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Abstract

We study the problem of orienting a subset of edges of given plane graph
such that the resulting subdigraph is strongly connected and spans all vertices
of the graph. We are interested in orientations with minimum number of arcs
and such that they produce a digraph with bounded stretch factor. Such orien-
tations have applications into the problem of establishing strongly connected
sensor network when sensors are equipped with directional antennae.

We present three constructions for such orientations. Let G = (V,E) be a
connected plane graph without cut edges and let Φ(G) be the degree of largest
face in G. Our constructions are based on a face coloring, say with λ colors.
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First construction gives a strong orientation with at most
(

2− 4λ−6
λ(λ−1)

)
|E|

arcs and stretch factor at most Φ(G) − 1. The second construction gives a
strong orientation with at most |E| arcs and stretch factor at most (Φ(G) −
1)d

λ+1
2
e. The third construction can be applied to plane graphs which are 3-

edge connected. It uses a particular 6-face coloring and for any integer k ≥ 1
produces a strong orientation with at most (1 − k

10(k+1))|E| arcs and stretch

factor at most Φ2(G)(Φ(G)− 1)2k+4.

Key words and phrases: Digraph, Directional Antennae, Plane Graph,
Sensors, Cut Edges, Spanner, Stretch Factor, Strongly Connected.

1 Introduction

Directional antennae are widely being used in wireless networks not only for reduc-
ing energy consumption and interference, but also for improving routing efficiency
and security. Sensors rely on the use of antennae to configure and operate an ad
hoc network. Essentially, two types of antennae are being used: Omnidirectional
antennae which transmit the signal in all directions in the plane and directional an-
tennae which can transmit the signal towards a specific direction. Omnidirectional
antennae usually incur more interference than directional antennae thus hampering
nodes from receiving data from other transmitters and causing overall performance
degradation of the sensor network. Sensor networks using directional antennae not
only can have extended life-time since the consumption of energy in each antenna
is proportional to the area covered by the transmitting antennae, but also using a
small antenna spread prevents unwanted nodes from listening to the communication
and therefore, improving the throughput and security of the network. Hence, it is
desirable to reduce not only the range, but also the angle of an antenna.

There has been some recent research concerning the advantages of using direc-
tional antennae. For example, Gupta et al. [7] have shown that when n omnidirec-
tional antennae are being used in an area of a unit square, the throughput per node
is at most O(W/

√
n), where each antenna can transmit W bits per second over the

common channels, regardless of the sensor placement. This can be contrasted with
Yi et al. [13] which show that directional antennae provide an improvement on the
throughput capacity by a factor of 2π/

√
αβ, where α is the angle of transmission and

β is the angle of reception. In fact, when α and β go to zero, the wireless network
behaves like a wired network from the throughput point of view. Similarly, Kranakis
et al. [9] studied the energy consumption of networks of omnidirectional antennae
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and compared it to the consumption of networks of directional antennae.
Motivated from these issues, in this paper we study the problem of directing edges

of an undirected (connected) plane graph in such a way that the resulting digraph
spans all vertices, is strongly connected, has bounded stretch factor, and the number
of arcs employed is minimized. Note that if the undirected graph is hamiltonian then
a solution is to orient edges along a Hamilton cycle. This yields an orientation that
is strongly connected and has the minimum possible number of arcs. However the
stretch factor of such orientation is unbounded. On the other hand, one can orient
every edge of an undirected graph in two oposite directions. This will result in an
orientation that is strongly connected with stretch factor equal to one. However the
number of arcs in such an orientation is largest possible. Hence we are looking for
tradeoffs between these two approaches.

