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Abstract:
Traffic anomalies in communication networks greatly degrade

network performance. Early detection of such anomalies alleviates
their effect on network performance. A number of approaches that
involve traffic modeling, signal processing, and machine learning
techniques have been employed to detect network traffic anomalies.
In this paper, we develop various Naive Bayes (NB) classifiers

for detecting the Internet anomalies using the Routing Information
Base (RIB) of the Border Gateway Protocol (BGP). The classifiers
are trained on the feature sets selected by various feature selection
algorithms. We compare the Fisher, minimum redundancy maxi-
mum relevance (mRMR), extended/weighted/multi-class odds ratio
(EOR/WOR/MOR), and class discriminating measure (CDM) feature
selection algorithms. The odds ratio algorithms are extended to
include continuous features. The classifiers that are trained based
on the features selected by the WOR algorithm achieve the highest
F-score.
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1. Introduction

Anomalous events in communication networks cause traffic
behavior to deviate from its usual profile. Hence, network traffic
anomalies may be identified by analyzing traffic patterns. Various
methods have been employed for detecting traffic anomalies.
Early approaches include developing traffic models using statis-
tical signal processing techniques. A baseline profile of network
regular operation is developed based on a parametric model of
traffic behavior and a large collection of traffic samples to account
for all possible anomaly-free cases [1]. Anomalies may then
be detected as sudden changes in the mean values of variables
describing the baseline model. However, it is infeasible to acquire
datasets that include all possible cases. In a network with quasi-
stationary traffic, statistical signal processing methods may be
employed to detect anomalies as correlated abrupt changes in

network traffic [2].
In recent years, machine learning techniques have been em-

ployed for traffic classification. Unsupervised machine learning
models are used to detect anomalies in networks with non-
stationary traffic [3]. The one-class neighbor machine [4] and
recursive kernel based online anomaly detection [5] algorithms
are effective methods for detecting anomalous network traffic [6].

The Naive Bayes (NB) estimators perform well for categorizing

the Internet traffic based on various applications [7].
The Border Gateway Protocol (BGP) [8] is used for routing

packets between the Internet Autonomous Systems (ASs). BGP
anomalies may be categorized as misconfigurations, worms, or
blackouts. Rule based methods have been already employed
for detecting anomalous BGP events [9]. However, they are
non-adaptive, have high computational complexity, and require
a priori knowledge of network conditions. A BGP anomaly
detector has been proposed and implemented using statistical
pattern recognition techniques [10]. For example, a Bayesian
detection algorithm was designed to show that unexpected route
misconfigurations may be identified as statistical anomalies [11].
An instance-learning framework may also employ wavelets to
systematically identify anomalous BGP route advertisements [12].
We have recently evaluated Support Vector Machine (SVM) and
Hidden Markov Model (HMM) classifiers for detecting BGP

anomalies [13].
In the past, the main focus of proposed approaches was to

develop models for traffic classification. However, the accuracy
of a classifier depends on the underlying model, the extracted
features, and the combination of features used for developing the
model. In this paper, we address feature selection process to detect
BGP anomalies. The employed algorithms belong to the category
of filters, where feature selection is independent of the underlying
learning algorithm [14].

This paper is organized as follows. In Section 2, we describe
feature extraction from raw BGP data. A brief review of the
employed feature selection algorithms is presented in Section 3.
Design and implementation of the proposed NB classifiers are
described in Section 4 while their performance is evaluated in
Section 5. We conclude with Section 6.

2. Feature Extraction

BGP update messages are available to the research commu-
nity through the Route Views project [15] and the Routing Infor-
mation Service (RIS) project within the Réseaux IP Européens
(RIPE) community [16]. The BGP messages are collected in
multi-threaded routing toolkit (MRT) binary format [17]. The
anomalous traffic traces are collected by RIPE during Slammer,
Nimda, and Code Red I attacks. The list of collected anomalies

along with regular (anomaly-free) datasets is given in Table 1.
We used the Zebra tool [18] to convert MRT data to ASCII

format. We also developed a tool that employs the regular



Table 1: BGP datasets.

