STAT 380: Spring 2018

Midterm Examination \# 2: Solutions
Richard Lockhart
9 March 2018

1. Suppose that X and Y are independent random variables. Assume that X has an $\operatorname{Exp}\left(\lambda_{x}\right)$ distribution and Y has an $\operatorname{Exp}\left(\lambda_{y}\right)$ distribution.
(a) What is $P(Y>X \mid X=x)$?
[3 marks]
When you condition on $X=x$ you can replace X by x in the event described so:

$$
\begin{aligned}
P(Y>X \mid X=x) & =P(Y>x \mid X=x) \\
& =P(Y>x) \text { because } Y \text { and } X \text { are independent } \\
& =e^{-\lambda_{y} x}
\end{aligned}
$$

Note that this formula is meaningless for $x<0$.
(b) What is $P(Y>X \mid X)$?

To compute a conditional expectation like this you do the calculation in part a, get a formula involving x and replace x by X so

$$
P(Y>X \mid X)=e^{-\lambda_{y} X}
$$

(c) Write $P(X<Y)$ as a double integral and show that this integral is

$$
\frac{\lambda_{x}}{\lambda_{x}+\lambda_{y}}
$$

[3 marks]
We simply integrate the joint density of X and Y over the set $\{x<y\}$. The joint density is

$$
f(x, y)=\lambda_{x} e^{-\lambda_{x} x} \lambda_{y} e^{-\lambda_{y} y} 1(x \geq 0) 1(y \geq 0)
$$

So the probability is

$$
\int_{0}^{\infty} \int_{0}^{\infty} \lambda_{x} e^{-\lambda_{x} x} \lambda_{y} e^{-\lambda_{y} y} 1(x<y) d y d x=\int_{0}^{\infty} \int_{x}^{\infty} \lambda_{x} e^{-\lambda_{x} x} \lambda_{y} e^{-\lambda_{y} y} d y d x
$$

The inside integral is the answer to part a except for the x density so this is

$$
\int_{0}^{\infty} \lambda_{x} e^{-\lambda_{x} x} e^{-\lambda_{y} x} d x=\lambda_{x} \int_{0}^{\infty} e^{-\left(\lambda_{x}+\lambda_{y}\right) x} d x
$$

Do this integral to get the answer. (Multiply and divide by $\lambda_{x}+\lambda_{y}$ and recognize the exponential $\lambda_{x}+\lambda_{y}$ density, for instance.)
(d) Now suppose X_{1}, \ldots, X_{n} are a sample from the Exponential $\left(\lambda_{x}\right)$ distribution and Y_{1}, \ldots, Y_{m} are a sample from Exponential $\left(\lambda_{y}\right)$ distribution. Find

$$
P\left(\min \left\{X_{1}, \ldots, X_{n}\right\}<\min \left\{Y_{1}, \ldots, Y_{m}\right\}\right)
$$

[4 marks]
Let $U=\min \left\{X_{1}, \ldots, X_{n}\right\}$ and $V=\min \left\{Y_{1}, \ldots, Y_{m}\right\}$. From class you know that U has an exponential $\left(n \lambda_{x}\right)$ distribution and V has an exponential $\left(m \lambda_{y}\right)$ distribution. So

$$
P(U<V)=\frac{n \lambda_{x}}{n \lambda_{x}+m \lambda_{y}} .
$$

(e) A testing lab compares two types of machine. Type A machines run for an exponentially distributed amount of time with mean 5 hours; Type B machines also have exponentially distributed running times with mean 8 hours. If the lab starts n Type A machines and m Type B machines at the same instant what is the chance that the first two machines to stop running are both Type A machines. [4 marks]

The probability that the first machine to stop is of Type A is the answer to the previous part. At the instant that machine stops you have $n-1$ Type A and m Type B machine still running. By the memoryless property for the exponential distribution the chance that the second one to stop running is Type A , given that the first one is Type A is the answer to part d with n replaced by $n-1$. So the answer is

$$
\frac{n \lambda_{x}}{n \lambda_{x}+m \lambda_{y}} \times \frac{(n-1) \lambda_{x}}{(n-1) \lambda_{x}+m \lambda_{y}}
$$

In this case $\lambda_{x}=\frac{1}{5}$ while $\lambda_{y}=\frac{1}{8}$. You don't need to plug those in since no great simplification ensues but you get

$$
\frac{64 n(n-1)}{(8 n+5 m)(8(n-1)+5 m)} .
$$

2. In a certain industry accidents occur according to a Poisson process with rate λ equal to $1 / 3$ per day.
(a) There are 30 days in June. What is the chance that there are no accidents after June 20? (No need to get out a calculator; just give me the simplest formula you can.)
[4 marks]

There are 10 days after June 20. The number of accidents for a 10 day period has a Poisson distribution with mean $10 / 3$ so the probability is

$$
e^{-10 / 3}
$$

(b) Given that there are 15 accidents in June what is the chance there are no accidents after June 20? (No need to get out a calculator; just give me the simplest formula you can.)
[4 marks]
Given that there are 15 accidents in a period they are scattered like uniform order statistics. For a Uniform distribution on $[0,30]$ the chance of being bigger than 20 is $1 / 3$ so the probability we want is the probability that a $\operatorname{Binomial}(15,1 / 3)$ is 0 which is

$$
\binom{15}{0}\left(\frac{1}{3}\right)^{0}\left(\frac{2}{3}\right)^{15}=\frac{2^{15}}{3^{15}}
$$

which is pretty small.
3. If T has a uniform distribution on $[0,1]$ what is the hazard rate of T ?

The density of T is

$$
f(t)=1(0<t<1)
$$

and the cdf is

$$
F(t)= \begin{cases}0 & t<0 \\ t & 0 \leq t \leq 1 \\ 1 & t>1\end{cases}
$$

The hazard is

$$
h(t)=\frac{f(t)}{1-F(t)}= \begin{cases}0 & t<0 \\ \frac{1}{1-t} & 0 \leq t \leq 1 \\ \text { undefined } & t>1\end{cases}
$$

