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Abstract—Using machine learning techniques to detect net-
work intrusions is an important topic in cybersecurity. A variety
of machine learning models have been designed to help detect
malicious intentions of network users. We employ two deep
learning recurrent neural networks with a variable number of
hidden layers: Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU). We also evaluate the recently proposed
Broad Learning System (BLS) and its extensions. The models are
trained and tested using Border Gateway Protocol (BGP) datasets
that contain routing records collected from Réseaux IP Européens
(RIPE) and BCNET as well as the NLS-KDD dataset containing
network connection records. The algorithms are compared based
on accuracy and F-Score.
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I. INTRODUCTION

Machine learning algorithms have been used to successfully
classify network anomalies and intrusions. Employed super-
vised learning algorithms include Support Vector Machine
(SVM) [13], Long Short-Term Memory (LSTM) [8], [22],
[25], [34], and Gated Recurrent Unit (GRU) [18], [42] as
well as recently proposed Broad Learning System (BLS) [16],
[17], [33]. Various intrusion detection systems (IDSs) [12],
[15], [30] have been designed using machine learning [9]
and deep neural networks such as stacked non-symmetric
deep auto-encoder (NDAE) [37] and recurrent neural networks
(RNNs) [43]. A number of algorithms (J48, naı̈ve Bayes,
naı̈ve Bayes Tree, Random Forests, Random Tree, Multi-Layer
Perception, and SVM) have been evaluated and compared [14],
[38], [40], [44]. Network anomalies and intrusions [19], [45]
have been classified using datasets such as Border Gateway
Protocol (BGP) [1], [4] and NSL-KDD [3].

BLS and its extensions are alternatives to deep learning
networks. They achieve comparable classification accuracy
and require considerably shorter time for training than the
conventional deep learning networks [17], [29] because of a
small number of hidden layers. They also use pseudoinverse
matrices rather than back-propagation during the training
process.

The BGP and NSL-KDD datasets are benchmarks used
for evaluating anomaly detection [10], [11], [20], [31] and
intrusion [29] techniques. BGP datasets are routing records
collected from Réseaux IP Européens (RIPE) that contain
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three types of anomaly attacks: Code Red I, Nimda, and
Slammer [4] while BCNET [1] dataset contains regular traffic.
The NSL-KDD dataset contains four types of intrusion attacks:
Denial of Service (DoS), User to Root (U2R), Remote to
Local (R2L), and Probe [3]. The NSL-KDD dataset is an
improvement of the KDD’99 dataset [2], [35], [36] that was
used in various IDSs [23], [26], [28], [32].

In this paper, we employ LSTM and GRU recurrent neural
networks (RNNs) as well as BLS and its extensions. The
paper is organized as follows. In Section II, we describe
BGP and NSL-KDD datasets and their processing prior to
classification. The LSTM and GRU algorithms with multi-
layers are discussed in Section III. We introduce the BLS
models in Section IV. In Section V, experimental procedure
and training parameters are described. Classification models
are compared based on accuracy and F-Score in Section VI.
We conclude with Section VII.

II. DATA PROCESSING

We employ data collected from BGP and NSL-KDD
datasets and label data as regular (0) and anomalous (1).

A. BGP Datasets

BGP datasets contain anomalous data points (the days of
the attack) and regular data points (two days prior and two
days after the attack). We extract 37 numerical features from
BGP update messages [4]. In this paper, for each collected
dataset (Code Red I, Nimda, and Slammer), we experiment
with various number of training and test data points that are
selected from periods of anomalies. Using 60 % of data for
training and 40 % for testing generates the best performance
results. The duration of anomalies and the number of data
points in the BGP datasets are shown in Table I.

B. NSL-KDD Dataset

The KDDTrain+ and KDDTest+ are NSL-KDD training
and test datasets, respectively. KDDTest−21 is a subset of
the KDDTest+ dataset that does not include records correctly
classified by 21 models [39]. The number of data points is
shown in Table II [3]. Among 41 features, 38 are numerical
and 3 are categorical (“protocol type”, “service”, and “flag”)
features. The 3 categorical features have been converted to nu-
merical features using the dummy coding method to generate
71 additional features. We use “pandas” Python library [5] to



TABLE I
DURATION OF ANALYZED BGP EVENTS AND NUMBER OF DATA POINTS IN BGP DATASETS

Regular Anomaly Regular Anomaly Regular Anomaly
(min) (min) (training dataset) (training dataset) (test dataset) (test dataset)

Code Red I 6,599 601 3678 362 2921 239
Nimda 3,678 3,522 3677 2123 1 1399
Slammer 6,330 870 3209 531 3121 339

create input matrices. Dimensions of KDDTrain+, KDDTest+,
and KDDTest−21 matrices are 109×125,973, 109×22,544,
and 109×11,850, respectively.