Class Date Duration (h)
Slammer Anomaly January 25, 2003 16
Nimda Anomaly September 18, 2001 59
Code RedI  Anomaly July 19, 2001 10
RIPE Regular  July 14, 2001 24
BCNET Regular ~ December 20, 2011 24

expression library of C# to extract features from the ASCII files.
The BGP protocol generates four types of messages: open,

update, keepalive, and notification. We only consider the BGP
update messages because they contain all necessary features for
anomaly classification. The extracted features are categorized into
volume and AS-path features. The AS-PATH is a BGP update
message attribute that enables the protocol to select the best path
for routing packets. The update messages carry information about
paths that BGP packets traverse. A feature is categorized as AS-
path if it is derived from the AS-PATH attribute. Otherwise, it is
categorized as a volume feature. Extracted features F and their
categories are listed in Table 2.

Table 2: List of features extracted from BGP update messages.

Feature (F) Definition Category
1 Number of announcements volume
2 Number of withdrawals volume
3 Number of announced NLRI prefixes volume
4 Number of withdrawn NLRI prefixes volume
5 Average AS-PATH length AS-path
6 Maximum AS-PATH length AS-path
7 Average unique AS-PATH length AS-path
8 Number of duplicate announcements volume
9 Number of duplicate withdrawals volume
10 Number of implicit withdrawals volume
11 Average edit distance AS-path
12 Maximum edit distance AS-path
13 Inter-arrival time volume
14 Number of Interior Gateway Protocol packets  volume
15 Number of Exterior Gateway Protocol packets  volume
16 Number of incomplete packets volume
17 Packet size volume

BGP traffic features are sampled every minute within a five-
day window. Hence, 7,200 samples are generated for each
anomalous event. Samples from two days before and after each
anomaly are used as regular test datasets. Each sample is a point
in a 17-dimensional space, where kt" dimension is a column
vector X, representing one feature. For example, X; is a 7,200
column vector representing the number of announcements in each
sampling window of one minute. The scatterings of anomalous
and regular classes for Feature 6 (AS-path) vs. Feature 1
(volume) and Feature 2 (volume) in two-way classification are
shown in Figure 1 (top) and (bottom), respectively. The graphs
indicate spatial separation of features. While selecting Features 1
and 6 may lead to a feasible classification based on visible
clusters (Oand x), using only Features 2 and 6 would lead to
poor classification. Hence, selecting appropriate combination of
features is essential for an accurate classification.
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Figure 1: Scattered graph of Feature 6 vs. Feature 1 (top) and
Feature 2 (bottom) extracted from the BCNET traffic. Feature
values are normalized to have zero mean and unit variance. Shown
are two traffic classes: regular (O) and anomaly (x).

3. Feature Selection

Feature selection algorithms improve classification accuracy
by selecting features that are most relevant to the classification
task. We employ the Fisher [19], [20], three variants of
the minimum Redundancy Maximum Relevance (mRMR) [21],
extended/weighted/multi-class odds ratio (EOR/WOR/MOR), and
class discriminating measure (CDM) [22] selection algorithms.
We selected the top ten features while neglecting weaker and

distorted features.
The Fisher feature selection algorithm computes the score @,

for the k" feature as a ratio of inter-class separation and intra-
class variance. Features with higher inter-class separation and
lower intra-class variance have higher Fisher scores. If there are
NF anomalous samples and N* regular samples of the k*" feature,
the mean values m” of anomalous samples and m” of regular
samples are calculated as
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where aj and rjy are the sets of anomalous and regular samples
for feature k, respectively. The Fisher score for the k" feature is
calculated as

[(m)” = (mk)”]
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The mRMR algorithm relies on an information theory ap-
proach for feature selection. It selects a subset of features
that contains more information about the target class while
having less pairwise mutual information. A subset of features

S = {Xi,...,Xx,...} with |S| elements has the minimum
redundancy if it minimizes
1
W= — I(Xg, X 3
|S|2 Z ( k l) ()
X, X €8

and maximum relevance to the classification task if it maximizes
= 1] 5| > I(X, C), “)
Xp€S

where C is a class vector and Z denotes the mutual information
function calculated as

)= p(Xy, Xy)log
k.l

(X, X7)
p(Xp)p(Xp)

We use three variants of the mRMR algorithm for feature
selection: Mutual Information Difference (MID), Mutual Informa-
tion Quotient (MIQ), and Mutual Information Base (MIBASE). If
Q) is the set of all features, MID and MIQ select the features based
on max[V — W] and max[V /W], respectively.

