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ABSTRACT 
In this paper, we present motion and force predictions in 

Internet-based teleoperation systems using the particle filter 
method. The particle filter, also known as the sequential Monte 
Carlo (SMC) method, is a probabilistic prediction or estimation 
technique within a sequential Bayesian framework: Data at a 
current time step are predicted or estimated by recursively 
generating probability distribution based on previous 
observations and input states. In this paper, we first formulate 
the particle filter method using a prediction-based approach. 
Motion and force data flows, which may be impaired by the 
Internet delay, are formulated within a sequential Bayesian 
framework. The true motion and force data are then predicted by 
employing the prediction-based particle filter method using the 
impaired observations and previous input states. We performed 
experiments using a haptic device that interacts with a 
mechanics-based virtual 3D graphical environment. The haptic 
device is used as a master controller that provides positioning 
inputs to a 4-degree of freedom (4-DoF) virtual robotic 
manipulator while receiving feedback force through interactions 
with the virtual environment. We simulate the Internet delay 
with variations typically observed in a user datagram protocol 
(UDP) transmission between the master controller and the 
virtual teleoperated robot. In this experimental scenario, the 

particle filter method is implemented for both motion and force 
data that experience the Internet delay. The proposed method is 
compared with the conventional Kalman filter. Experimental 
results indicate that in nonlinear and non-Gaussian 
environments the prediction-based particle filter has distinct 
advantage over other methods. 

 
INTRODUCTION 

An Internet-based teleoperation system is an interactive 
application where though a master device, a human operator 
transmits motion data while simultaneously receiving reflecting 
force data from a slave robot controller. Unlike other Internet 
applications that mainly focus on the reliable data transmission, 
interactive applications are highly delay-sensitive. The Internet 
delay, which is unknown and varies over time according to 
network conditions, may cause instability of an overall 
teleoperation system. Furthermore, the transmitted motion and 
force data are often impaired by significant delay and delay jitter 
during the Internet transmission [1].  

Various approaches have been suggested in order to solve 
the time delay issue of Internet-based teleoperation systems. In 
the area of control systems, the wave variables transformation 
and its extensions have focused on the stability of overall 
teleoperation systems in the presence of constant delay [2], [3], 
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[4]. In the area of Internet transport protocols, several proposals 
have been suggested based on modifications to transport control 
protocol (TCP) and user datagram protocol (UDP) to enable 
faster transmissions of data packets [5], [6]. In the area of signal 
processing, prediction-based methods that perform motion and 
force predictions have been proposed [7], [8]. The Kalman filter 
method, which provides a recursive solution to the linear 
prediction and estimation, was proposed as a prediction-based 
approach [9]. These methods have been used to compensate for 
the transmitted motion and force data that are impaired by 
variations of the Internet delay.  

Motion and force data are often difficult to predict in 
systems with nonlinear and non-Gaussian characteristics. For 
example, fine hand motion commands from a master controller 
may be highly nonlinear and the traditional Kalman filter may 
fail to provide their accurate prediction. Force data may be even 
more difficult to predict since the data need to be sent at 
relatively high frequencies to guarantee realistic force without 
discontinuity and to avoid closed-loop instability of an overall 
teleoperation system. Furthermore, the motion and force data 
may contain a non-Gaussian noise such as an impulse noise 
during the transmission, which leads to further challenges in 
prediction. 

The particle filter method, also known as the bootstrap 
filter or the Condensation, is a sequential Monte Carlo (SMC) 
method that provides a sub-optimal solution in recursive 
Bayesian approaches [10], [11]. Due to its robust prediction and 
estimation performance in nonlinear and non-Gaussian 
environments, the particle filter method has been widely applied 
in the areas of communications, image and speech signal 
processing, control systems, and robotics [12], [13]. Since the 
particle filter method can be applied to any signal using a 
discrete time state-space formulation, it has been applied to 
nonlinear motion and force data flows in an Internet-based 
teleoperation system [14]. 

In this paper, we employ the particle filter method to 
predict motion and force data that may be nonlinear and non-
Gaussian in addition to being subject to the Internet delay. We 
first introduce the prediction-based particle filter method applied 
to motion and force data flows using a discrete time state-space 
formulation. We describe an experimental study based on the 
implemented particle filter method [14]. In this paper, the 
proposed method is verified in both nonlinear and non-Gaussian 
environments. We also present the comparison of prediction 
performance between the proposed particle filter and the 
conventional Kalman filter methods. The stability issue of an 
overall teleoperation system in the presence of the Internet delay 
is discussed. 