TABLE II
NUMBER OF DATA POINTS IN THE NSL-KDD DATASET

Regular DoS U2R R2L Probe Total
KDDTrain+ 67,343 45,927 52 995 11,656 125,973
KDDTest+ 9,711 7,458 200 2,754 2,421 22,544
KDDTest−21 2,152 4,342 200 2,754 2,402 11,850

III. DEEP LEARNING: MULTI-LAYER NETWORKS

Deep neural networks enable learning to select important
features from the input data. Their significant advantage is the
back-propagation method that calculates gradients and updates
the weights [21], [41]. Furthermore, they may achieve desired
results by adjusting the number of hidden nodes, hidden layers,
and optimization algorithms. They use nonlinear functions
such as rectified linear unit (ReLU), logistic sigmoid, or tanh.
The numbers of hidden nodes and layers are chosen depending
on the size of the dataset. Note that adding hidden layers may
not achieve higher accuracy because of “over-fitting”.

We evaluate performance of two deep learning RNN models
(LSTM and GRU) with 2 (LSTM2 and GRU2), 3 (LSTM3 and
GRU3), and 4 (LSTM4 and GRU4) hidden layers. A model
with 4 hidden layers is shown in Fig. 1.

Fig. 1. Deep learning neural network model. It consists of 37 (BGP)/109
(NSL-KDD) RNNs, 80 FC1, 32 FC2, and 16 FC3 fully connected (FC) hidden
nodes.

IV. BROAD LEARNING SYSTEM

BLS [7], [17], [29] shows comparable performance and
shorter training time than RNN. We evaluate performance of
the original BLS, BLS with incremental learning, BLS with
radial basis function (RBF-BLS), and BLS with cascades of

mapped features (CFBLS), enhancement nodes (CEBLS), and
both mapped features and enhancement nodes (CFEBLS).

A. Original BLS

The original BLS algorithm [17] constructs a set of en-
hancement nodes from the mapped inputs X as shown in
Fig. 2. In the initialization step, a matrixAm

n contains n groups
of mapped features and m groups of enhancement nodes.
Matrix Zn is the collection of groups of mapped features
Zn , [Z1,Z2, ..., Zn] while matrix Hm contains groups
of enhancement nodes Hm , [H1,H2, ...,Hm].

Matrix Ax is constructed from Zn and Hm as:

Ax = [ φ(XWei + βei) | ξ(Zn
xWhj + βhj) ],

i = 1, 2, ..., n and j = 1, 2, ...,m, (1)

where φ and ξ are projection mappings while Wei, Whj and
βei, βhj are weights and bias parameters, respectively.

The BLS performance improves if the mapped features Zn,
enhancement nodes Hm, or input data points X are dynam-
ically incremented. In BLS with incremental learning, matrix
Am

n may be updated by increasing the number of mapped
features and/or enhancement nodes until a predefined training
threshold is reached. Furthermore, an already trained BLS may
easily accept new input data (nodes) Xa without a need for a
new training cycle. Hence, this incremental learning reduces
the training time when computing pseudoinverse matrices [17].
Equation (1) is modified to include additional mapped features
Zn+1, enhancement nodes Hm+1, and/or input nodes Xa

as shown in Fig. 2. We employ an algorithm [17] that
dynamically updates the mapped features and enhancement
groups of nodes as well as input nodes.

B. RBF-BLS Extension

The BLS and incremental learning algorithms with enhance-
ment nodes have been extended to include the radial basis
function (RBF) [33] and create the RBF-BLS model. The RBF
network includes one input, one hidden, and one output layer.
The RBF function was implemented using Gaussian kernel:

ξ(x) = exp
(
− || x − c || 2

γ2

)
. (2)

If the input data are located in a narrow region around the cen-
tral point c, the RBF generates significant non-zero responses.
An RBF network with k hidden nodes relies on calculating
pseudoinverse to perform rapid training. The weight vectors
of the output HW are deduced from:

W = (HTH)−1HTY

= H+Y ,
(3)



Fig. 2. Module of the BLS algorithm with increment of mapped feature, enhancement nodes, and new input data [17].

where W = [w1, w2, ..., wk] and H = [ξ1, ξ2, ..., ξk] are
matrices of output weights and hidden nodes, respectively
while H+ is the pseudoinverse of H .