SCQ SCQ

(X, X, 5)

The odds ratio (OR) algorithm and its variants perform well
for selecting features to be used in binary classification with NB
models. In case of a binary classification with two target classes ¢
and ¢, the odds ratio for a feature X, is

Pr(Xy|c)(1 — Pr(X|e))
Pr(X;|e)(1 — Pr(Xgle))’

where Pr(Xy|c) and Pr(Xy|¢) are the probabilities of feature X,

being in classes c and ¢, respectively.
The extended odds ratio (EOR), weighted odds ratio (WOR),

multi-class odds ratio (MOR), and class discriminating measure
(CDM) are variants that enable multi-class feature selection. In
case of a classification problem with v = {c1, ¢, ..., cs} classes,

Zlo

OR(X}) =log

(6)

Pr(Xg|e;) (1 — Pr(Xy|¢;))

EOR X
) Pr(Xy|¢;) (1 — Pr(Xylc;))

Pr(Xgle;) (1 — Pr(Xl¢;))
Pr(X k|cj)(1 — Pr(Xk\cj))

J
WOR(Xy) =Y Pr(c;) x log

j=1
J
MOR(Xy) = Z 1og Pr(Xie;) (1 — Pr(Xi|c)))
= Pr(Xg|¢;) ( — Pr(Xklcy) )
J
r(Xgle))
CDM (Xy,) = log ! @)
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where Pr(Xy|c;) is the conditional probability of X, given the
class ¢; and Pr(c;) is the probability of occurrence of the 5" class.
The OR algorithm may be extended by computing Pr(Xy|c;) for
continuous features. If the sample points are independent and
identically distributed, (6) may be written as

[Xx|

Z 1og

where |Xj| and X, denote the size and the i‘" element of the k"
feature vector, respectively. A realization of the random variable
X1 1s denoted by ;. Other variants of the OR algorithm may
be extended to continuous cases in a similar manner. The top ten
selected features are listed in Table 3.

Xit = zixle) (1 — Pr(Xi, = 2i|0))
k' = xzk| )(1 - PI‘(Xik = xzk\c)) ’

4. Classification with Naive Bayes (NB)

The Bayesian classifiers are among the most efficient machine
learning classification tools. They assume conditional indepen-
dence among features. Hence,

PI‘(Xk = zk,Xl = .’I}Z|Cj) =
PI‘(Xk = .’L‘k|Cj) PI‘(X[ = .’L‘l‘Cj),
(®)

where x;, and x; are realizations of feature vectors X; and X,
respectively. In a two-way classification, classes ¢; and ¢y denote
anomalous and regular data points, respectively. We arbitrarily
assign labels ¢; = 1 and ¢ = —1. For a four-way classification,
we define four classes ¢y = 1, cg = 2, ¢cg3 = 3, and ¢y =
4 that denote Slammer, Nimda, Code Red I, and Regular data
points, respectively. Even though it is naive to assume that
features are independent conditioned on a given class (8), in
certain applications NB classifiers perform better compared to
other classifiers. They also have low complexity and may be

trained effectively with smaller datasets.
We train generative Bayesian models that may be used as

classifiers using labeled datasets. In such models, the probability
distributions of the priors Pr(c;) and the likelihoods Pr(X; =
x;|c;) are estimated using the training datasets. Posterior of a data
point represented as a row vector &; is calculated using the Bayes
rule

PI’(XZ‘ = xi\cj) PI‘(Cj)
~ Pr(X; = z;|cj) Pr(c;). 9

PI“(CJ*|XZ‘ = $i) =

The naive assumption of independence among features helps
calculate the likelihood of a data point as

K
Pr(X; = zilc;) = [ [ Pr(Xix = 2icle;), (10)
k=1

where K denotes the number of features. The probabilities on the
right-hand side (10) are calculated using the Gaussian distribution
(1)

Pr( X, = wirlcj, pr, or) = N (X, = zirlej, g, on),



Table 3: The top ten selected features F based on the scores calculated by various feature selection algorithms.

