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Abstract—Detecting, analyzing, and defending against network
intrusions is an important topic in cyber security. Various
detection systems have been designed using machine learning
techniques that help detect malicious intentions of network
users. We apply Recurrent Neural Networks (RNNs) and Broad
Learning System (BLS) machine learning algorithms to classify
known network intrusions. The developed models are trained
and tested using the NSL-KDD dataset containing information
about intrusion and regular network connections. The algorithms
are used to classify various types of intrusion classes and
regular data and are compared based on accuracy and F-
Score. Performance results indicate that the BLS algorithm shows
comparable performance with shorter training time.

Index Terms—Machine learning, recurrent neural networks,
deep neural networks, broad learning system

I. INTRODUCTION

With the development of fast computing platforms, neural
network-based algorithms have proved useful in detecting
various anomalies such as network intrusions. Intrusion de-
tection and protection mechanisms are used to detect network
anomalies and attacks. Various detection systems have been
designed using machine learning techniques that help detect
malicious intentions of network users.

Intrusion datasets are important for identifying, testing, and
validating effective intrusion detection methods. The quality
of collected data affects effectiveness of anomaly detection
techniques. Several datasets used for intrusion detection are
publicly available.

The most widely used datasets are KDD Cup 1999
(KDD’99) [1] and NSL-KDD [2]. An early corpus of data
to model network traffic collected at US Air Force bases
was developed for the DARPA’98 Intrusion Detection System
(IDS) evaluation program [3]–[5]. DARPA’98 consists of 7
weeks of collected network traffic containing nearly 4 GB
of compressed raw tcpdump data that include 5 millions
of connection records each having 100 bytes. The KDD’99
intrusion dataset, based on data captured for DARPA’98, is a
benchmark widely used for evaluation of anomaly detection
techniques. The KDD’99 dataset consists of 41 connection
features [6]: 3 categorical and 38 numerical features. Data
points are labeled as either intrusion or regular data. There
are four types of intrusion attacks: Denial of Service (DoS),
User to Root (U2R), Remote to Local (R2L), and Probe. The
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NSL-KDD dataset is a randomly selected subset of KDD’99
after redundant data were removed [7].

Various intrusion detection techniques have been proposed
over the last decade. The information gain method and rough
sets were employed for feature selections [6], [8]. A hybrid
intrusion detection system was proposed to identify misuse
and anomaly intrusions using random forests [9]. Network
(NIDS) [10] and recurrent neural network (RNN-IDS) [11]
intrusion detection systems were proposed and compared to
various machine learning algorithms such as J48, naive Bayes
(NB), NB Tree, Random Forests (RF), Random Tree (RT),
Multilayer Perception (MP), and Support Vector Machine
(SVM). Training time is often of concern when employing
deep learning algorithms trained using only CPUs. Hence, a
stacked non-symmetric deep auto-encoder (NDAE) that com-
bines deep learning offered by NDAE and shallow learning
offered by the RF classifier has been proposed and imple-
mented using a graphics processing unit (GPU) [12]. A hybrid
framework is proposed [13] to include binary classifier (BC)
modules based on the C4.5 algorithm [14] and an aggregation
module generating two output classes: certain and uncertain.
The data points from both classes are imported to a k-NN
module that determines the class of uncertain data points.
The Broad Learning System (BLS) [15], an alternative to
deep learning networks, offers desired classification accuracy
with shorter training time when using the Modified National
Institute of Standards and Technology (MNIST) [16] and the
New York University Object Recognition Benchmark [17]
datasets.

In this paper, we employ three variants of RNNs (Long
Short-Term Memory (LSTM), Gated Recurrent Unit (GRU),
and Bidirectional LSTM (Bi-LSTM)) and the BLS algorithm.

The paper is organized as follows: In Section II, we describe
the NSL-KDD dataset and its processing for training and test.
The LSTM, GRU, and Bi-LSTM algorithms are described
in Section III. In Section IV, experimental procedure, a
deep learning framework, and BLS training parameters are
introduced. The two-way and five-way classification results
are compared based on accuracy and F-Score in Section V.
We conclude with Section VI.

II. DATA PROCESSING

In this Section, we introduce four types of intrusion attacks
and employed training and test datasets. We use unbalanced



datasets for model training where the number of intrusions is
smaller than the number of regular data points. We consider
four types of intrusion attacks described in Table I [10].

