Student Number:

STAT 380: Spring 2016

Midterm Examination

Richard Lockhart
Instructions: This is a closed book exam. You are permitted to use 2 sheets of notes, machine-written or hand-written. You may use both sides of the sheets and I place no limits on font size. Calculators are not permitted nor are any other electronic aids. The exam is out of 25 . Please put your name on each page. You should have 8 pages; the first page is a grade sheet and the last is extra space. I will be marking for clarity of explanation as well as correctness. Without a clear explanation you should not expect to get more than half marks.

1		5						
2 a		4	2 b		3	2 c		3
2 d		4	2 e		3	2 f		3

Total		

Name:

Student Number:

1. A Markov Chain has state space $\{1,2,3,4,5,6\}$ and transition matrix
$\left[\begin{array}{cccccc}\frac{1}{4} & \frac{1}{4} & 0 & 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} & 0 \\ \frac{1}{3} & 0 & 0 & \frac{1}{3} & \frac{1}{3} & 0 \\ \frac{1}{3} & 0 & \frac{1}{3} & 0 & 0 & \frac{1}{3} \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$

Identify all the communicating classes, say whether or not each is transient, and give the period of each state. [5 marks]

Name:

Student Number:

2. There is an experimental design strategy called play-the-winner. A simplified version goes like this. Imagine two players, A and B, play a game. On each turn of the game one player 'serves' and can either score a point on that turn or not. If the player who served scores a point she serves again. If not, no point is scored and the other player begins to serve. Suppose that when A serves she scores a point with probability p_{A} and that when B serves she scores a point with probability p_{B}.
(a) Define a suitable Markov chain to analyse this system.
[4 marks]
(b) Write out the transition matrix of the resulting Markov Chain.

Name:
Student Number:
(c) Assume that a fair coin is tossed to see who serves first. What is the probability that A serves on the third turn?

Name:
Student Number:
(d) In the long run on what fraction of the turns does A serve? [4 marks]

Name:
Student Number:
(e) Also in the long run what is the average number of points scored per turn (by either player)?
[3 marks]

Name:
(f) Let M_{n} be the number of times that the serve changes in the first n turns. (For clarity if the player serving on turn n does not score a point that counts as a change of serve in the first n trials.) Let $\mu_{A, n}=\mathrm{E}\left(M_{n}\right)$ given that A serves first. Let $\mu_{B, n}$ be the same expected value given that B serves first. Use first step analysis to derive equations for $\mu_{A, n}$ and $\mu_{B, n}$ in terms of $\mu_{A, n-1}$ and $\mu_{B, n-1}$. Find the values for $n=1$. Do not solve the set of equations.
[3 marks]

Name:
Student Number:
Extra space