MOTION AND FORCE PREDICTIONS IN INTERNET-
BASED TELEOPERATION SYSTEMS 

Motion data generated from a master controller are 
transmitted to a slave controller through the Internet. Based on 
the design of the slave controller, reflected force data are 
generated by any contact with an object or surrounding 
environment and they are fed into the master controller through 
the Internet. A simple illustration of motion and force data flows 
in an Internet-based teleoperation system is shown in Figure 1. 
The motion and force data are represented in discrete time state-
space formulations, which are configured in a recursive 
Bayesian framework. Since the motion and force data 
experience variations of the Internet delay, the true data may be 
impaired and stability of an overall teleoperation system may 
not be maintained. In order to compensate for such Internet 
delay, we employ the prediction-based particle filter method for 
the motion and force data flows. 
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Figure 1. State-space formulations of motion and force data flows in an 
Internet-based teleoperation system. The proposed prediction approach 
employs the particle filter method. 

 
Motion Prediction 

The motion data flow in an Internet-based teleoperation 
system, which consists of positions samples over time, is 
represented as a discrete time state-space formulation as shown 
in Figure 1. In a single DoF teleoperation system, the true 
position xk  at time  is transmitted through the Internet and it 
is delayed by  time steps. The impaired observation received 
at the slave controller can be expressed as 

k
n

xk n−% . The discrete 
time nonlinear motion data flow in a state-space formulation 
may be expressed as: 
 

  ,              (1) 
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where xk  and xk n−%  are the system state at time k , and the 
system observation at time , k n− gk

  

and hk n−  are nonlinear 
state and observation transition functions, and  u  and k vk n−  are 
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state and observation noise sequences, which may be non-
Gaussian. In a state-space formulation, the prediction of the true 
position at time   is calculated based on the current state 

 and available observation 
1k n− +

xk n− 1:x k n−% . In a recursive Bayesian 
approach, the optimal predictor of the true state at time 1k n− +

k n

 
is expressed by the conditional mean: 
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where  denotes the prediction of the state ˆ 1|xk n k− + − +
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given available observations . The posterior density in (2) 
is evaluated recursively solving two density functions [9]: 

1:x% k n−

1 | k n

 

1 1: 1:( | ( ) ( |k n k n k n k n k n)p x x p x p x x− + − − + − −% %x − dx −= ∫ (3) 

1: 1)− −

1)+

1:k nx− − =%

1 1:( | k nx− + −%

1: 1

) ( |( | )
( | )

k n k n
k n

k n

p x p x xp x
x

−

− − −

% %

% %

( |k n k n

k n

x
p x

− −

1k nw δ− +

.   (4) 

 
Equations (3) and (4) provide the prediction and update 
procedures for the optimal solution, respectively. They are not 
computationally tractable due to their integral forms. Hence, the 
particle filter method is used to approximate the posterior 
density as a suboptimal solution. Based on the prediction-based 
particle filter method, (3) is approximated as [15], [16]: 
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where Ns  is the number of particles, ( )δ ⋅  is the Dirac delta 

function, and  is the importance weight computed as: 1k n− +
iw
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In order to minimize the variance of importance weights, the 
importance density  may be chosen to be equal to the prior 
density such that: 
 

( | ) ( |i i
k n k nx p x x− − + − .      (7) 

 
 Hence, the importance weight is simplified as: 
  

1 ( | i
k n k n k np x x− + − −% .            (8) 

 
In this paper, we consider the motion data flow in nonlinear and 
non-Gaussian environments. Hence, we assume the state noise 

 to have a Gamma distribution, which is typically observed 
in an impulse noise [17]. The non-Gaussian noise can be 
modeled using the Gamma density function: 

uk
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The mean and variance of the Gamma density function (9) are 
α β  and 2α β , respectively. Note that the Gamma density 
function applies to the state noise u  and does not apply to the 
observation noise . Given these noise assumptions, the 
importance weight (8) is further simplified as: 

k
vk
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Equation (10) gives the importance weight of the -th particle at 
time 

i
1k n− +  and needs to be normalized so that: 

 

1
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The resampling step should be performed to regenerate the 

predicted samples based on measurements of the importance 
weights. When cumulative distribution functions (CDF) of the 
normalized weights (11) are constructed, each element of the 
CDF is compared with a uniformly distributed function in order 
to determine whether the weights are high or low. Based on this 
comparison, particles with low weights are eliminated and 
particles with high weights are used to predict the true states. 
Therefore, a new set of states  is determined and this 
procedure is repeated for the next time step. Each step of the 
particle filter method for the motion data prediction is described 
in Table 1. 

1xk n− +

 
Table 1. Particle Filter Method for Motion Prediction. 