TABLE I
NSL-KDD DATASET: TYPES OF INTRUSION ATTACKS

Type Intrusion attacks
DoS back, land, neptune, pod, smurf, teardrop, mailbomb,

processtable, udpstorm, apache2, worm
U2R buffer-overflow, loadmodule, perl, rootkit, sqlattack, xterm, ps
R2L fpt-write, guess-passwd, imap, multihop, phf, spy, warezmaster,

xlock, xsnoop, snmpguess, snmpgetattack, httptunnel, sendmail,
named

Probe ipsweep, nmap, portsweep, satan, mscan, saint

In two-way classification, all intrusions are treated as one
class. We consider anomaly and regular classes that corre-
spond to 1 and 0, respectively. In five-way classification,
the targets are regular, DoS, U2R, R2L, and Probe, labeled
as 0, 1, 2, 3, and 4, respectively. We employ the KDDTrain+

dataset for training and KDDTest+ and KDDTest−21 datasets
for test. The KDDTrain+ and KDDTest+ are entire NSL-KDD
training and test datasets, respectively. KDDTest−21 is a subset
of the KDD’99 dataset that does not include records correctly
classified by 21 models (7 classifiers used 3 times) [7]. The
number of data points in the NSL-KDD dataset is shown in
Table II [2]. The four top-rank features [9] are described in
Table III while their traces are shown in Fig. 1. The remaining
37 features are described in [6].

TABLE II
NUMBER OF DATA POINTS IN THE NSL-KDD DATASET

Regular DoS U2R R2L Probe Total
KDDTrain+ 67,343 45,927 52 995 11,656 125,973
KDDTest+ 9,711 7,458 200 2,754 2,421 22,544
KDDTest−21 2,152 4,342 200 2,754 2,402 11,850

Fig. 1. KDDTrain+ dataset: traces of “Src bytes” (top left), “Hot” (top right),
“Dis host srv diff host rate” (bottom left), and “Duration” (bottom right)
features.

Prior to training, each feature has been normalized with
mean 0 and standard deviation 1. The categorical features 2,

3, and 4 are converted to numerical features by using dummy
encoding. Feature selection algorithms were not used to extract
the most relevant features and the evaluated classification
algorithms employed the entire KDDTrain+ dataset.

III. CLASSIFICATION ALGORITHMS

Five classification algorithms were used for comparison.

A. Long Short-Term Memory Neural Network

An important advantage of recurrent neural networks
(RNNs) is their ability to use contextual information between
input and output sequences. However, the conventional RNNs
may store only a limited range of contextual information. This
affects the information propagation through the network and
results in a diminishing influence of hidden layers. The LSTM
neural network was proposed to address this deficiency [18]
and to overcome long-term dependency and vanishing gradient
problems [19]. Eight LSTM variants of the most commonly
used LSTM architecture [20], [21] were evaluated [22] to
show that none could significantly enhance the classification
performance.

We select a single-hidden-layer LSTM module shown in
Fig. 2 for the intrusion detection. An LSTM cell called the
memory block [23] is composed of: (a) forget gate ft, (b) input
gate it, and (c) output gate ot. The forget gate discards the
irrelevant memories according to the cell state, the input gate
controls the information that will be updated in the LSTM
cell, and the output gate works as a filter that controls the
output. The logistic sigmoid and network output functions are
denoted by σ and tanh, respectively. The output of the LSTM
cell is connected to the LSTM output layer.
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Fig. 2. Repeating module for the LSTM neural network. States ct−1 and ct
are the previous and current cell states, respectively.

The outputs of the forget gate ft, the input gate it, and the
output gate ot at time t are [24]:

ft = σ(Wifxt + bif + Uhfht−1 + bhf ) (1)
it = σ(Wiixt + bii + Uhiht−1 + bhi) (2)
ot = σ(Wioxt + bio + Uhoht−1 + bho), (3)

where σ(·) is the logistic sigmoid function, xt is the current
input vector, ht−1 is the previous output vector, Wif , Uhf ,
Wii, Uhi, Wio, and Uho are weight matrices, and bif , bhf , bii,
bhi, bio, and bho are bias vectors. The output it of the input
gate decides if the information will be stored in the cell state.
The sigmoid function is used to update the information.



TABLE III
NSL-KDD FEATURES: LISTED ARE DEFINITIONS, TYPES, AND DESCRIPTIONS FOR FOUR TOP RANK FEATURES

Feature Definition Type Description
1 duration continuous length (number of seconds) of the connection
5 src bytes continuous number of data bytes from source to destination
10 hot continuous number of “hot” indicators
37 dst host srv diff host rate continuous no. of connections to different hosts

The cell state ct is calculated as:

ct = ft ∗ ct−1+ it ∗ tanh(Wicxt+ bic+Uhcht−1+ bhc), (4)

where ∗ denotes element-wise multiplications and the tanh
function is used to to create a vector for the next cell state.