1.1 Notation and Preliminaries

A set of sensors with omnidirectional antennae is modeled as an (undirected) ge-
ometric graph whose vertices are points in the plane and edges are straight line
segments representing the connectivity between two sensors. A set of sensors with
directional antennae is modeled as a directed geometric graph (digraph) where the
direction on an arc represents the direction of the corresponding communication link.
Geometric graphs are always associated with straight line planar embeddings and so
we will consider them as plane graphs (digraphs) with all edges straight lines, and
will speak of their set of vertices V , edges E, and faces F , respectively. Our graphs
(digraphs) will not have loops and/or multiple edges (arcs). Given two integers
a < b, let [a, b] = {a, a + 1, . . . , b} denote the integer interval. A (face) λ-coloring
Λ : F → [1, λ] of a plane graph G(V,E, F ) is an assignment Λ of λ colors to faces of
G such that adjacent faces, i.e. faces sharing a common edge, are assigned distinct
colors.

LetG be a graph. An orientation ~G ofG is a digraph obtained fromG by orienting
every edge of G in at least one direction. As usual, we denote with (u, v) the arc
from u to v, whereas {u, v} denotes an undirected edge between u and v. Let d+(u)

denote the out-degree of u in ~G. Similarly, by d(f) we denote the degree (the number
of edges) of the face f in a plane graph (digraph) G. In both cases, if an ambiguity
can occur, we expand the notation by a subscript representing the corresponding
graph, e.g. d ~G(u) denotes the out-degree of u in the digraph ~G. Finally let Φ(G) be
the maximum degree of a face in G, i.e. Φ(G) = maxf∈F d(f).

The stretch factor or spanning ratio of a strongly connected orientation ~G is the
minimum value t such that for every ordered pair of vertices u and v and for every
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path from u to v in G there exists a directed path from u to v in ~G of length at most
t times the length of the original path.

1.2 Related Work

Caragiannis et al. [3] were the first to propose the problem of orienting the antennae
of a set of sensors in the plane and compared the range used to the maximum
edge length of the minimum spanning tree on the set of sensors. They proposed
a polynomial time algorithm in which the sensors use the optimal possible range
to maintain connectivity in order to construct a strongly connected graph when
the antennae spread is at least 8π/5. In addition, they studied the case when the
antennae spread α is in the interval [π, 8π/5) and gave an algorithm which extends
the antenna range to at most 2 sin(π − α/2) times the minimum range required so
as to maintain connectivity. They also showed that if the antenna spread is at most
2π/3 the problem of constructing a strongly connected graph is NP-hard. In fact,
when the angles of the antennae are equal to 0 this last problem is equivalent to the
bottleneck traveling salesman problem [11] for which an approximation with radius
2 times the optimal is given in [11].

Bhattacharya et al. [1] extend the work in [3] and give results for more than one
antenna per sensor. A more comprehensive study is provided by Dobrev et al. [5].
They consider the previously mentioned model of Caragiannis et al. [3] in order to
study the optimal antennae range required when sensors are equipped with more than
one antenna having spread 0. They show that the required range is

√
3 times the

optimal for two antennae,
√

2 times the optimal for three antennae and 2 sin(π/5)
times the optimal for four antennae.The problem considered in the present paper
differs from the problems studied in [3], [1] and [5] in that we do not alter (increase)
the sensor range, rather we work with given undirected graph (unit disk graph or its
planar spanner).

Similar problem that has been addressed in the literature is one that studies
connectivity requirements on undirected graph that will guarantee highest edge con-
nectivity of its orientation, c.f. [6] and [10].

1.3 Contributions

Let G = (V,E) be a connected plane graph without cut edges and let Λ be a face col-
oring, say with λ colors. We present three polynomial constructions for orientations
of G.

First construction (presented in Section 2) gives a strong orientation with at
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most
(

2− 4λ−6
λ(λ−1)

)
|E| arcs and the stretch factor at most Φ(G) − 1. The second

construction (presented in Section 3) gives a strong orientation with at most |E| arcs

and the stretch factor at most (Φ(G) − 1)d
λ+1
2
e. The third construction (presented

in Section 4) can be applied to plane graphs which are 3-edge connected. It uses a
particular 6-face coloring and for any integer k ≥ 1 produces a strong orientation
with at most (1− k

10(k+1)
)|E| arcs and the stretch factor at most Φ2(G)(Φ(G)−1)2k+4.

