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Abstract—Over the last decade, complex networks have
emerged to be a promising research field in the area of circuits
and systems. This mini-review paper introduces the special ses-
sion that deals with theory and applications of complex networks
and provides brief review of their advances and challenges. The
paper further promotes some important research topics in the
field with emphasis on the multidisciplinary research interests.

I. INTRODUCTION

Complex networks are ubiquitous, as shown by many real-
world examples [1]–[5]. They have non-trivial topological
characteristics that traditional networks do not possess [1],
[5]. Typical examples include the Internet, world wide web,
wireless communication networks, power grids, and social,
economical and biological networks. The study of complex
networks has emerged to be a promising research field stimu-
lated by the empirical investigations of genuine complex struc-
tures and configurations of large-scale engineering systems
such as the Internet [6] and power grids [7].

In the late 1950s, Erdös and Rényi laid the foundation
of the now-classic random graph theory [8]. The theory and
model have prompted extensive research investigations over
more than five decades. Even though many real-world complex
networks are neither completely regular nor completely ran-
dom [9], until the last decade using the random graph model
was the only rigorous and reliable approach to the analysis of
complex networks. The widespread use of supercomputers, the
availability of large databases capturing various structures of
real-world networks, and the discoveries of small-world [10],
[11] and scale-free networks [12] have changed the traditional
views of complex networks [13], [14].

Distinct from the uniform distributions of random graphs
and small-world models, the degree distributions of scale-free
networks proved to be heterogeneous and follow a power-law.
It has been increasingly recognized over the last decade that
network science is highly relevant to practical engineering. In
the current information-rich era, technology supports a variety
of richly connected networks thus making our world highly
interconnected via complex networks. Information technology
also generates big data and makes the world even more
complex and fragile. Over the last decade, numerous new

tools and techniques have been developed to deal with various
large-scale complex networks. The investigation of complex
networks has become an active research field in the area
of circuits and systems and is attracting increasing attention
and interest from the engineering community. In addition to
theoretical studies, a number of new practical applications have
been identified.

In this paper, we briefly review the main advances and
challenges in the area of complex networks by presenting some
state-of-the-art findings. The paper is organized as follows.
Brief summaries of recent advances in the area of theory and
applications of complex networks are given in Section II and
Section III, respectively. Some challenges and opportunities
are further discussed in Section IV. Concluding remarks are
given in Section V.

II. RECENT THEORETICAL ADVANCES

Numerous theoretical advances related to complex networks
in the field of circuits and systems have been reported over
the last decade. An exhaustive literature overview of these
theoretical advances is beyond the scope of this paper. Hence,
only some recent advances in fields related to our own research
interests are presented, such as the network controllability,
observability, and pinning control.

A. Controllability and Observability of Complex Networks

Controllability and observability are two fundamental con-
cepts in modern control theory. Controllability provides basic
mathematical tools for guiding engineered and natural systems
towards a desired state while observability determines the
system’s initial state that generated the system evolution. A
theoretical framework for controlling and observing large-
scale complex networks, especially in case of directed and
nonlinear structures, remains an open research problem.

A dynamical system is controllable if it could be driven
from any initial state to any desired final state within finite
time via a suitable control input. The notion of controllability
has been discussed also for directed nonlinear networks [15]–
[17]. Unlike a linear dynamical system, it is difficult to provide
a precise mathematical definition with rigorous criteria for the



controllability of large-scale directed and nonlinear networks.
The essential difficulty is attributed to at least two independent
factors [17]: i) interactions among the components of the
network architecture and ii) dynamical rules that capture the
time-dependent interactions among the components.

Over the last decade, efforts have been made to control com-
plex networks such as a small network of biological circuits
[18], large synchronized networks [19]–[21], and biological
networks [22]. These are only a few examples within the
circuits and systems context.

To investigate the controllability of a complex network, a
typical approach is to apply pinning control [23], [24]. A
controlled undirected network may be described as:

dxi
dt

= f(xi)−σ
N∑
j=1

aijh(xj)−σ
n∑
k=1

δ(i−k)κi(xi−s), (1)

where i = 1, 2, .., N . In this model, xi ∈ Rn is the state
vector of vertex i, f(·) is a nonlinear function satisfying
the Lipschitz condition, A = [aij ] is the coupling matrix,
h(·) is the component-coupled function, δ(i− k) is the delta
function equals 1 if the kth vertex is being controlled (being
“pined”) but otherwise equals 0, and ui = κi(xi−s) is a con-
troller with a constant control gain κi and target state vector
s ∈ Rn, i = 1, 2, ..., N . Using the master stability function
approach [25], [26], the concept of pinning-controllability of
the undirected network (1) is introduced and analyzed [24],
giving controllability criteria in terms of the spectral properties
of an extended network topology.