The output of the LSTM cell is:

ht = ot ∗ tanh(ct). (5)

B. Gated Recurrent Unit Neural Network

The Gated Recurrent Unit (GRU) structure shown in Fig. 3
is a special case of LSTM and has a simpler structure. To make
predictions, it employs gated mechanisms to control input,
memory, and available information in the current timestep.
While an LSTM cell consists of three gates, a GRU cell
contains only two gates: reset rt and update zt [25], [26].
The reset gate determines how the new input information is
combined with the previous memory content while the update
gate defines the content stored at the current timestep.
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Fig. 3. Repeating module for the GRU neural network.

The outputs of the reset gate rt and the update gate zt at
time t are [24]:

rt = σ(Wirxt + bir + Uhrht−1 + bhr) (6)
zt = σ(Wizxt + biz + Uhzht−1 + bhz), (7)

where σ is the sigmoid function, xt is the input, ht−1 is the
previous output of the GRU cell, Wir, Uhr, Wiz , and Uhz are
the weight matrices, and bir, bhr, biz , and bhz are the bias
vectors.

The output of the GRU cell is:

ht = (1− zt) ∗ nt + zt ∗ ht−1, (8)

where nt is:

nt = tanh(Winxt + bin + rt ∗ (Uhnht−1 + bhn)). (9)

Win and Uhn are the weight matrices while bin and bhn are
the bias vectors.

C. Bidirectional LSTM Neural Network

The Bidirectional Recurrent Neural Network (BRNN) [27]
utilizes additional information for prediction. It contains a
forward and a backward layer that connect to the same output
layer. Forward and backward cell states are not connected and
no delays are introduced to include future information. The
Bi-LSTM neural network [21] (a version of BRNN) shown in
Fig. 4, is an extended form of the one-way LSTM.
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Fig. 4. Module structure for the Bi-LSTM neural network.

D. Deep Learning Neural Network

We consider a deep learning neural network model shown
in Fig. 5. It is based on the LSTM, GRU, and Bi-LSTM
algorithms, which do not require a priori selection of features.
The “pandas” [28], a Python data analysis library, was used
to create input matrices from KDDTrain+, KDDTest+, and
KDDTest−21 datasets. The three categorical features “proto-
col type”, “service”, and “flag” are converted to numerical
features using the pandas.get dummies() function generating
71 additional features. The nn.LSTM() and nn.GRU() functions
are used to create the LSTM, GRU, and Bi-LSTM models.

The input layer consists of 109 nodes (each node corre-
sponds to one feature) that serve as inputs to the RNN layer.
The length of the employed input time sequence is 50 data
points. The hidden layers contain one RNN (LSTM, GRU, or
Bi-LSTM) and two fully-connected layers (FC1 with ReLU
function and FC2). A dropout layer with the rate 0.5 is added
before FC2. In case of two-way and five-way classifications,
the model consists of 109 RNN, 80 FC1, and 32 FC2 hidden
nodes. For five-way classification, the number of FC2 output
nodes is 5. In the training phase, we use cross entropy function
to calculate loss. In the test phase, the probability for each
target class is calculated in the output layer using the softmax
function [29].



Fig. 5. Deep learning neural network model. The model consists of 109 RNN,
80 FC1, and 32 FC2 hidden nodes.

E. Broad Learning System

The Broad Learning System (BLS) is based on Random
Vector Functional-Link Neural Network (RVFLNN). It creates
mapped features and enhancement nodes. Three variants of
BLS algorithms [15] were proposed to increase the number
of mapped features, enhancement nodes, and input data.
A module of the BLS algorithm is shown in Fig. 6. We first
select a certain number of data points from the entire training
dataset to be used as the input patterns. These data points
are used to form additional feature and enhancement nodes.
The remaining training data are included in the system as new
input Xa in every step of the incremental learning, resulting
in updating weights.

In the initialization step, matrix Am
n contains n groups

of mapped features and m groups of enhancement nodes.
The additional feature and enhancement nodes are introduced
as [15]:

Ax = [ Zn
x | ξ(Zn

xWh1 + βh1), ..., ξ(Z
n
xWhm + βhm) ],

(10)
Zn

x = [φ(XaWe1 + βe1), ..., φ(XaWen + βen], (11)

where ξ and φ are projection mappings, Whi and βhi (i =
1, 2, ...,m), and Wej and βej (j = 1, 2, ..., n), are weights
and bias, respectively. The updating matrix is defined as:

xAm
n =

[
Am

n

AT
x

]
. (12)

It is calculated using the pseudoinverse matrix:

(xAm
n )+ = [ (Am

n )+ −BDT |B) ], (13)

where DT = AT
x (A

m
n )+,

BT =

{
(AT

x −DTAm
n )+, if AT

x −DTAm
n 6= 0

(1 +DTD)−1(Am
n )+D, if AT

x −DTAm
n = 0.

(14)

The updated weights are calculated as:

xWm
n =Wm

n + (Y T
a −AT

xW
m
n )B, (15)

where Ya are the corresponding labels of Xa.

