STAT 380: Spring 2016

Final Examination
 Solutions

Richard Lockhart
Instructions: This is a closed book exam. You are permitted to use 6 sheets of notes, machine-written or hand-written. You may use both sides of the sheets and I place no limits on font size. Calculators are not permitted nor are any other electronic aids. The exam is out of 50 . You should have a total of 10 pages; the first page is a grade sheet and the last is extra space. I will be marking for clarity of explanation as well as correctness. Without a clear explanation you should not expect to get more than half marks. You have 3 hours.

1 a		3	1 b		3	1 c		4
2		10				3		10
4 a		3	4 b		4	4 c		3
5 a		3	5 b		3	5 c		4

Total		

1. Each week I buy 0 or 1 or 2 lottery tickets. To decide how many tickets to buy this week I look at how many I bought last week and toss a fair coin. If I bought 0 tickets last week and I get a Heads then I buy 1 ticket next week otherwise I buy 0. If I bought 1 ticket last week and I get a Head I buy 2 tickets this week otherwise I don't buy any. Finally if I bought 2 tickets last week and get a Head I buy two tickets again this week. Otherwise I buy one ticket. Let X_{n} be the number of tickets I buy in week n. Assume that $X_{0}=0$.
(a) Write out the transition matrix of the resulting Markov Chain. [3 marks]

$$
P=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} \\
0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right]
$$

(b) In the long run how many tickets do I buy per week on average? [3 marks]

We solve

$$
\pi=\pi \mathbf{P}
$$

The matrix \mathbf{P} is doubly stochastic so the answer is the uniform distribution: $\pi_{i}=1 / 3$ for $i=0,1,2$. Or you can write out the equations

$$
\begin{aligned}
\pi_{0} & =\frac{1}{2} \pi_{0}+\frac{1}{2} \pi_{1} \\
\pi_{1} & =\frac{1}{2} \pi_{0}+\frac{1}{2} \pi_{2} \\
1 & =\pi_{0}+\pi_{1}+\pi_{2}
\end{aligned}
$$

The first equation shows $\pi_{1}=\pi_{0}$. Put this in the second to see $\pi_{2}=\pi_{0}$. This shows they are all equal leading to the answer just given.
(c) If each ticket costs $\$ 1$ and wins $\$ 10$ with probability $1 / 20$ how much money do I lose per week (losses are cost of tickets minus winnings) in the long run? marks]

For each ticket you buy you expect to lose

$$
1-\frac{1}{20} \cdot 10=\frac{10}{20}
$$

dollars. The average number of tickets bought in a week is

$$
0 \pi_{0}+1 \pi_{1}+2 \pi_{2}=1
$$

so you expect to lose $10 / 20=\$ 0.50$ per week in the long run. I may get some people who imagine that when you win you get your $\$$ back so that the cost is either 1 , with probability $19 / 20$ or -10 , with probability $1 / 20$. The loss per week would be $\$ 0.45$ or $9 / 20$. Both are ok though the first answer matches how lotteries actually work.
2. Suppose the $X(t)$ is a continuous time Markov Chain with infinitesimal generator \mathbf{R}. Assume that the entries in each column of \mathbf{R} add up to 0 . Prove that the transition matrix $\mathbf{P}(t)$ is doubly stochastic for each t; that is, prove that each column of $\mathbf{P}(t)$ adds up to 1. I suggest you use Kolmogorov's Backwards Equations.
[10 marks]
Suppose there are N states. Suppose 1 is a row vector whose entries are all equal to 1 . Then we are given that

$$
1 \mathrm{R}=0
$$

Kolmogorov's Backwards Equations are

$$
\mathbf{P}^{\prime}(t)=\mathbf{R} \mathbf{P}(t)
$$

Multiply this on the left by $\mathbf{1}$ and get

$$
\mathbf{1} \mathbf{P}^{\prime}(t)=\frac{d}{d t} \mathbf{1 P}(t)=\mathbf{1 R P}(t)=\mathbf{0}
$$