C. Cascades of Mapped Features and Enhancement Nodes

Several variants of the connections within and between the
BLS mapped features and enhancement nodes were intro-
duced [16]. These connections form a multi-layer architecture
with cascades of mapped features, enhancement nodes, and
both mapped features and enhancement nodes. In case of
CFBLS, the new group Zk of mapped features is created by
using the previous group (k − 1). Groups of mapped features
are formulated as:

Zk = φ(Zk−1Wek + βek)

, φk(X ;
{
Wei,βei

}
k
i=1), for k = 1, ..., n.

(4)

Cascades of these groups Zn , [Z1, ...,Zn] are used to
generate the enhancement nodes

{
H

}m

j=1
. The first enhance-

ment node in CEBLS is generated from mapped features. The
subsequent enhancement nodes are generated from previous
enhancement nodes creating a cascade:

Hu , ξu(Zn ;
{
Whi,βhi

}u

i=1
), for u = 1, ...,m, (5)

where Whi and βhi are randomly generated. The CFEBLS
architecture is a combination of the two cascading approaches.

V. EXPERIMENTAL PROCEDURE

Classification performance depends on BLS parameters
(number of mapped features, mapped groups, and enhance-
ment nodes) as well as RNN parameters (number of hidden
nodes, hidden layers, and optimization algorithms). The ex-
perimental procedure consists of four steps:

• Step 1: Normalize training and test datasets.
• Step 2: Train the RNN models and BLS using 10-fold

validation. Tune parameters of the RNN and BLS models.
• Step 3: Test the RNN and BLS models.
• Step 4: Evaluate models based on accuracy and F-Score.

We implement deep learning models using a Dell Alienware
Aurora with 32 GB memory, NVIDIA GeForce GTX 1080
GPU, and Intel Core i7 7700K CPU processor. We use
the PyTorch [6] neural network library for building deep
learning models. For LSTM, GRU, and BLS and its exten-
sions, we generate results using Python 2.7.12. MATLAB
implementation [7] of BLS and its extensions is converted
to Python code in order to have consistent comparison. The
deep learning models are trained using 50 epochs with learning
rate lr = 0.001. We use 10 and 50 data points as input
sequences for BGP and NSL-KDD datasets, respectively. In
the training process, the model is optimized by using Adam
algorithm [27] while “over-fitting” is avoided by employing
dropout rate [24] of 50 %. The best results for LSTM2 and
GRU2 are obtained with 16 fully connected hidden nodes
(FC3). LSTM3 and GRU3 offer the best performance with 32
FC2 and 16 FC3 fully connected hidden nodes. The sigmoid
function is replaced by the RBF function for enhancement
nodes in the RBF-BLS model. We implement the CFBLS,
CEBLS, and CFEBLS models by modifying the original BLS
functions. The BLS training parameters that generate the best
performance results are listed in Table III.

TABLE III
NUMBER OF BLS TRAINING PARAMETERS

Parameters Code Red I Nimda Slammer NSL-KDD
Mapped features 100 500 100 100
Groups of mapped features 1 1 25 5
Enhancement nodes 500 700 300 100
Incremental learning steps 10 9 2 3
Data points/step 100 200 100 3000
Enhancement nodes/step 10 10 50 60

VI. PERFORMANCE EVALUATION

We evaluate the performance of the deep learning and broad
learning classification models based on accuracy and F-Score.
The training times for RNN and BLS models using the BGP
and NSL-KDD datasets are shown in Table IV. The GRU



TABLE IV
TRAINING TIME FOR RNN AND BLS MODELS: BGP AND NSL-KDD DATASETS

Model Datasets LSTM2 LSTM3 LSTM4 GRU2 GRU3 GRU4 BLS RBF-BLS CFBLS CEBLS CFEBLS
Python (CPU)

Time (s) BGP (Slammer) 224.52 259.91 819.78 54.12 60.76 759.82 21.53 18.68 18.89 32.36 32.13
NSL-KDD 4481.73 4614.66 11478.62 1108.31 1161.80 11581.30 99.47 98.27 98.13 108.23 108.14

Python (GPU) MATLAB (CPU)

Time (s) BGP (Slammer) 30.74 34.94 38.82 31.03 35.46 40.22 1.36 1.20 1.03 5.49 5.98
NSL-KDD 344.93 355.86 394.55 317.53 345.04 369.86 6.91 6.24 6.55 8.88 8.95

algorithm has shorter training time than the LSTM algorithm
due to its simpler structure. Note that MATLAB employs
the optimized function mapminmax(), which results in shorter
training time for BLS and its extensions.