Fisher mRMR Odds Ratio variants
MID MIQ MIBASE OR EOR WOR MOR CMD
F Score || F Score | & Score | F Score || F Score | F Score | F  Score | F  Score | F  Score
11 0.397758 || 15 0.94 | 15 0.94 | 15 094 || 10 1.3602 | 5 2.1645 | 5 1.3963 | 6 2.3588 | 5 8.5959
0.354740 || 5 0.12 | 12 036 | 17 0.63 || 4 1.3085 | 7 2.1512 | 7 1.3762 | 5 2.3486 | 11  6.9743
9 0.271961 || 12 0.11 | 3 035 |2 047 || 1 1.1088 | 6 21438 | 6 1.3648 | 11 2.3465 | 9 3.0844
0.185844 || 7 0.10 | 8 0.34 | 8 0.34 || 14 1.1080 | 11 2.1340 | 11 1.3495 | 17 23350 | 2 2.3485
16 0.123742 || 4 0.07 | 1 032 | 6 0.27 || 12 1.0973 | 10 2.0954 | 13 1.1963 | 16 2.3247 | 8 2.2402
17 0.121633 10 007 | 6 030 | 3 0.13 || 3 1.0797 | 4 2.0954 | 9 1.0921 | 14 2.1228 | 16 2.0985
0.116092 || 8 0.04 | 4 0.27 | 1 0.13 || 15 1.0465 | 13 2.0502 | 2 1.0198 | 1 2.1109 | 3 2.0606
0.086124 || 13 0.04 | 17 0.26 | 9 0.10 || 8 1.0342 | 9 20127 | 16 09850 | 2 2.1017 | 14 2.0506
0.081760 || 2 003 |9 025 | 12 0.08 17 1.0304 | 1 2.0107 | 17 09778 | 7 2.0968 | 1 2.0417
14 0.081751 || 14 0.03 | 2 024 | 11 0.06 || 16 1.0202 | 14 2.0105 | 8 0.9751 | 3 2.0897 | 17 2.0213

where py and oy are the mean and standard deviation of the
kt" feature, respectively. We assume that priors are equal to the
relative frequencies of the training data points for each class c;.
Hence,

N

Pr(c;) = WJ’ (12)
where N is the number of training data points that belong to the

jt" class and N is the total number of training points.
The parameters of two-way and four-way classifiers are

estimated and validated by a tenfold cross-validation. In a two-
way classification, an arbitrary training data point x; is classified
as anomalous if the posterior Pr(c;|X; = z;) is larger than
PI‘(CQ|XZ' = 1131)

5. Performance Evaluation

We use the MATLAB statistical toolbox to develop NB
classifiers. The feature matrix consists of 7,200 rows for each
dataset corresponding to the number of training data points and
17 columns representing features for each data point. Two classes
are targeted: anomalous (true) and regular (false). In a two-way
classification, all anomalies are treated to be of one type while in
a four-way classification, each training data point is classified as
Slammer, Nimida, Code Red I, or Regular. We use three datasets
listed in Table 4 to train the two-way classifiers. Performance
of two-way and four-way classifiers is evaluated using various
datasets. The results are verified by using regular RIPE and
regular BCNET [23] datasets. The regular BCNET dataset is
collected at the BCNET location in Vancouver, British Columbia,
Canada [24], [25].

Table 4: Training datasets for two-way classifiers.