That is, the vector $\mathbf{1 P}(t)$ is constant as a function of t. At $t=0$ we have

$$
\mathbf{1 P}(0)=1 \mathbf{I}=\mathbf{1}
$$

so that the column sums are all equal to 1 at $t=0$ and therefore for all t.
3. Particles are detected in a detector according to a Poisson process with rate λ per hour. In one 24 hour period a total of 8 particles are detected. What is the conditional probability that none of these 8 were detected in the last 8 hours of the 24 ?
marks]
Method 1: Given that there are 8 particles in a fixed time period the actual detection times behave like a sample of size 8 from the uniform distribution over the time period. We want the probability that all of a set of $n=8$ uniforms on the interval $[0,1]$ are less than $2 / 3$. This is

$$
\left(\frac{2}{3}\right)^{8}
$$

Method 2: let N_{1} be the number of particles in the first 16 hours and N_{2} be the number in the last 8 hours. Let $N=N_{1}+N_{2}$. We are asked for

$$
P\left(N_{2}=0 \mid N=8\right)=\frac{P\left(N_{2}=0, N=8\right)}{P(N=8)}=\frac{P\left(N_{1}=8, N_{2}=0\right)}{P(N=8)}
$$

The top factors because N_{1} and N_{2} are independent so we get

$$
P\left(N_{2}=0 \mid N=8\right)=\frac{\left((16 \lambda)^{8} e^{-16 \lambda} / 8!\right)\left((8 \lambda)^{0} e^{-8 \lambda} / 0!\right)}{(24 \lambda)^{8} e^{-24 \lambda} / 8!}=\left(\frac{16}{24}\right)^{8}=\left(\frac{2}{3}\right)^{8}
$$

4. On the midterm I asked you about an experimental design strategy called play-thewinner and asked you to analyze it with a discrete time Markov Chain. I now want you to consider a continuous time version. Two players, A and B , play a game. On each turn of the game one player 'serves' and can either score a point on that turn or not. If the player who served scores a point she serves again. If not, no point is scored and the other player begins to serve. Now suppose that playing each point takes a random amount of time and that this time has an exponential distribution. Suppose that when A serves the time taken for a turn has rate v_{A} and that she scores a point with probability p_{A}. Suppose similarly that when B serves she scores a point with probability p_{B} and that the time taken for a turn has rate v_{B}.
This system can be analyzed using a suitable Markov Chain. Use 4 states, say $\{0,1,2,3\}$. In states 0 or 1 player A serves while in states 2 or 3 player B serves. When A serves and wins the state moves to state 1 if the chain is in state 0 and to state 0 if it is in state 1 . Similarly when B wins while serving the state changes from 2 to 3 or 3 to 2 . When A loses her serve the chain moves to state 2 and when B loses her serve the chain moves to 0 .
(a) What is the matrix \mathbf{R}, the infinitesimal generator, for this chain? [3 marks]

$$
\mathbf{R}=\left[\begin{array}{cccc}
-v_{A} & p_{A} v_{A} & \left(1-p_{A}\right) v_{A} & 0 \\
p_{A} v_{A} & -v_{A} & \left(1-p_{A}\right) v_{A} & 0 \\
\left(1-p_{B}\right) v_{B} & 0 & -v_{B} & p_{B} v_{B} \\
\left(1-p_{B}\right) v_{B} & 0 & p_{B} v_{B} & -v_{B}
\end{array}\right]
$$

(b) Indicate clearly how you would calculate the long run fraction of time during which the players are playing turns where A served. I want to see you convince me you know exactly what equations to solve without solving them. More explicit answers will get more marks.
[4 marks]
I am looking for the following steps. First write down the equation $\pi \mathbf{R}=$ 0 in detailed form such as

$$
\begin{aligned}
& \pi_{0} v_{A}=\pi_{1} p_{A} v_{A}+\pi_{2}\left(1-p_{B}\right) v_{B}+\pi_{3}\left(1-p_{B}\right) v_{B} \\
& \pi_{1} v_{A}=\pi_{0} p_{A} v_{A} \\
& \pi_{2} v_{B}=\pi_{4} p_{A} v_{A}+\pi_{0}\left(1-p_{A}\right) v_{A}+\pi_{1}\left(1-p_{A}\right) v_{A} \\
& \pi_{3} v_{B}=\pi_{2} p_{B} v_{B}
\end{aligned}
$$

