV accelerators on FPGA (such as Serpens, HiSparse, and
the latest AMD design) and Intel MKL on CPU, as well as energy
efficiency gains over the Nvidia cuSparse on GPU.

ACKNOWLEDGEMENTS
We thank anonymous reviewers and our shepherd Dr. Gabriel
Weisz for their insightful comments to help improve our paper.
We acknowledge the partial support from NSERC Discovery Grant
RGPIN-2019-04613, DGECR-2019-00120, Alliance Grant ALLRP-
552042-2020; CFI John R. Evans Leaders Fund and BC Knowledge
Development Fund; Huawei Canada, AMD-Xilinx; and Paderborn
Center for Parallel Computing (for GPU access), Germany.

HiSpMV: Hybrid Row Distribution and Vector Buffering for Imbalanced SpMV Acceleration on FPGAs FPGA ’24, March 3–5, 2024, Monterey, CA, USA

REFERENCES
[1] AMD. 2022. Versal ACAPDSP Engine ArchitectureManual (AM004). https://docs.

xilinx.com/r/en-US/am004-versal-dsp-engine/DSPFP32-Unisim-Primitive Last
accessed Dec 23, 2023.

[2] AMD. 2023. Versal™ Architecture and Product Data Sheet: Overview (DS950).
https://docs.xilinx.com/v/u/en-US/ds950-versal-overview Last accessed Dec 23,
2023.

[3] Scott Beamer, Krste Asanović, and David Patterson. 2017. Reducing pagerank
communication via propagation blocking. In 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 820–831.

[4] John T. Betts. 2010. Practical Methods for Optimal Control and Estimation Using
Nonlinear Programming, Second Edition (second ed.). Society for Industrial and
Applied Mathematics. https://doi.org/10.1137/1.9780898718577

[5] Roland Bulirsch, Edda Nerz, Hans Josef Pesch, and Oskar von Stryk. 1993. Com-
bining Direct and Indirect Methods in Optimal Control: Range Maximization of a
Hang Glider. Birkhäuser Basel, Basel, 273–288. https://doi.org/10.1007/978-3-
0348-7539-4_20

[6] Xinyu Chen, Hongshi Tan, Yao Chen, Bingsheng He, Weng-Fai Wong, and Dem-
ing Chen. 2021. ThunderGP: HLS-Based Graph Processing Framework on FPGAs.
In The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (Virtual Event, USA) (FPGA ’21). Association for Computing Machinery,
New York, NY, USA, 69–80. https://doi.org/10.1145/3431920.3439290

[7] Connor W. Coley, Wengong Jin, Luke Rogers, Timothy F. Jamison, Tommi S.
Jaakkola, William H. Green, Regina Barzilay, and Klavs F. Jensen. 2019. A graph-
convolutional neural network model for the prediction of chemical reactivity.
Chem. Sci. 10 (2019), 370–377. Issue 2. https://doi.org/10.1039/C8SC04228D

[8] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix
Collection. ACM Trans. Math. Softw. 38, 1, Article 1 (dec 2011), 25 pages. https:
//doi.org/10.1145/2049662.2049663

[9] Yixiao Du, Yuwei Hu, Zhongchun Zhou, and Zhiru Zhang. 2022. High-
Performance Sparse Linear Algebra on HBM-Equipped FPGAs Using HLS: A
Case Study on SpMV. In Proceedings of the 2022 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays (Virtual Event, USA) (FPGA ’22).
Association for Computing Machinery, New York, NY, USA, 54–64. https:
//doi.org/10.1145/3490422.3502368

[10] I. S. Duff, Roger G. Grimes, and John G. Lewis. 1989. Sparse Matrix Test Problems.
ACM Trans. Math. Softw. 15, 1 (mar 1989), 1–14. https://doi.org/10.1145/62038.
62043

[11] Trevor Gale, Erich Elsen, and Sara Hooker. 2019. The State of Sparsity in Deep
Neural Networks. arXiv:1902.09574 [cs.LG]

[12] Paul Grigoras, Pavel Burovskiy, Eddie Hung, and Wayne Luk. 2015. Accelerating
SpMV on FPGAs by Compressing Nonzero Values. In 2015 IEEE 23rd Annual
International Symposium on Field-Programmable Custom Computing Machines.
64–67. https://doi.org/10.1109/FCCM.2015.30

[13] Licheng Guo, Yuze Chi, Jason Lau, Linghao Song, Xingyu Tian, Moazin Khatti,
Weikang Qiao, Jie Wang, Ecenur Ustun, Zhenman Fang, Zhiru Zhang, and Jason
Cong. 2023. TAPA: A Scalable Task-Parallel Dataflow Programming Framework
for Modern FPGAs with Co-Optimization of HLS and Physical Design. ACM
Trans. Reconfigurable Technol. Syst. 16, 4, Article 63 (dec 2023), 31 pages. https:
//doi.org/10.1145/3609335

[14] Licheng Guo, Yuze Chi, Jie Wang, Jason Lau, Weikang Qiao, Ecenur Ustun, Zhiru
Zhang, and Jason Cong. 2021. AutoBridge: Coupling Coarse-Grained Floorplan-
ning and Pipelining for High-Frequency HLS Design on Multi-Die FPGAs. In The
2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(Virtual Event, USA) (FPGA ’21). Association for Computing Machinery, New
York, NY, USA, 81–92. https://doi.org/10.1145/3431920.3439289

[15] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems (Long Beach, California, USA) (NIPS’17).
Curran Associates Inc., Red Hook, NY, USA, 1025–1035.