NB  Training dataset Test dataset
NB1 Slammer and Nimda Code Red I
NB2 Slammer and Code RedI Nimda
NB3 Code Red I and Nimda Slammer

The proposed classifiers are trained using the top selected
features listed in Table. 3. We use the accuracy and F-score to

compare the proposed models.
calculated as

The performance measures are

TP+TN
accuracy =
Y“TP+TN+FP+FN
. o precision x sensitivity
F-score =2 x precision + sensitivity’ (13)
where
tivit TP
sensitivity = ————
YT TP+ FN
TP
ision = ————. 14
precision TP+ FP (14)
Furthermore,

e true positive (TP) is the number of anomalous training data
points that are classified as anomaly;

e true negative (TN) is the number of regular training data
points that are classified as regular;

e false positive (FP) is the number of regular training data
points that are classified as anomaly;

o false negative (FN) is the number of anomalous training data
points that are classified as regular.

The sensitivity measures the ability of the model to identify
the anomalies (true positives) among all labeled anomalies (true).
The precision is the ability of the model to identify the anomalies
(true positives) among all data points that are classified as
anomalies (positives). The accuracy treats the regular data points
to be as important as the anomalous training points. Hence,
it is not an adequate measure when comparing performance of
classifiers. For example, if a dataset contains 900 regular and
100 anomalous data points and the NB classifies these 1,000
data points as regular, its accuracy is 90%, which seems high at
the first glance. However, no anomalous data point is correctly
classified and, hence, the F-score is zero. Therefore, the F-score
is often used to compare performance of classification models.
It is the harmonic mean of the precision and the sensitivity and
reflects the success of detecting anomalies rather than detecting
both anomalies and regular data points.



5.1 Two-Way Classification

The results of the two-way classification are shown in Table 5.
The combination of Code Red I and Nimda training data points
(NB3) achieves the best classification results. The NB models
classify the training data points of regular RIPE and regular
BCNET datasets with 95.8% and 95.5% accuracies, respectively.
There are no anomalous data points in these datasets and, thus,
both TP and FN values are zero. Hence, the sensitivity is not
defined and precision is equal to zero. Consequently, the F-score
is not defined for these cases and the accuracy reduces to

TN

TN+ FP (1)

accuracy =

Table 5: Performance of the two-way naive Bayes classification.

Performance index
Accuracy (%)

F-score (%)

No. NB Feature Test dataset RIPE BCNET  Test dataset
1 NB1 All features 69.1 91.1 71.3 38.8
2 NBI Fisher 72.1 92.3 76.3 46.1
3 NB1 MID 66.0 94.7 78.2 25.4
4 NBI MIQ 70.8 89.9 80.9 447
5 NB1 MIBASE 71.2 88.2 81.3 46.9
6 NBI1 OR 66.5 77.9 94.7 26.2
7 NB1 EOR 70.4 78.3 92.7 42.0
8 NB1 WOR 74.1 77.2 89.3 52.8
9 NB1 MOR 72.1 80.8 90.9 46.8
10 NBI CDM 71.8 80.8 92.6 453
11 NB2 All features 68.1 92.1 87.1 21.4
12 NB2 Fisher 68.2 93.4 89.0 22.6
13 NB2 MID 65.2 95.8 90.7 6.4
14  NB2 MIQ 68.0 91.5 88.9 22.3
15 NB2 MIBASE 68.5 90.7 89.3 24.8
16 NB2 OR 65.2 87.9 96.0 6.2
17  NB2 EOR 69.0 90.4 93.6 26.5
18 NB2 WOR 70.1 90.9 91.6 32.1
19 NB2 MOR 68.2 91.2 93.8 22.0
20 NB2 CDM 70.1 91.5 90.9 32.1
21 NB3 All features 83.4 91.3 85.9 57.8
22 NB3 Fisher 88.1 90.7 85.9 68.5
23 NB3 MID 80.5 95.8 90.9 43.6
24  NB3 MIQ 84.4 91.2 89.1 58.1
25 NB3 MIBASE 85.1 89.8 89.1 61.4
26 NB3 OR 82.3 88.6 95.5 46.7
27 NB3 EOR 84.8 85.1 92.4 58.9
28 NB3 WOR 87.4 84.3 90.1 69.7
29 NB3 MOR 87.3 84.4 89.1 69.2
30 NB3 CDM 87.9 84.4 91.4 67.0

Classifiers trained based on features selected by the OR algo-
rithms often achieve higher accuracies and F-scores for training
and test datasets listed in Table 4. The OR selection algorithms
perform well when used with the NB classifiers because the fea-
ture score (6) is calculated using the probability distribution that
the NB classifiers use for posterior calculations (9). Hence, the
features selected by the OR variants are expected to have stronger
influence on the posteriors calculated by the NB classifiers [26].
The WOR feature selection algorithm achieves the best F-score
for all NB classifiers.

