STAT 380

Midterm Examination

Richard Lockhart
18 October 2000
Instructions: This is an open book exam. You may use notes, books and a calculator. The exam is out of 25,5 marks per question. I will be marking for clarity of explanation as well as correctness.

1. Consider the following strategy for comparing two medical treatments, say treatment A and treatment B. Patients are treated one at a time and the result of each treatment is recorded as a Success or a Failure. Every time a treatment succeeds the next patient is treated with the same treatment which was just successful. When a treatment fails, the next patient is treated with the other treatment. Suppose that the probability that treatment A succeeds is p_{A} while the probability that treatment B succeeds is p_{B}. In the long run what fraction of patients are treated with treatment B?

Solution: If X_{n} is the treatment used on patient $n+1$ then X_{n} is a Markov chain with transition matrix

$$
\mathbf{p}=\left[\begin{array}{cc}
p_{A} & 1-p_{A} \\
1-p_{b} & p_{B}
\end{array}\right]
$$

The stationary initial distribution is $\left(\pi_{A}, \pi_{B}\right)$ with $\pi_{A}=1-\pi_{B}$. It satisfies

$$
\begin{aligned}
\pi_{B} & =\pi_{A}\left(1-p_{A}\right)+\pi_{B} p_{B} \\
& =1-p_{a}+\pi_{B}\left(p_{B}-\left(1-p_{A}\right)\right) \\
& =1-p_{a}+\pi_{B}\left(p_{A}+p_{B}-1\right)
\end{aligned}
$$

The solution is

$$
\pi_{B}=\frac{1-p_{A}}{2-p_{A}-p_{B}}
$$

and this is the long run fraction of the time that treatment B is used.
2. With the same set up as in the first question suppose that the treatment is changed only after two consecutive failures. Using the four states:

0 About to use A, last trial was not a failure with A.
1 About to use A, last trial was a failure with A.
2 About to use B, last trial was not a failure with B.
3 About to use B, last trial was a failure with B.
give the transition of a Markov Chain which can be used to determine what fraction of patients are treated with treatment B in the long run and show clearly what equations you would solve to find the answer. You need not actually solve the equations.

Solution: The transition matrix is

$$
\mathbf{p}=\left[\begin{array}{cccc}
p_{A} & 1-p_{A} & 0 & 0 \\
p_{A} & 0 & 1-p_{A} & 0 \\
0 & 0 & p_{B} & 1-p_{B} \\
1-p_{B} & 0 & p_{B} & 0
\end{array}\right]
$$

The stationary probabilities $\pi_{o}, \pi_{1} \pi_{2} \pi_{3}$ satisfy $\pi=\pi \mathbf{p}$ or

$$
\begin{aligned}
\pi_{0} & =\pi_{0} p_{A}+\pi_{1} p_{A}+\pi_{3}\left(1-p_{B}\right) \\
\pi_{1} & =\pi_{0}\left(1-p_{A}\right) \\
\pi_{2} & =\pi_{1}\left(1-p_{A}\right)+\pi_{2} p_{B}+\pi_{3} p_{B} \\
\pi_{3} & =\pi_{2}\left(1-p_{B}\right) \\
1=\pi_{0}+\pi_{1}+\pi_{2}+\pi_{3} &
\end{aligned}
$$

The desired limiting frequency is $\pi_{2}+\pi_{3}$. For completeness the equations reduce to

$$
1=\pi_{2} \frac{\left(1-p_{b}\right)^{2}}{\left(1-p_{a}\right)^{2}}+\pi_{2} \frac{\left(1-p_{b}\right)^{2}}{\left(1-p_{a}\right)}+\pi_{2}+\pi_{2}\left(1-p_{B}\right)
$$

3. A Markov Chain has state space $\{1,2,3,4\}$ and transition matrix

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\
0 & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(a) Identify all the communicating classes and say whether or not each is transient.