2 Orientations with more that |E| arcs
Let G(V,E, F ) be a simple plane geometric graph. We want to orient edges in E
so that the resulting digraph is strongly connected. A trivial algorithm is to orient
each edge in E in both directions. In this case, the number of arcs is 2|E| and the
stretch factor is 1. In this section we prove that it is possible to orient less than
2|E| edges of G and still maintain bounded stretch factor. Our approach is based on
a λ-coloring of faces in F , for some integer λ. The idea of employing face coloring
was used in [14] to construct directed cycles. Intuitively we give directions to edges
depending on the color of their incident faces.

Theorem 1 Let G(V,E, F ) be a plane geometric graph which is 2-edge connected.
Suppose G has a face λ-coloring for some integer λ. There exists a strongly connected
orientation ~G with at most (

2− 4λ− 6

λ(λ− 1)

)
· |E| (1)

arcs, so that its stretch factor is at most Φ(G)− 1.

Before giving the proof, we introduce some useful ideas and preliminary results
that will be required.

Consider a plane geometric graph G(V,E, F ) and a face λ-coloring Λ of G with

colors {1, 2, . . . , λ}. Let ~G be the orientation resulting from giving two opposite
directions to each edge in E. For each arc (u, v), we define Lu,v as the face which is
incident to {u, v} on the left of (u, v), and similarly Ru,v as the face which is incident
to {u, v} on the right of (u, v). Observe that for given embedding of G, Lu,v and Ru,v

are well defined. Since G has no cut edges, Lu,v 6= Ru,v . This will be always assumed
in the proofs below without specifically recalling the reason again. We classify arcs
according to the colors of their incident faces. Let Ei,j be the set of arcs (u, v) in ~G
such that Λ(Lu,v) = i and Λ(Ru,v) = j. It is easy to see that each arc is exactly in
one such set. Hence, the following lemma is evident and can be given without proof.
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Lemma 1 For any face λ-coloring of a plane geometric graph G,

λ∑
i=1

λ∑
j=1,j 6=i

|Ei,j| = 2|E|.

For any of λ(λ − 1) ordered pairs of two distinct colors a and b in the coloring
Λ, we define the digraph D(G; a, b) as follows: The vertex set of the digraph D is V
and the arc set of D is ⋃

i∈[1,λ]]\{b},j∈[1,λ]\{a}

Ei,j.

Along with this definition, for i 6= b, j 6= a, and i 6= j, we say that Ei,j is in D(G; a, b).
Next consider the following characteristic function

χa,b(Ei,j) =

{
1 if Ei,j is in D(G; a, b), and
0 otherwise.

We claim that every set Ei,j is in exactly λ2 − 3λ + 3 different digraphs D(G; a, b)
for some a 6= b.

Lemma 2 For any face λ-coloring of a plane geometric graph G,

λ∑
a=1

λ∑
b=1,b 6=a

χa,b(Ei,j) = λ2 − 3λ+ 3.

Proof Let i, j ∈ [1, λ], i 6= j be fixed. For any two distinct colors a and b of the
λ-coloring of G, χa,b(Ei,j) = 1 only if either i = a, or j = b, or i and j are different
from a and b. There are (λ−1) + (λ−2) + (λ−2)(λ−3) such colorings. The lemma
follows by simple counting. �

The following lemma gives a key property of the digraph D(G; a, b).