Most real-world complex networks are directed. Controlling
a directed network is substantially different from controlling
an undirected one. As an example, consider two connected
vertices A and B where each vertex is a dynamical system to
be controlled. If the connection is undirected, then a controller
may be placed in either A or B. However, if the connection is
directed from A pointing to B, then the controller should be
placed in A rather that B since otherwise vertex A will not be
affected by the controller. This observation led the authors [17]
to introduce the concepts of driver (vertex A) and redundant
vertex (vertex B). Consequently, a main task is to identify a
minimum number of drivers in a given directed network so that
the entire network is controllable in the conventional sense of
being able to reach any target state from any initial state of
the entire network under the designed controllers.

Very few, if any, results have been reported regarding the
observability of complex networks. For linear systems, observ-
ability is a dual concept to controllability and every criterion
regarding the controllability may be directly “translated” to
one for the observability. For nonlinear systems, they are
unrelated and, hence, should be considered separately using
different theory and methods.

In the past, structural controllability and observability of
directly-connected networks of dynamical systems have been
studied [15], [16]. They provide useful ideas and tools for the
current investigations of controllability and observability of
directed networks of dynamical systems.

B. Pinning Control of Complex Networks

Most real-world complex networks consist of a large num-
ber of dynamical system vertices. Hence, it is impossible to
control every vertex of such a network even if the number
of vertices is not large. An intuitive approach to reducing the
number of controllers is to control only a small fraction of the
network vertices. This is referred to as “pinning control” for
complex networks.

An early attempt of the pinning control strategy was to
suppress spatiotemporal chaos via pinning control based on
numerical experiments [27], [28]. The approach was made
rigorous with a systematic formulation and design approach
for complex networks including small-world and scale-free
networks [5], [29]. The controllability of general complex
networks under pinning control may also be investigated using
an extended system approach [24].

Even though numerous results were reported over the last
decade regarding the pinning control strategy for complex
networks, the question which vertex or vertices to pin in
order to realize a specific control objective, such as network
synchronization or consensus, remains unanswered. An effort
was made [30] to explore two fundamental issues in pinning
control of complex networks with a fixed network structure:
i) the number of vertices that should be pinned in a network
with fixed coupling strength in order to achieve network
synchronization; and ii) the coupling strength that should be
applied to a fixed number of pined vertices to realize network
synchronization. Estimation of the number of pined vertices
and the magnitudes of the coupling strengths were also given.

Another effort was made [31] to further investigate three
challenging problems in pinning control of complex networks
using a basic mathematical model: i) What type of pinning
schemes may be chosen for a given complex network to realize
synchronization? ii) What type of controllers may be designed
to ensure that the network reaches synchronization? iii) How
large should the coupling strength be used in a given complex
network to achieve synchronization? Some weak conditions
were derived for the controlled undirected network to reach
global synchronization [31].

III. RECENT APPLICATIONS

Thanks to the availability of super-computing and big data
emanating from large-scale real-world complex networks, it
is possible to obtain the underlying description of various
complex networks and infer their structures and functions.
Over the last decade, numerous applications based on new
understandings of complex networks have been reported [32].

Due to the space limitation, only two recent applications
of complex networks are considered: systems biology and the
Internet.

A. Applications in Systems Biology

Most real-world biological networks have a large number of
network nodes and complex topological structures. Systems
biology is the study of systems of biological components,
which may be molecules, cells, organisms, or entire species.



Over the last two decades, the rapid advances of complex
networks have greatly promoted the development of systems
biology.

Many biological networks consist of simple building blocks
called network motifs, which were uncovered to be one of
the shared global statistical features in ecology, neurobiology,
biochemistry, and bioengineering [22]. The feed-forward loops
(FFLs) are typical network motifs. Over the last decade,
analyzing their structures, functions, and noise characteristics
have received increasing attention [33]–[35].

It may be very difficult to obtain significant insights into
biological functions by simply considering the connection
architecture of single gene network or by its decomposition
into simple structural motifs. Hence, network motif structures
cannot completely determine biological functions since these
motifs occur less frequently in the complex biochemical
networks [22]. Furthermore, most network motifs are often
embedded in various large biological systems that may have
different inputs to motifs. For example, the bi-fan motif may
exhibit a wide range of dynamical responses depending on the
inputs [33]–[35].