IV. EXPERIMENTAL PROCEDURE

The experimental procedure consists of five steps:

• Step 1: Convert categorical features into numerical fea-
tures using dummy coding for training and test datasets.

• Step 2: Normalize training and test datasets.
• Step 3: Tune the model parameters during the 10-fold

validation.
• Step 4: Test the LSTM, GRU, Bi-LSTM, and BLS models

using KDDTest+ and KDDTest−21 datasets.
• Step 5: Evaluate derived models based on accuracy and

F-Score for binary and multi classes.

Training and testing were performed using a Dell Alienware
Aurora with 32 GB memory, NVIDIA GeForce GTX 1080
GPU, and Intel Core i7 7700K processor. A deep learning
network model was implemented using PyTorch [24], a neural
network library designed for Python deep learning framework.
Its torch.autograd() function provides automatic differentiation
when back-propagation is required, leading to reduced code
complexity. The torch.cuda() function was used to activate the
GPU acceleration. When compiling the LSTM, GRU, and Bi-
LSTM networks, the “Adam” optimizer [30] was used because
of its superior performance when dealing with large datasets
and high-dimensional parameter spaces. We trained the model
using 50 epochs with learning rate lr = 0.001. The results
of the BLS [31] algorithm are generated using MATLAB
R2017b. The bls train inputenhance() function is utilized for
training. The BLS training parameters are shown in Table IV.

TABLE IV
BLS TRAINING PARAMETERS

Number
Feature nodes per window 10
Windows 10
Enhancement nodes 200
Added input patterns per incremental step 1,000
Added enhancement nodes per incremental step 60
Steps of incremental learning 4

The four algorithms (LSTM, GRU, Bi-LSTM, and BLS)
use the same training and test datasets shown in Table V.

TABLE V
THE NSL-KDD TRAINING AND TEST DATASETS

Model Training dataset Test dataset
LSTM, GRU, KDDTrain+ KDDTest+

Bi-LSTM, and BLS KDDTest−21
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Fig. 6. Module of the BLS algorithm with increment of mapped feature, enhancement nodes, and new input data [15].

V. PERFORMANCE EVALUATION

A. Evaluation Metrics

The confusion matrix shown in Table VI is used to evaluate
performance of classification algorithms. True positive (TP)
and false negative (FN) are the number of intrusion data
points that are classified as intrusion and regular, respectively.
False positive (FP) and true negative (TN) are the number of
regular data points that are classified as intrusion and regular,
respectively. The performance measures are:

Accuracy =
TP + TN

TP + TN + FP + FN
, (16)

F-Score = 2× precision× sensitivity
precision + sensitivity

, (17)

where:

precision =
TP

TP + FP
and sensitivity =

TP
TP + FN

. (18)

TABLE VI
CONFUSION MATRIX

Predicted class
Actual class Intrusion (positive) Regular (negative)
Intrusion (positive) TP FN
Regular (negative) FP TN

B. Performance Comparison

We measure the classification performance of the considered
deep learning and broad learning models based on accu-
racy and F-Score. For two-way and five-way classifications,
the BLS model generated high accuracies when using the
KDDTest+ and KDDTest−21 datasets: 84.15 % and 72.64 %
shown in Table VII and 82.47 % and 70.30 % shown in
Table VIII. The BLS model also achieved high F-Scores

(84.68 % and 80.61 %) compared to algorithms shown in
Table IX. The BC+k-NN algorithm offered the best perfor-
mance in case of two-way classification [13]. No total F-Score
was reported [13] for five-way classification. We have not
compared results that used different number of NSL-KDD test
data [12].

The BLS algorithm performs well in classification tasks.
Although the conventional RNN algorithm often achieves high
accuracy, its performance is limited to using time sequential
input data. The GRU algorithm has fewer parameters and,
therefore, it has shorter training time while the LSTM exhibits
better performance with larger datasets. Reported accuracies
and F-Scores were achieved with 10 and 50 epochs for BLS
and the three variants of RNNs, respectively. Results generated
using the RNN-IDS model [11] required 100 epochs on a CPU
platform. The BLS approach has the shortest training time
(21.92 s), as shown in Table X.

VI. CONCLUSION

Three types of RNNs and a BLS have been described
and employed to detect network intrusions. When using the
KDDTest+ and KDDTest−21 datasets, the BLS model shows
better performance than the three implemented deep recurrent
neural networks (LSTM, GRU, and Bi-LSTM) and most
reported results. Performance of BLS depends on the number
of mapped features and enhancement nodes, which have to
be chosen a priori. Even though performance improves with
increased number of nodes, they require additional memory
and training time. An advantage of the BLS model is that
it requires considerably shorter time for training than the
conventional deep learning networks.
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