Lemma 3 Given a face λ-coloring of a plane geometric graph G with no cut edges,
and the corresponding digraph D(G; a, b). Every face of D(G; a, b), which has color
a, constitutes a counter clockwise directed cycle, and every face which has color b,
constitutes a clockwise directed cycle. All arcs on such cycles are unidirectional.
Moreover, each arc of D(G; a, b) incident to faces having colors different from either
a or b is bidirectional.
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Proof Let G be a plane geometric graph with a face λ-coloring Λ with colors a, b
and λ− 2 other colors. Consider D(G; a, b). The sets Ea,x are in D(G; a, b) for each
color x 6= a. Let f be a face and let {u, v} be an edge of f so that Lu,v = f . Let f ′

be the other face incident to {u, v}; hence Ru,v = f ′.
Since G has no cut edges, f 6= f ′, and since Λ(f ′) 6= a, the arc (u, v) ∈

⋃
x 6=aEa,x

and hence the arc (u, v) is in D(G; a, b). Since {u, v} was an arbitrary edge of f , f
will induce a counter clockwise cycle in D(G; a, b). The fact that every face which
has color b induces a clockwise cycle in D(G; a, b) is similar.

Finally consider an edge {u, v} such that Λ(Lu,v) 6= a, b and Λ(Ru,v) 6= a, b.
Hence (u, v) ∈ Eλ,d which is in D(G; a, b) and similarly (v, u) ∈ Ed,λ which is also in
D(G; a, b). This proves the lemma. �

We are ready to prove Theorem 1.
Proof [Theorem 1] Let G be a plane geometric graph having no cut edges. Let Λ
be a face λ-coloring of G with colors a, b, and other λ − 2 colors. Suppose colors a
and b are such that the corresponding digraph D(G; a, b) has the minimum number
of arcs. Consider A the average number of arcs in all digraphs arising from Λ. Thus,

A =
1

λ(λ− 1)

λ∑
a=1

λ∑
b=1,b 6=a

|D(G; a, b)|,where

|D(G; a, b)| =
λ∑
i=1

λ∑
j=1,j 6=i

χa,b(Ei,j)|Ei,j|.

By Lemma 1 and Lemma 2,

A =
1

λ(λ− 1)

λ∑
a=1

λ∑
b=1,b 6=a

λ∑
i=1

λ∑
j=1,j 6=i

χa,b(Ei,j)|Ei,j|

=
1

λ(λ− 1)

λ∑
i=1

λ∑
j=1,j 6=i

(λ2 − 3λ+ 3)|Ei,j|

=
2(λ2 − 3λ+ 3)

λ(λ− 1)
|E|

=

(
2− 4λ− 6

λ(λ− 1)

)
|E|.

Hence D(G; a, b) has at most the desired number of arcs.
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To prove the strong connectivity of D(G; a, b), consider any path, say u =
u0, u1, . . . , un = v, in the graph G from u to v. We prove that there exists a di-
rected path from u to v in D(G; a, b). It is enough to prove that for all i there is
always a directed path from ui to ui+1 for any edge {ui, ui+1} of the above path. We
distinguish several cases.

• Case 1. Λ(Lui,ui+1
) = a. Then (ui, ui+1) ∈ Ea,ω where ω = Λ(Rui,ui+1

). Since
Ea,ω is in D(G; a, b), the arc (ui, ui+1) is in D(G; a, b). Moreover, the stretch
factor of {ui, ui+1} is one.

• Case 2. Λ(Lui,ui+1
) = b. Hence, (ui, ui+1) is not in D(G; a, b). However, by

Lemma 3, the face Lui,ui+1
= Rui+1,ui constitutes a clockwise directed cycle,

and therefore, a directed path from ui to ui+1. It is easy to see that the stretch
factor of {ui, ui+1} is not more than the size of the face Lui,ui+1

minus one,
which is at most Φ(G)− 1.

• Case 3. Λ(Lui,ui+1
) 6= a, b. Suppose Λ(Lui,ui+1

) = c. Three cases can occur.

– Λ(Rui,ui+1
) = a. Hence, (ui, ui+1) is not in D(G; a, b). However, by Lemma

3, there exists a counter clockwise directed cycle around face Rui,ui+1
=

Lui+1,ui , and consequently a directed path from ui to ui+1. The stretch
factor is at most the size of face Rui,ui+1

minus one, which is at most
Φ(G)− 1.