It has been accepted that there are various inherent rela-
tionships between network structure and its dynamical func-
tion. The investigation of motif structures is the first step in
revealing the inherent mechanism how small network motifs
may form the overall complex networks. Recent explorations
involve the oscillatory mechanisms in a merged artificial ge-
netic regulatory network [35] and the global relative parameter
sensitivities of FFLs in genetic networks modeled by Hill
kinetics [22].

B. Applications in Engineering Networks

Most large-scale engineering networks are typically com-
plex, such as the Internet. The theory of complex networks
proved useful in improving the structures and functions of
various engineering networks.

Analyzing the Internet topology using randomly generated
graphs, where routers are represented by vertices and transmis-
sion lines by edges, has been widely replaced by mining data
that capture information about Internet Autonomous Systems
(ASes)and by exploring properties of associated graphs on
the AS-level. The Route Views [36] and RIPE [37] datasets
collected from Border Gateway Protocols (BGP) routing tables
have been extensively used by the research community [38]–
[40]. The discovery of power-laws and spectral properties of
the Internet topology indicated a complex underlying network
infrastructure.

Analysis of the collected datasets indicated that the Internet
topology is characterized by the presence of various power-
laws observed when considering a node degree vs. node rank,
a node degree frequency vs. degree, and a number of nodes
within a number of hops vs. number of hops [38], [40]. The
power-law connectivity distribution of the node degree k of
the network implies that the probability distribution function
is of the form P (k) ∝ k−γ . The smaller the parameter γ, the
more the network becomes heterogeneous in its connectivity

distribution and, accordingly, the average network distance
decreases. A more complete AS-level representation of the
Internet topology revealed that these extended maps have
heavy tailed or highly variable degree distributions and only
the distribution tails have the power-law property [39], [41].
It has been observed that the power-law exponents associated
with Internet topology have not substantially changed over the
years in spite of the Internet exponential growth [42], [43].
Power-laws also appear in the eigenvalues of the adjacency
matrix and the normalized Laplacian matrix vs. the order of
the eigenvalues. They also show invariance regardless of the
growth of the Internet.

While various power-law exponents associated with the
Internet topology have remained similar over the years, in-
dicating that the power-laws do not capture every property
of a graph and are only one measure used to characterize
the Internet, spectral analysis of both the adjacency matrix
and the normalized Laplacian matrix of the associated graphs
revealed new historical trends in the clustering of AS nodes
and their connectivity [6]. The eigenvectors corresponding to
the largest eigenvalues of the normalized Laplacian matrix
have been used to identify clusters of AS nodes with certain
characteristics [42]. Spectral analysis was employed to analyze
the Route Views and RIPE datasets in order to find distinct
clustering features of the Internet AS nodes [44]. For exam-
ple, the connectivity graphs of these datasets indicate visible
changes in the clustering of AS nodes and the AS connectivity
over the period of five years [43]. Clusters of AS nodes may
be also identified based on the eigenvectors corresponding to
the second smallest and the largest eigenvalue of the adja-
cency matrix and the normalized Laplacian matrix [45]. The
connectivity and clustering properties of the Internet topology
may be further analyzed by examining element values of the
corresponding eigenvectors.

IV. OPPORTUNITIES AND CHALLENGES

Over the last few decades, complex networks such as the
Internet have changed the way we live, work, and play.
They have also changed the notions of democracy, education,
healthcare, entertainment, and commerce [14]. While complex
networks bring various opportunities, they also bring chal-
lenges such as a large volume of redundant information and
various security concerns. To meet such challenges, new math-
ematical tools and frameworks to model, analyze, understand,
and predict the structures and functions of various complex
networks are needed in hope to make them more secure,
accessible, predictable, and reliable.

Many issues in the field of network engineering deal with
the design, utilization, control, and protection of complex
networks and offer a large number of opportunities for more
thorough investigations. For example, the complete controlla-
bility and observability of large-scale directed and weighted
complex networks of nonlinear dynamical systems of higher
dimensions open many questions to researchers in various
fields of circuits and systems. Although they are central issues
in many interesting and important real-world applications



that involve complex networks, little is known about how
to address these issues because of the absence of general
theory and effective techniques for quantitative investigation
of various complex networks.

V. CONCLUSIONS

In this paper, we have briefly reviewed the main advances
and challenges in the theory and applications of complex
networks by presenting some current state-of-the-art views
from the perspective of our own research interests. The aim of
this mini-review is to further promote this important research
topic by emphasizing the multidisciplinary research interests
within the circuits and systems areas.
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