I did not ask for the stationary distribution but you see that

$$
\pi_{1}=p_{A} \pi_{0}
$$

and

$$
\pi_{3}=p_{B} \pi_{2}
$$

In the first equation

$$
\pi_{0} v_{A}\left(1-p_{A}^{2}\right)=\pi_{2} v_{B}\left(1-p_{B}\right)\left(1+p_{B}\right)=\pi_{2} v_{B}\left(1-p_{B}^{2}\right)
$$

so

$$
\pi_{0}\left[1+p_{A}+\left(1+p_{B}\right) \frac{v_{B}\left(1-p_{B}^{2}\right)}{v_{A}\left(1-p_{A}^{2}\right)}\right]=1
$$

giving

$$
\pi_{0}=\frac{v_{A}\left(1-p_{A}^{2}\right)}{\left(1+p_{A}\right)\left(1-p_{A}^{2}\right) v_{A}+\left(1+p_{B}\right)\left(1-p_{B}^{2}\right) v_{B}}
$$

(c) On the midterm I asked you to find the fraction of turns where A is serving. If v_{A} is larger than v_{B} will the answer to part (b) of this question be larger than the answer on the midterm or smaller? Why?

When v_{A} is large you leave states 0 and 1 more quickly than you leave states 2 and 3 so you spend relatively less time in state A. The answer is smaller than the midterm answer.
5. A continuous time Markov Chain has states $\{0,1,2\}$. If the chain is started in chain i it stays there for a time T_{i} and then moves to a new state with transition matrix \mathbf{P} given by

$$
\left[\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{5} & 0 & \frac{4}{5} \\
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right]
$$

The departure rates from state i are 4,5 , and 6 per time unit for states 0,1 , and 2 . That is, the rate for holding time T_{0} is 4 , for T_{1} the rate is 5 , and the rate for T_{2} is 6 .
(a) Find the instantaneous generator, \mathbf{R}, for this chain.

$$
\mathbf{R}=\left[\begin{array}{ccc}
-4 & 2 & 2 \\
1 & -5 & 4 \\
3 & 3 & -6
\end{array}\right]
$$

(b) Find the stationary initial distribution for this chain.

Solve the equation

$$
\pi \mathbf{R}=\pi
$$

This becomes

$$
\begin{aligned}
& 0=-4 \pi_{0}+\pi_{1}+3 \pi_{2} \\
& 0=2 \pi_{0}-5 \pi_{1}+3 \pi_{2} \\
& 0=2 \pi_{0}+4 \pi_{1}-6 \pi_{2}
\end{aligned}
$$

The second equation minus the third gives

$$
0=-9 \pi_{1}+9 \pi_{2}
$$

so $\pi_{2}=\pi_{1}$. Double the first plus the third shows $\pi_{0}=\pi_{2}$. So all 3 are equal and

$$
\pi_{0}=\pi_{1}=\pi_{2}=\frac{1}{3}
$$

(c) Define $\mu_{i j}$ to be the mean time for a chain started in state i to reach state j for the first time. Find a formula of the form

$$
\mu_{0,2}=a+b \mu_{1,2}
$$

and give the values of a and b in terms of the rates and transition probabilities given above.

Starting from state 0 you remain in state 0 for an exponentially distributed amount of time T_{0} with mean $1 / v_{0}=1 / 4$. Then you move either to state 1 or state 2. If you move to state 2 you are done and the time involved is just T_{0}. If you move to state 1 you must now wait a time whose expected value is $\mu_{1,2}$. This gives

$$
\mu_{0,2}=\mathrm{E}\left(T_{0}\right)+P_{12} \mu_{1,2}=\frac{1}{4}+\frac{1}{2} \mu_{1,2} .
$$