Step 1. Initialization 
    Randomly choose the initial state and define initial parameters 
Step 2. Prediction 

    Evaluate 1
ixk n− + ~ ( | ), 11

ip x x i Nk n k n S≤ ≤− + −  

Step3. Update 
    Evaluate importance weights (8) and normalize. 
Step 4. Resampling 
    Multiply/suppress samples with high/low importance weights 
Step 5. Iteration 
    Increase time step and go to Step 2. 
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Force Prediction 
Force data, generated by any contact with an object and fed 

into the master controller, may be predicted by a similar 
approach. As shown in Figure 1, the transmitted force data over 
the Internet may also be formulated within a nonlinear and non-
Gaussian state-space framework.  The true force data are then 
predicted by the prediction-based particle filter method given 
available observations.  

For a single DoF teleoperation system, let fk
k

 be the true 
force data generated by the slave controller at time . The force 
data transmitted to the master controller through the Internet is 
delayed by n  time steps. This is the impaired observation that 
may be expressed as . Similar to the representation of the 
motion prediction (2), the prediction of the true force 

fk n−%

1fk n− +

1

 is 
calculated based on the current state  and available 
observations . Hence, in a recursive Bayesian approach, 
the optimal predictor of the true force at time  is given 
as: 

fk n−

1:k n−f%

k n− +
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Using the prediction-based particle filter method, the predicted 
force 

 
is calculated by approximating the posterior 

density function  by using (5)–(8).  

ˆ 1|fk n k n− + −

( |1 1:p f fk n k n− + −% )

)

    Similar to the motion prediction case, the force prediction is 
performed by computing each step in Table 1. After the 
initialization step, which randomly selects an initial state of 
motion data, the prediction step is performed to obtain samples 

 
from the prior density , where 1

ifk n− +

1 i

( |1
ip f fk n k n− + −

Ns≤ ≤ . In the update step, the new state  is assigned 

by using importance weights. In the force prediction case, we 
assume that the non-Gaussian state noise is modeled using the 
Gamma density function (9). Then, after normalizing the 
computed importance weights, the resampling step is performed 
in order to regenerate a new set of states  based on high 

weighted samples. 

1fk n− +

1fk n− +

 
EXPERIMENTS 

In order to evaluate the proposed particle filter method for 
Internet-based teleoperation systems, we performed experiments 
using the PHANTOM Desktop haptic device as a master 
manipulator. The experimental setup consisting of the haptic 
device and the virtual robot based on a Selective Compliance 

Assembly Robot Arm (SCARA) manipulator configuration is 
shown in Figure 2. Based on movements from the master 
controller, contact force data that feed into the master controller 
are generated when the tip of the SCARA manipulator collides 
with objects in the graphical scene. In this experiment, positions 
of the 4-DoF virtual SCARA robot are kinematically mapped to 
the master controller, which is able to manipulate 4-DoF. In 
conjunction with the mechanics-based model of the 3D 
graphical environment, the haptic device provides positioning 
inputs to the slave controller while receiving feedback force 
through interactions with the virtual environment.  
 
 

 
 
Figure 2. Experimental scenario: The PHANTOM Desktop haptic 
device and virtual 3D graphical representation are used for master and 
slave controllers, respectively.  

 
TCP and UDP are two widely used Internet transport 

protocols. TCP, which provides reliable data transmission, often 
introduces relatively large variations of the Internet delay due to 
its retransmission and congestion control mechanisms. Hence, 
UDP has been suggested as a transport protocol for Internet-
based teleoperation systems even though it does not guarantee 
reliable data transmission and may cause data loss [1]. In this 
experiment, we employed a model for the Internet delay and 
used parameters typically observed in a UDP transmission [1], 
[7]. A random number generator was used to generate delay 
variations, which are shown in Figure 3. The maximum and 
average delays over a five-second interval were 132 msec and 
63 msec, respectively. In this experiment, we assumed that both 
the motion data transmitted to the slave controller and the force 
data fed to the master controller experienced the identical delay 
shown in Figure 3. 
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Motion and Force Prediction 
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To verify the prediction performance of the particle filter 
method, one-dimensional motion and force data were collected 
over a five-second interval. Since the experimental scenario is 
based on the 3D virtual graphic representation, the sampling rate 
of the motion data was 50 Hz so that human eyes could perceive 
continuous motion. The sampling rate of the force data rendered 
by the PHANTOM Desktop haptic device was 1,000 Hz in order 
to maintain realistic force without discontinuity. In general 
haptic applications, it is advised that motion and force data 
should be sampled at no less than 30 Hz and 1,000 Hz, 
respectively to prevent discontinuity of haptic data and to 
preserve closed-loops stability of an overall teleoperation 
system.