Performance of RNN and BLS models using the BGP
datasets is shown in Table V and Table VI, respectively. RNN
and BLS models offer variable performance with the best
accuracy and F-Score in the range of 90 %–95 %.

TABLE V
PERFORMANCE OF RNN (LSTM AND GRU) MODELS: BGP DATASETS

(PYTHON)

Accuracy (%) F-Score (%)
Model Training Dataset Test RIPE BCNET Test

(regular) (regular)

LSTM2

Code Red I 94.08 83.75 60.49 68.89
Nimda 78.36 47.15 48.61 87.87
Slammer 92.98 92.99 85.97 72.42

LSTM3

Code Red I 88.54 79.38 58.82 55.96
Nimda 85.57 39.10 40.28 92.22
Slammer 90.90 92.01 84.38 67.29

LSTM4

Code Red I 86.96 75.00 57.01 51.53
Nimda 92.00 26.94 35.21 95.83
Slammer 92.49 92.22 86.18 70.72

GRU2

Code Red I 87.47 80.07 60.21 52.97
Nimda 70.71 48.96 58.26 82.83
Slammer 91.88 93.33 90.90 69.42

GRU3

Code Red I 88.07 79.44 60.56 53.51
Nimda 80.21 38.40 44.24 89.02
Slammer 91.76 95.21 90.83 68.72

GRU4

Code Red I 91.84 77.50 60.07 63.87
Nimda 87.36 35.00 39.38 93.25
Slammer 92.14 92.15 90.35 70.11

TABLE VI
PERFORMANCE OF BLS MODEL AND ITS EXTENSIONS: BGP DATASETS

(PYTHON)

Accuracy (%) F-Score (%)
Model Training Dataset Test RIPE BCNET Test

(regular) (regular)

BLS
Code Red I 94.97 69.79 65.21 66.38
Nimda 76.57 70.69 54.93 86.73
Slammer 87.65 75.62 68.40 57.68

RBF-BLS
Code Red I 95.92 90.69 73.96 70.07
Nimda 57.92 70.63 57.22 73.36
Slammer 91.21 90.55 70.76 64.57

CFBLS
Code Red I 95.16 69.38 61.74 71.08
Nimda 55.71 68.06 58.26 71.56
Slammer 89.28 71.25 61.81 60.99

CEBLS
Code Red I 94.94 70.69 60.35 65.22
Nimda 66.43 74.10 54.51 79.83
Slammer 91.01 87.71 82.43 66.38

CFEBLS
Code Red I 95.66 70.07 59.51 71.75
Nimda 64.29 70.83 57.43 78.24
Slammer 86.36 71.11 57.71 55.30

The RNNs and BLS performance using NSL-KDD dataset
is shown in Table VII. The best performance is achieved using
the LSTM4 and GRU3 RNNs while the CFBLS architecture
offers the best results among BLS models.

TABLE VII
PERFORMANCE OF RNN (LSTM AND GRU) AND BLS MODELS:

NSL-KDD DATASETS (PYTHON)

Accuracy (%) F-Score (%)
Model KDDTest+ KDDTest−21 KDDTest+ KDDTest−21

LSTM4 82.78 66.74 83.34 76.21
GRU3 82.87 65.42 83.05 74.06
CFBLS 82.20 67.47 82.23 76.29

Performance and training times of incremental BLS are
shown in Table VIII. The incremental BLS algorithm requires
shorter training time because the weights are updated based
on only new data.

TABLE VIII
PERFORMANCE AND TRAINING TIME OF INCREMENTAL BLS MODEL:

BGP AND NSL-KDD DATASETS (MATLAB)

Test Accuracy (%) F-Score (%) Time (s)
Code Red I 94.37 65.10 0.926
Nimda 91.64 95.64 2.757
Slammer 89.31 63.07 2.805
KDDTest+ 81.34 81.99 32.99
KDDTest−21 78.70 88.06 29.71

VII. CONCLUSION

We employed LSTM and GRU deep neural networks with
a variable number of hidden layers. We also evaluated perfor-
mance of BLS models that employ radial basis function (RBF),
cascades of mapped features and enhancement nodes, and
incremental learning. Compared to deep neural networks, BLS
and cascade combinations of mapped features and enhance-
ment nodes achieved comparable performance and shorter
training time because of their wide and deep structure. BLS
models consist of a small number of hidden layers and ad-
just weights using pseudoinverse instead of back-propagation.
They also dynamically update weights in case of incremental
learning. They better optimized weights due to additional data
points for large datasets such as NSL-KDD. While increasing
the number of mapped features and enhancement nodes as
well as mapped groups led to better performance, it required
additional memory and training time.
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