– Λ(Rui,ui+1
) = b. By Lemma 3, there exists a clockwise directed cycle

around face Rui,ui+1
. This cycle contains (ui, ui+1), and in addition the

stretch factor of {ui, ui+1} is one.

– Λ(Rui,ui+1
) = d 6= a, b, c. By the construction, D(G; a, b) has both arcs

(ui, ui+1) and (ui+1, ui). Again, the stretch factor of {ui, ui+1} is one.

This proves the theorem. �

As indicated in Theorem 1 the number of arcs in the orientation depends on the
number λ of colors. Thus, for specific values of λ we have the following table of
values:

λ 3 4 5 6 7

2− 4λ−6
λ(λ−1)

1 7
6

13
10

7
5

31
21

Regarding the complexity of the algorithm, this depends on the number λ of colors
being used. For example, computing a 4-coloring can be done in O(n2) [12]. Finding
the digraph with minimum number of arcs among the twelve possible digraphs can
be done in linear time. Therefore, for λ = 4, the orientation can be computed in
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O(n2). For λ = 5 a 5-coloring can be found in O(n) time. For geometric plane
subs-graphs of unit disk graphs and location aware nodes there is a local 7-coloring
(see [4]). For more information on colorings the reader is advised to look at [8]. We
also have the following corollary.

Corollary 1 Let G = (V,E, F ) be a geometric plane triangulation. There exists a

strongly connected orientation ~G with at most 7(|V |− 2)/2 arcs and stretch factor of
2.

3 Orientations with |E| arcs
Theorem 1 shows that every geometric plane graph G without cut edges has a strong

orientation with bounded stretch factor and at most
(

2− 4λ−6
λ(λ−1)

)
· |E| arcs. In this

section we show that one can orient every edge in exactly one direction only and still
obtain a strong orientation. However the stretch factor will increase.

Consider a geometric plane graph G(V,E, F ) having no cut edges and a face λ-

coloring Λ of G with colors [1, λ]. Let ~G be the orientation assigning two opposite

directions to each edge of E. Let Ei,j be the set of arcs (u, v) in ~G such that
Λ(Lu,v) = i and Λ(Ru,v) = j. Recall that since G has no cut edges, Lu,v 6= Ru,v.
Clearly, these sets are pairwise disjoint. We define the digraph D(G; Λ) as follows:
The vertex set of the digraph D(G; Λ) is V and the arc set of D(G; Λ) is

⋃
i<j≤λEi,j.

It is not difficult to observe that in D(G; Λ) exactly one direction is assigned to
every edge of G.

Theorem 2 Let G(V,E, F ) be a geometric plane graph which is 2-edge connected.
For any face λ-coloring Λ of G, the digraph D(G; Λ) is strongly connected, has exactly

|E| arcs, and its stretch factor is at most (Φ(G)− 1)d
λ+1
2
e.

Proof We already observed above that D(G; Λ) has |E| arcs. We prove the following
two statements.

1. We first prove by induction on k that if {u, v} ∈ E so that Λ(L,v) = k then if
(u, v) is in D(G; Λ) then there is also a directed path from v to u in D(G; Λ)
of length at most (Φ(G)− 1)k such that every arc on this path is incident to
a face of color at most k.

2. Second we prove that for every k if {u, v} ∈ E so that Λ(Ru,v) = k then if
(v, u) is in D(G; Λ) then there is also a directed path from u to v in D(G; Λ)
of length at most (Φ(G)− 1)λ−k+1 such that every arc on this path is incident
to a face of color at least k.
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The theorem follows easily. Indeed, let {u, v} ∈ E so that Λ(Lu,v) < Λ(Ru,v). The
arc (u, v) constitutes the required directed path from u to v. We exhibit required
directed path from v to u as follows. If Λ(Lu,v) ≤ dλ2e, then the directed path from v
to u exists by first statement. If Λ(Lu,v) > dλ2e, then since Lu,v = Rv,u, Λ(Rv,u) > dλ2e
and since (u, v) ∈ E, the required directed path from v to u exists by the second
statement above.

v

u

a

b Λ(Lu,v) = k

Λ(Ra,b) = l < k

Λ(Ru,v) = k′ > k

Figure 1: The figure shows how to find a directed path from v to u when (u, v) is in
D(G; Λ). If {a, b} is any edge incident to Lu,v then by inductive hypothesis there is
a path from a to b of length at most (Φ− 1)l.