The Slammer worm test data points that are incorrectly
classified (false positives and false negatives) using the NB3
classifier trained based on the features selected by WOR in the
two-way classification are shown in Figure 2 (top). Correctly
classified anomalies (true positives) during the 16 hours time
interval are shown in Figure 2 (bottom). Most anomalous data
points with large number of IGP packets (volume feature) are
correctly classified.
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Figure 2: Shown in red are incorrectly classified regular (false
positives) and anomaly (false negatives) data points (top) and
correctly classified anomaly (true positives) data points (bottom)
on January 25, 2003. Correctly classified regular (true negatives)
traffic is not shown.

5.2 Four-Way Classification

The four-way classification results are shown in Table 6. The
four-way NB model classifies data points as Slammer, Nimda,
Code Red I, or Regular. Both regular RIPE and regular BCNET
datasets are tested. Regular BCNET dataset classification results
are also listed in order to verify the performance of the proposed
classifiers. Although it is more difficult to classify four distinct



classes, the classifier trained based on the features selected by the
MOR algorithm achieves 68.7% accuracy.

Table 6: Accuracy of the four-way naive Bayes classification.

Average accuracy (%)

No. Feature RIPE regular BCNET
1 All features 74.3 67.6
2 Fisher 24.7 343
3 MID 74.9 33.1
4 MIQ 24.6 34.8
5 MIBASE 75.4 33.1
6 OR 25.5 36.7
7 EOR 75.3 68.1
8 WOR 75.8 532
9 MOR 71.7 68.7
10 CDM 24.8 345

Performance of the NB classifiers is often inferior to the SVM
and HMM classifiers [13]. However, the NB2 classifier trained on
Slammer and Code Red I datasets performs better than the SVM
classifier.

6. Conclusions

In this paper, we successfully classified anomalies in BGP
traffic traces using NB models. We employed various feature
selection algorithms and generative NB models to design anomaly
detectors. We extended the usage of the OR algorithms from cate-
gorical to continuous features. The OR algorithms often achieved
higher F-scores in the two-way and four-way classifications with
various training datasets. The NB classifiers may be used for
online detection of anomalies because they have low complexity
and may be trained effectively on smaller datasets.

References

[1] H. Hajji, “Statistical analysis of network traffic for adaptive faults
detection,” IEEE Trans. Neural Netw., vol. 16, no. 5, pp. 1053—
1063, Sept. 2005.

[2] M. Thottan and C. Ji, “Anomaly detection in IP networks,” IEEE
Trans. Signal Process., vol. 51, no. 8, pp. 2191-2204, Aug. 2003.

[3] A. Dainotti, A. Pescape, and K. C. Claffy, “Issues and future
directions in traffic classification,” IEEE Network, vol. 26, no. 1,
pp- 35-40, Feb. 2012.

[4] A. Munoz and J. Moguerza, “Estimation of high-density regions
using one-class neighbor machines,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 28, no. 3, pp. 476480, Mar. 2006.

[5] T. Ahmed, M. Coates, and A. Lakhina, “Multivariate online
anomaly detection using kernel recursive least squares,” in
Proc. 26th IEEE Int. Conf. Comput. Commun., Anchorage, AK,
USA, May 2007, pp. 625-633.

[6] T. Ahmed, B. Oreshkin, and M. Coates, “Machine learning
approaches to network anomaly detection,” in Proc. USENIX
Workshop Tackling Computer Systems Problems with Machine
Learning Techniques, Cambridge, MA, 2007, pp. 1-6.