Solution: The communicating classes are $\{1\}$ which is recurrent, $\{2,3\}$ which is transient and $\{4\}$ which is recurrent.
(b) Let $q_{k}=\mathrm{P}\left(\right.$ there is an n such that $\left.X_{n}=4 \mid X_{0}=k\right)$. Derive the equations

$$
q_{2}=\left(q_{2}+q_{3}\right) / 3 \text { and } q_{3}=\left(q_{2}+2 q_{3}+1\right) / 4
$$

Solution: Notice that $q_{1}=0$ and $q_{4}=1$ Split up over the 4 possible values of X_{1}. If $X_{1}=1$ then the conditional probability of ever reaching 4 is 0 . If $X_{1}=4$ then the conditional probability of ever reaching 4 is 1 ; the probability that this happens starting from 2 is 0 and from 3 the probability that $X_{1}=4$ is $1 / 4$. This gives

$$
q_{2}=P_{2,1} q_{1}+P_{2,2} q_{2}+P_{2,3} q_{3}+P_{2,4} q_{4}
$$

which simplifies to

$$
q_{2}=0+\frac{1}{3} q_{2}+\frac{1}{3} q_{3}
$$

Similarly

$$
q_{3}=P_{3,1} q_{1}+P_{3,2} q_{2}+P_{3,3} q_{3}+P_{3,4} q_{4}
$$

which simplifies to

$$
q_{3}=0+\frac{1}{4} q_{2}+\frac{2}{4} q_{3}+\frac{1}{4} 1
$$

Not required but the solution is $q_{i}=(i-1) / 3$ for $i=1,2,3,4$.
4. Cosmic rays are detected by a particle detector according to a Poisson Process with rate 2 . An arriving cosmic ray is detected with probability 0.8 independent of all other cosmic rays and the time at which the cosmic ray arrives. Compute the probability that 4 cosmic rays arrived in a time period of length $t=5$ starting from time $t=0$ given that given that 8 cosmic rays were detected in the time period from $t=0$ to $t=8$.
Solution: Let U be the number arriving at detected in $[0,5], V$ the number arriving and detected in $(5,8], W$ the number arriving but undetected in $[0,5]$, and X the number arriving but undetected in $(5,8]$. Then

$$
\begin{aligned}
P(U=u, & V= \\
= & v(U=w=w, X=x) \\
& \times P(V=v \mid V+X=v+x) P(V+X=v+x) \\
= & \binom{u+w}{u} p^{u}(1-p)^{w} e^{-5 \lambda} \frac{(5 \lambda)^{u+w}}{(u+w)!}\binom{v+x}{v} p^{v}(1-p)^{x} e^{-3 \lambda} \frac{(3 \lambda)^{v+x}}{(v+x)!} \\
= & \frac{e^{-5 p \lambda}(5 p \lambda)^{u}}{u!} \frac{e^{-5(1-p) \lambda}(5(1-p) \lambda)^{w}}{w!} \frac{e^{-3 p \lambda}(3 p \lambda)^{v}}{v!} \frac{e^{-3(1-p) \lambda}(3(1-p) \lambda)^{x}}{x!}
\end{aligned}
$$

We want

$$
P(U+W=4 \mid U+V=8)=\frac{P(U+W=4, U+V=8)}{P(U+V=8)}
$$

The numerator is

$$
\begin{aligned}
\sum_{u=0}^{4} P(U=j, W=4-j, V & =8-j) \\
& =\sum_{u=0}^{4} \frac{e^{-5 p \lambda}(5 p \lambda)^{u}}{u!} \frac{e^{-5(1-p) \lambda}(5(1-p) \lambda)^{4-j}}{(4-j)!} \frac{e^{-3 p \lambda}(3 p \lambda)^{8-j}}{(8-j)!}
\end{aligned}
$$

The denominator is

$$
\sum_{u=0}^{8} \frac{e^{-5 p \lambda}(5 p \lambda)^{u}}{u!} \frac{e^{-3 p \lambda}(3 p \lambda)^{8-u}}{(8-u)!}
$$

These pieces can be assembled and a numerical answer produced using $\lambda=2$ and $p=0.8$.