Next we give the proof of the statement 1 above. Base step is Λ(Lu,v) = 1. Hence,
the other face incident to {u, v} has color j > 1. Therefore, (u, v) ∈ E1,j which is in
D(G; Λ) by definition. We have the same conclusion for any other arc of the face Lu,v
and hence this face will induce a directed cycle in D(G; Λ), which provides a desired
directed path from v to u. The length of this path is obviously at most Φ(G) − 1.
Also every arc of this path is obviously incident to a face of color 1. This proves the
base case.

In the inductive step we assume the statement is true for all l ≤ k− 1. We prove
it for k. Assume Λ(Lu,v) = k. If k < Λ(Ru,v) = k′, then (u, v) ∈ Ek,k′ which is in
D(G; Λ) by definition. To construct a directed path from v to u, consider the face
Lu,v and any edge {a, b} incident to this face so that La,b = Lu,v. If Λ(La,b) < Λ(Ra,b),
the arc (a, b) is in D(G; Λ), and Λ(La,b) = k ≤ k as required. Otherwise the arc (b, a)
is in D(G; Λ) and also l = Λ(Lb,a) = Λ(Ra,b) < Λ(La,b) = k (see Figure 3). Thus,
by inductive hypothesis, there is a directed path from a to b in D(G; Λ) of length at
most (Φ(G)−1)l such that every arc of this path is incident to a face of color at most
Λ(Lb,a) = l ≤ k. At most (Φ(G)− 1) arcs of Lu,v will be replaced in this way, so the
length of the desired path from v to u is at most (Φ(G)− 1)k. If k > Λ(Ru,v) = k′,
then (u, v) is not in D(G; Λ).
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Finally we give the proof of the statement 2 above. Base step is Λ(Ru,v) = λ which
is trivially true since (v, u) is not in D(G; Λ). In the inductive step we assume the
statement is true for all l ≥ λ−k+1. We prove it for λ−k. Assume Λ(Ru,v) = λ−k.
If λ− k > Λ(Lu,v) = k′, then (u, v) ∈ Ek′,λ−k which is in D(G; Λ) by definition and
hence (v, u) is not in D(G;λ). Hence suppose λ−k < Λ(Lu,v) = k′. Hence (v, u) ∈ E.
To construct a directed path from u to v, consider the face Lu,v and any edge {a, b}
incident to this face so that Ra,b = Lu,v. If Λ(La,b) < Λ(Ra,b), the arc (a, b) is in
D(G; Λ), and Λ(La,b) = k′ ≥ λ−k as required. Otherwise the arc (b, a) is in D(G; Λ)
and also Λ(Ra,b) = k′. Thus, by inductive hypothesis, there is a directed path from
a to b in D(G; Λ) of length at most (Φ(G)− 1)λ−k

′+1 such that every arc of this path
is incident to a face of color at lest Λ(Ra,b) = k′ > λ − k. At most (Φ(G) − 1) arcs
of Lu,v will be replaced in this way, so the length of the desired path from u to v is
at most (Φ(G)− 1)λ−k

′+1+1 ≤ (Φ(G)− 1)k+1, since k′ ≥ λ− k + 1. This proves the
theorem. �

As a corollary we obtain the following result on triangulations.

Corollary 2 Let G(V,E, F ) be a geometric plane triangulation, and let Λ be its face
4-coloring. The digraph D(G; Λ) is strongly connected, has exactly |E| arcs, and its
stretch factor is at most 8.