          Figure 3. The Internet delay with UDP transmission. 
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Figure 4. True and delayed motion data (top) and true and delayed 
feedback force data (bottom) collected from the master and slave 
controllers over a five-second interval.  

Figure 5. Predicted motion data (top) and feedback force data (bottom) 
collected from the slave and master controllers over a five-second 
interval. 
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The one-dimensional motion and force data collected at the 
master controller and slave controller, respectively, are shown in 
Figure 4. Also shown are observations of the motion and force 
data that are delayed based on the delay shown in Figure 3. The 
delayed motion and force data are impaired by variations of the 
Internet delay as shown in Figure 4. Based on the collected 
motion and force data, we simulated non-Gaussian state noise 
using the Gamma density function (9) with 2α =  and 3β = . 
We then evaluated the prediction performance of the particle 
filter method. In both motion and force prediction cases, we 
used 200 particles. The predicted motion and force data using 
the proposed particle filter method are shown in Figure 5. In 
order to compare them with the true data, transmission delays of 
the predicted motion and force data were not considered.  

In general, a large number of particles improves the 
prediction performance. However, it introduces computational 
complexity that results in relatively longer computation time.  In 
Internet-based teleoperation systems, such computational delay 
may affect stability of an overall teleoperation system. Hence, a 
number of particles should be selected efficiently to avoid an 
increase in the computational cost. In Table 2, the mean square 
errors (MSE) of the motion and force predictions are computed 
when the number of particles varies from 100 to 500. The MSE 
were measured when the Gamma density function was added as 
a non-Gaussian noise. Since errors tend to converge, a large 
number of particles may not be necessary. 
 

Table 2. Number of Particles vs. MSE. 
Number of 
particles 

Motion error  
(mm) 

Force error  
(mN) 

100 2.824 192.5 
200 2.809 189.6 
300 2.724 187.1 
400 2.704 185.8 
500 2.680 179.7 

* The motion and force units are millimeter and milliNewton, respectively. 

 
Comparison with the Kalman Filter 

The Kalman filter is a well-known recursive state predictor 
or estimator that provides an optimal solution in Bayesian 
probabilistic approaches. Since the traditional Kalman filter is 
only suitable in linear and Gaussian environments, the extended 
Kalman filter has been used to predict or estimate states of 
nonlinear dynamic systems [18]. In this experiment, we 
implemented the extended Kalman filter to the force prediction 
case shown in Figure 5. The comparison of the force prediction 
performance between the particle filter and extended Kalman 
filter is shown in Figure 6. Since the largest delay occurs 
between 3.0 and 3.5 seconds as shown in Figure 3, we present 

the comparison of prediction performance within that range in 
Figure 6. The MSE of the particle filter and extended Kalman 
filter are 198 and 846 mN, respectively. The proposed particle 
filter method outperforms the Kalman filter in nonlinear and 
non-Gaussian environments, as shown in Figure 6. 
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Figure 6. Prediction performance of particle filter and extended 
Kalman filter in nonlinear and non-Gaussian environments. 
 
DISCUSSION AND CONCLUSION 

In this paper, we presented motion and force predictions in 
Internet-based teleoperation systems. The prediction-based 
particle filter method was introduced and applied for motion and 
force data flows modeled by state-space formulations. 
Experiments using the haptic device in conjunction with a 
virtual teleoperator demonstrated that the particle filter method 
was well suited for predicting motion and force data, which may 
be impaired by the highly uncertain Internet delay. Furthermore, 
the particle filter method outperformed the conventional Kalman 
filter in extreme conditions such as nonlinear and non-Gaussian 
environments.  

One limitation of the particle filter method is its 
computational complexity. Since this method is used in a 
closed-loop teleoperation system, computational complexity that 
may cause additional delay is undesirable. The particle filter 
method that adaptively selects a number of particles has been 
introduced for real-time tracking [19]. A large number of 
particles may be necessary in the case of predicting an initial 
state or highly uncertain state. Otherwise, a small number of 
particles may be used if uncertainty is low and motion and 
reflected force data at the next state are predictable. 

In this paper, we introduced a signal processing approach 
to force-reflecting teleoperation systems to overcome the 
varying Internet delay. Such signal processing approach may be 
combined with an appropriate controller in order to address 
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stability of an overall teleoperation system. In the case of 
constant delay, the wave variables transformation has been used 
to achieve stability [2]. However, in the presence of varying 
delay, it is difficult to address stability of an overall 
teleoperation system since motion and force data may be 
impaired during transmission. In this paper, we demonstrated 
that impairments of haptic data are compensated by a 
prediction-based approach. By introducing a novel controller, 
the proposed signal processing approach may enhance the 
stability even in the presence of the varying Internet delay.  
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