[16] Song Han, Jeff Pool, John Tran, and William J. Dally. 2015. Learning Both
Weights and Connections for Efficient Neural Networks. In Proceedings of the
28th International Conference on Neural Information Processing Systems - Volume
1 (Montreal, Canada) (NIPS’15). MIT Press, Cambridge, MA, USA, 1135–1143.

[17] Yuwei Hu, Yixiao Du, Ecenur Ustun, and Zhiru Zhang. 2021. GraphLily: Accel-
erating Graph Linear Algebra on HBM-Equipped FPGAs. In 2021 IEEE/ACM
International Conference On Computer Aided Design (ICCAD). 1–9. https:
//doi.org/10.1109/ICCAD51958.2021.9643582

[18] Intel. 2023. Intel-Optimized Math Library for Numerical Computing on CPUs
& GPUs. https://www.intel.com/content/www/us/en/developer/tools/oneapi/
onemkl.html Last accessed Oct 1, 2023.

[19] Abhishek Kumar Jain, Hossein Omidian, Henri Fraisse, Mansimran Benipal, Lisa
Liu, and Dinesh Gaitonde. 2020. A Domain-Specific Architecture for Accel-
erating Sparse Matrix Vector Multiplication on FPGAs. In 2020 30th Interna-
tional Conference on Field-Programmable Logic and Applications (FPL). 127–132.
https://doi.org/10.1109/FPL50879.2020.00031

[20] Abhishek Kumar Jain, Chirag Ravishankar, Hossein Omidian, Sharan Kumar,
Maithilee Kulkarni, Aashish Tripathi, and Dinesh Gaitonde. 2023. Modular
and Lean Architecture with Elasticity for Sparse Matrix Vector Multiplica-
tion on FPGAs. In 2023 IEEE 31st Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). 133–143. https://doi.org/10.
1109/FCCM57271.2023.00023

[21] Jeremy Kepner, Peter Aaltonen, David Bader, Aydin Buluç, Franz Franchetti,
John Gilbert, Dylan Hutchison, Manoj Kumar, Andrew Lumsdaine, Henning
Meyerhenke, Scott McMillan, Carl Yang, John D. Owens, Marcin Zalewski, Timo-
thy Mattson, and Jose Moreira. 2016. Mathematical foundations of the Graph-
BLAS. In 2016 IEEE High Performance Extreme Computing Conference (HPEC). 1–9.
https://doi.org/10.1109/HPEC.2016.7761646

[22] Moazin Khatti, Xingyu Tian, Yuze Chi, Licheng Guo, Jason Cong, and Zhenman
Fang. 2023. PASTA: Programming and Automation Support for Scalable Task-
Parallel HLS Programs on Modern Multi-Die FPGAs. In 2023 IEEE 31st Annual
International Symposium on Field-Programmable Custom Computing Machines
(FCCM). 12–22. https://doi.org/10.1109/FCCM57271.2023.00011

[23] Shiqing Li, Di Liu, and Weichen Liu. 2021. Optimized Data Reuse via Reordering
for SparseMatrix-VectorMultiplication on FPGAs. In 2021 IEEE/ACM International
Conference On Computer Aided Design (ICCAD). 1–9. https://doi.org/10.1109/
ICCAD51958.2021.9643453

[24] Bowen Liu and Dajiang Liu. 2023. Towards High-Bandwidth-Utilization SpMV
on FPGAs via Partial Vector Duplication. In Proceedings of the 28th Asia and South
Pacific Design Automation Conference (Tokyo, Japan) (ASPDAC ’23). Association
for Computing Machinery, New York, NY, USA, 33–38. https://doi.org/10.1145/
3566097.3567839

[25] Alec Lu, Zhenman Fang, Weihua Liu, and Lesley Shannon. 2021. Demystifying
the Memory System of Modern Datacenter FPGAs for Software Programmers
through Microbenchmarking. In The 2021 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays (Virtual Event, USA) (FPGA ’21). Association
for Computing Machinery, New York, NY, USA, 105–115. https://doi.org/10.
1145/3431920.3439284

[26] Nvidia. 2023. Basic Linear Algebra for Sparse Matrices on NVIDIA GPUs. https:
//docs.nvidia.com/cuda-libraries/index.html Last accessed Oct 1, 2023.