4 Orientations with less that |E| arcs
By considering more sophisticated face colorings, we can decrease the number of arcs
below |E| in a strong orientation and still maintain a bounded stretch factor. Define

D′(G; Λ) = D(G; Λ)− Edλ−1
2
e,dλ+1

2
e.

We use the following result about acyclic coloring of plane graphs. A (proper vertex)
coloring is acyclic if every subgraph induced by any two colors is acyclic.

Theorem 3 [2] Every plane graph has an acyclic coloring with 5 colors.

Lemma 4 Let T = (V,E) be a forest and k ≥ 1 an integer. There exists a set
of vertices S ⊆ V such that the subgraph of T induced by S is a forest of trees of
diameter at most 4k and has at least k

k+1
|E| arcs.

Proof In this proof all indices will be considered modulo 2k+2. Root every compo-
nent of T at any vertex and consider the partition of V into k sets V0, V1, . . . , V2k+1

such that the set

V` = {x ∈ V : distance of x from the root of its component is `mod 2k + 2}.
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Now consider the following k forests of trees of diameter at most 4k. For m =
0, 1, . . . , k − 1, let Gm = (V m, Em) where

V m = V0−2m ∪ V1−2m ∪ · · · ∪ V2k−2m ,

Em = {{x, y} ∈ E : x ∈ ∪2k−1−2m
i=0−2m Vi, y ∈ ∪2k−2m

i=1−2mVi}.

It is not difficult to see that every Gm is, in fact, induced subgraph of T . If one of
the graphs Gm has at least k

k+1
|E| arcs, we are done. On the other hand, only edges

of T that are not included in Gm for given m are edges {x, y} such that x ∈ V2k−2m

and y ∈ V2k+1−2m and edges {x, y} such that x ∈ V2k+1−2m and y ∈ V2k+2−2m, i.e.
edges of stars centered at vertices in V2k+1−2m. Since Gm has less than k

k+1
|E| edges,

there is at least 1
k+1
|E| such edges. This must be true for all m = 0, 1, . . . , k − 1,

and these edge sets are pairwise disjoint for distinct values of m. Hence the graph
Gk = (V k, Ek) such that

V k = V2 ∪ V3 ∪ · · · ∪ V2k+2,

Ek = {{x, y} ∈ E : x ∈ ∪2k+1
i=2 Vi, y ∈ ∪2k+2

i=3 Vi}

is the forest of trees of diameter at most 4k, is induced in T and has at least k
k+1
|E|

edges. �

The main theorem is as follows.

Theorem 4 Let G(V,E, F ) be a geometric plane graph which is 3-edge connected,
and let k ≥ 1 be an integer. There exists a face 6-coloring Λ of G so that the digraph
D′(G; Λ) is strongly connected, has at most (1− k

10(k+1)
)|E| arcs, and its stretch factor

is at most Φ2(G)(Φ(G)− 1)2k+4.

Proof Let G? be the dual graph of G. Since G is 3-edge connected G? is a simple
graph and every edge of G is crossed by a unique edge of G?. Consider an acyclic
5-coloring of G? which exists by Theorem 3. Among all ten pairs of colors in the
5-coloring choose a pair so that the forest H induced by vertices colored with these
two colors has at least |E|

10
edges. By Lemma 4, in this forest we can select a set of

induced trees each of diameter at most 4k such that they will together span at least
k
k+1

|E|
10

edges of G?.
We are now ready to color faces of G and define a face 6-coloring Λ of G as follows:

We use colors 3 and 4 to color faces corresponding to vertices of trees selected in the
dual G?, and we use colors 1,2,5, and 6 to properly color remaining faces of G.