[71 A. W. Moore and D. Zuev, “Internet traffic classification using
Bayesian analysis techniques,” in Proc. Int. Conf. Measurement and

(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

Modeling of Comput. Syst., Banff, Alberta, Canada, June 2005, pp.
50-60.

Y. Rekhter and T. Li, “A Border Gateway Protocol 4 (BGP-4),” RFC
1771, IETF, Mar. 1995.

J. Li, D. Dou, Z. Wu, S. Kim, and V. Agarwal, “An Internet
routing forensics framework for discovering rules of abnormal BGP
events,” SIGCOMM Comput. Commun. Rev., vol. 35, no. 5, pp. 55—
66, Oct. 2005.

S. Deshpande, M. Thottan, T. K. Ho, and B. Sikdar, “An online
mechanism for BGP instability detection and analysis,” IEEE
Trans. Comput., vol. 58, no. 11, pp. 1470-1484, Nov. 2009.

K. El-Arini and K. Killourhy, “Bayesian detection of router
configuration anomalies,” in Proc. Workshop Mining Network Data,
Philadelphia, PA, USA, Aug. 2005, pp. 221-222.

J. Zhang, J. Rexford, and J. Feigenbaum, “Learning-based anomaly
detection in BGP updates,” in Proc. Workshop Mining Network
Data, Philadelphia, PA, USA, Aug. 2005, pp. 219-220.

N. Al-Rousan and Lj. Trajkovic, “Machine learning models for
classification of BGP anomalies,” Proc. IEEE Conf. High Perfor-
mance Switching and Routing, HPSR 2012, Belgrade, Serbia, June
2012.

G. H. John, R. Kohavi, and K. Pfleger, “Irrelevant features and the
subset selection problem,” in Proc. Int. Conf. Machine Learning,
New Brunswick, NJ, USA, July 1994, pp. 121-129.

University of Oregon Route Views project. [Online]. Available:
http://www.routeviews.org/.

RIPE RIS raw data. [Online]. Available:
data-tools/stats/ris/ris-raw-data.

T. Manderson, “Multi-threaded routing toolkit (MRT) Border
Gateway Protocol (BGP) routing information export format with
geo-location extensions,” RFC 6397, IETF, Oct. 2011.

Zebra BGP parser. [Online]. Available: http://www.linux.it/~md/
software/zebra-dump-parser.tgz.

http://www.ripe.net/

Q. Gu, Z. Li, and J. Han, “Generalized Fisher score for feature
selection,” in Proc. Conf. Uncertainty in Artificial Intelligence,
Barcelona, Spain, July 2011, pp. 266-273.

J. Wang, X. Chen, and W. Gao, “Online selecting discriminative
tracking features using particle filter,” in Proc. Computer Vision and
Pattern Recognition, San Diego, CA, USA, June 2005, vol. 2, pp.
1037-1042.

H. Peng, F. Long, and C. Ding, “Feature selection based on mutual
information criteria of max-dependency, max-relevance, and min-
redundancy,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8,
pp- 1226-1238, Aug. 2005.

J. Chen, H. Huang, S. Tian, and Y. Qu, “Feature selection for text
classification with naive Bayes,” Expert Systems with Applications,
vol. 36, no. 3, pp. 5432-5435, Apr. 2009.

BCNET. [Online]. Available: http://www.bc.net.

T. Farah, S. Lally, R. Gill, N. Al-Rousan, R. Paul, D. Xu, and
Lj. Trajkovic, “Collection of BCNET BGP traffic,” in Proc. 23rd
ITC, San Francisco, CA, USA, Sept. 2011, pp. 322-323.

S. Lally, T. Farah, R. Gill, R. Paul, N. Al-Rousan, and L. Trajkovic,
“Collection and characterization of BCNET BGP traffic,” in Proc.
2011 IEEE Pacific Rim Conf. Communications, Computers and
Signal Processing, Victoria, BC, Canada, Aug. 2011, pp. 830-835.
D. Mladenic and M. Grobelnik, “Feature selection for unbalanced
class distribution and naive Bayes,” in Proc. Int. Conf. Machine
Learning, Bled, Slovenia, June 1999, pp. 258-267.