[27] Linghao Song, Yuze Chi, Licheng Guo, and Jason Cong. 2022. Serpens: A High
Bandwidth Memory Based Accelerator for General-Purpose Sparse Matrix-Vector
Multiplication. In Proceedings of the 59th ACM/IEEE Design Automation Conference
(San Francisco, California) (DAC ’22). Association for Computing Machinery,
New York, NY, USA, 211–216. https://doi.org/10.1145/3489517.3530420

[28] Linghao Song, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran Chen. 2018. GraphR:
Accelerating Graph Processing Using ReRAM. In 2018 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA). 531–543. https:
//doi.org/10.1109/HPCA.2018.00052

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All You
Need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (Long Beach, California, USA) (NIPS’17). Curran Associates
Inc., Red Hook, NY, USA, 6000–6010.

[30] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning
Structured Sparsity in Deep Neural Networks. In Proceedings of the 30th Inter-
national Conference on Neural Information Processing Systems (Barcelona, Spain)
(NIPS’16). Curran Associates Inc., Red Hook, NY, USA, 2082–2090.

[31] Xinfeng Xie, Zheng Liang, Peng Gu, Abanti Basak, Lei Deng, Ling Liang, Xing Hu,
and Yuan Xie. 2021. SpaceA: SparseMatrix VectorMultiplication on Processing-in-
Memory Accelerator. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). 570–583. https://doi.org/10.1109/HPCA51647.
2021.00055

[32] Shijie Zhou, Rajgopal Kannan, Viktor K. Prasanna, Guna Seetharaman, and Qing
Wu. 2019. HitGraph: High-throughput Graph Processing Framework on FPGA.
IEEE Transactions on Parallel and Distributed Systems 30, 10 (2019), 2249–2264.
https://doi.org/10.1109/TPDS.2019.2910068

https://docs.xilinx.com/r/en-US/am004-versal-dsp-engine/DSPFP32-Unisim-Primitive
https://docs.xilinx.com/r/en-US/am004-versal-dsp-engine/DSPFP32-Unisim-Primitive
https://docs.xilinx.com/v/u/en-US/ds950-versal-overview
https://doi.org/10.1137/1.9780898718577
https://doi.org/10.1007/978-3-0348-7539-4_20
https://doi.org/10.1007/978-3-0348-7539-4_20
https://doi.org/10.1145/3431920.3439290
https://doi.org/10.1039/C8SC04228D
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/3490422.3502368
https://doi.org/10.1145/3490422.3502368
https://doi.org/10.1145/62038.62043
https://doi.org/10.1145/62038.62043
https://arxiv.org/abs/1902.09574
https://doi.org/10.1109/FCCM.2015.30
https://doi.org/10.1145/3609335
https://doi.org/10.1145/3609335
https://doi.org/10.1145/3431920.3439289
https://doi.org/10.1109/ICCAD51958.2021.9643582
https://doi.org/10.1109/ICCAD51958.2021.9643582
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://doi.org/10.1109/FPL50879.2020.00031
https://doi.org/10.1109/FCCM57271.2023.00023
https://doi.org/10.1109/FCCM57271.2023.00023
https://doi.org/10.1109/HPEC.2016.7761646
https://doi.org/10.1109/FCCM57271.2023.00011
https://doi.org/10.1109/ICCAD51958.2021.9643453
https://doi.org/10.1109/ICCAD51958.2021.9643453
https://doi.org/10.1145/3566097.3567839
https://doi.org/10.1145/3566097.3567839
https://doi.org/10.1145/3431920.3439284
https://doi.org/10.1145/3431920.3439284
https://docs.nvidia.com/cuda-libraries/index.html
https://docs.nvidia.com/cuda-libraries/index.html
https://doi.org/10.1145/3489517.3530420
https://doi.org/10.1109/HPCA.2018.00052
https://doi.org/10.1109/HPCA.2018.00052
https://doi.org/10.1109/HPCA51647.2021.00055
https://doi.org/10.1109/HPCA51647.2021.00055
https://doi.org/10.1109/TPDS.2019.2910068

	Abstract
	1 Introduction
	2 Motivation and High-Level Ideas
	2.1 Imbalanced Workload
	2.2 Long-Distance RAW Dependency
	2.3 New Bottlenecks on Dense Vectors

	3 HiSpMV Design and Implementation
	3.1 HiSpMV Architecture Overview
	3.2 Hybrid Buffering for Input Vector
	3.3 Processing Element Group (PEG) Design
	3.4 Hybrid Row Distribution Network
	3.5 Pipelined Floating-Point Accumulation
	3.6 Automation Tool

	4 Evaluation
	4.1 Experimental Setup
	4.2 Performance Breakdown of Optimizations
	4.3 Overall Performance vs. Prior FPGA Studies
	4.4 Resource Utilization and Design Frequency
	4.5 Comparison to CPU and GPU

	5 Related Work
	6 Conclusion
	References