With λ = 6, we let color α = dλ−1
2
e = 3 and β = dλ+1

2
e = 4. By our construction,

the pair {α, β} must appear at least k
k+1

|E|
10

times in the face 6-coloring of G. This
gives the required bound on the number of arcs of the graph D′(G; Λ).
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Statements 1 and 2 given in the proof of Theorem 2 imply that if {u, v} ∈ E
such that Λ(Lu,v) < Λ(Ru,v) and if either Λ(Lu,v) 6= α or Λ(Ru,v) 6= β, then D′(G; Λ)
contains directed path from u to v as well as from v to u. Indeed, if Λ(Lu,v) ≥ α,
then Λ(Ru,v) > β, and we can apply statement 2. Similarly if Λ(Ru,v) ≤ β, then
Λ(Lu,v) < α, and we can apply statement 1. Obviously the pair of colors α and β is
not incident to any arc on these paths, so these paths exist in D′(G; Λ). Note that
these paths have bounded stretch factor as in Theorem 2, in particular (Φ(G)− 1)4.

To complete the proof we consider {u, v} ∈ E such that Λ(Lu,v) < Λ(Ru,v)
and Λ(Lu,v) = α and Λ(Ru,v) = β. Hence these edges do not occur in D′(G; Λ).
The edge {Lu,v, Ru,v} of the dual G? belongs to one of the selected trees, say T ,
of diameter at most 4k. The vertices of this tree correspond to faces of G that are
colored with color 3 or 4. Since G is 3-edge connected, there is a path P from u
to v in G along these faces such that for each edge of P one of its incident faces
has color different from 3 and 4. Hence for each edge of P the digraph D′(G; Λ)
contains directed paths (in both directions) of length at most (Φ(G)− 1)4. Since the
maximum degree of T is Φ(G) and the diameter of T is at most 4k, T has at most
Φ(G)(Φ(G) − 1)2k vertices. Each of these vertices corresponds to a face of degree
at most Φ(G). Hence the length of P is at most Φ2(G)(Φ(G) − 1)2k. Finally we
conclude that D′(G; Λ) contains a directed path from u to v and from v to u both
of length at most Φ2(G)(Φ(G)− 1)2k+4.

It follows that D′(G; Λ) is strongly connected and has the stretch factor at most
Φ2(G)(Φ(G)− 1)2k+4. �

Note that with a more careful counting argument the bound on the stretch factor
in Theorem 4 can be improved by at least half. Using the following theorem we can
further decrease the number of arcs in a strong orientation of G and still keep stretch
factor bounded.

Theorem 5 Let G = (V,E, F ) be a 3-connected plane graph. Then G contains a

spanning 2-edge connected subgraph G′ with at most |E|−b |E|+3
3Φ(G)

c edges and Φ(G′) ≤
2(Φ(G− 1).

Proof Since G is 3-connected, the dual G? is a simple graph. Let T be a spanning
tree of G?. Obviously, the maximum degree of T is at most Φ(G) and T has least
|E|
3

+2 vertices. The later follows from Euler’s formula and the fact that minimum

degree of G is 3. Moreover, T has a matching of size at least b |E|+3
3Φ(G)

c. Indeed, one can

obtain such a matching M by recursively adding a pendant edge (an edge adjacent
to a leaf) of remaining components of T into M and then removing all remaining
edges incident to this edge. Each such operation adds one edge into M and removes
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at most Φ(G) edges (including the edge itself) from T . Since T has |E|
3

+ 1 edges at
the beginning, the bound follows.

To obtain G′, we merge corresponding faces in G for every edge in M . Since M
is a matching Φ(G′) ≤ 2(Φ(G) − 1) and G′ will be 2-connected. Obviously G′ has
required number of edges. �

5 Conclusion

We presented algorithms for directing edges of a plane graph having no cut edges such
that the resulting digraph is strongly connected and has bounded stretch factor which
depends solely on the size of the faces of the original plane graph. An interesting
question arises how to construct plane graphs having no cut edges. Although it is
well-known how to construct such plane spanners starting from a set of points (e.g.,
Delaunay triangulation) there are no known constructions in the literature of “local”
spanners from UDGs which also guarantee planarity and 2-edge connectivity at the
same time.
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