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Introduction

n Denial of service attacks are harmful cyberattacks that diminish Internet 
resources and services

n Detecting these cyberattacks is a topic of great interest in cybersecurity
n Denial of service (DoS) attacks: performed from a single system 
n Distributed DoS (DDoS) attacks: executed from multiple systems
n Classified as: floods, fragmentation, Transport Control Protocol (TCP) state 

exhaustion, and application-layer attacks
n Datasets capturing DoS and DDoS attacks have been synthetically 

generated by the Canadian Institute for Cybersecurity (CIC)
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Introduction

n Detection techniques for DoS and DDoS attacks include: activity profiling, 
change-point detection, wavelet analysis, and machine learning algorithms

n Machine learning algorithms:
n Support vector machine: SVM
n Deep neural networks:

n Convolutional neural networks (CNNs)
n Recurrent neural networks (RNNs)
n Autoencoders
n Multilayer perceptrons

n Broad learning system: BLS and its extensions
n Gradient boosting decision trees (GBDT)
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Machine learning algorithms

n Detection of DoS and DDoS attacks: require updating or retraining generated 
models to capture deviations from regular network activities

n Training time: 
n important for the decision-making process at the onset of anomalies when 

preventing cyberattacks on servers and avoiding DoS to legitimate users
n Fast training machine learning algorithms:

n BLS:
n a single layer feed-forward neural network
n employs pseudo-inverse rather than back-propagation

n GBDT: 
n an ensemble of decision trees 
n employs functional gradient descent
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Broad learning system

n Broad learning system (BLS) algorithm with increments of mapped 
features, enhancement nodes, and/or new input data:
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Original BLS

n State matrix 𝑨! is constructed from groups of mapped features 𝒁" and 
groups of enhancement nodes 𝑯# as:

𝑨! = 𝒁" 𝑯#]

= 𝜙 𝑿𝑾$! + 𝜷$! | 𝜉(𝒁!"𝑾%" + 𝜷%") ,
𝑖 = 1, 2, … , 𝑛 and 𝑗 = 1, 2, … ,𝑚,

where:
n 𝜙 and 𝜉: projection mappings 
n 𝑾$!, 𝑾%": weights

n 𝜷$!, 𝜷%": bias parameters
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Original BLS

n Modified to include additional mapped features 𝒁"&', enhancement nodes 
𝑯#&', and/or input nodes 𝑿(

n Moore-Penrose pseudo inverse of matrix 𝑨! is computed to calculate the 
weights of the output:

𝑾"
# = [𝑨"#]&𝒀

n During the training process, data labels are deduced using the calculated 
weights 𝑾"

#, mapped features 𝒁", and enhancement nodes 𝑯# :
𝒀 = 𝑨"#𝑾"

#

= 𝒁𝟏, … , 𝒁" 𝑯', … ,𝑯#]𝑾"
#
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RBF-BLS extension

n The RBF function is implemented using Gaussian kernel: 

𝜉 𝑥 = 𝑒𝑥𝑝 −
||𝑥 − 𝑐||*

𝛾*

n Weight vectors of the output 𝑯𝑾 are deduced from:

𝑾 = (𝑯+𝑯),'𝑯+𝒀
= 𝑯&𝒀,

where:
n 𝑾 = 𝜔', 𝜔* , … , 𝜔- : output weights 
n 𝑯 = 𝜉', 𝜉*, … , 𝜉- : hidden nodes
n 𝑯&: pseudoinverse of 𝑯
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Cascades with incremental learning
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Gradient boosting machines

19

n Gradient boosting machines (GBMs): boosting algorithms that employ 
functional gradient descent to minimize the loss function

n GBDT: GBM variant that employs decision trees as estimators
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https://medium.com/swlh/gradient-boosting-trees-for-classification-a-beginners-guide-596b594a14ea

Generating a gradient boosting model
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Gradient boosting decision trees

21

n Goal of the GBDT models is to minimize the objective function:

ℒ(-) = E
0 1 '

2

𝑙 𝑦0 − ŷ0
- + Ω(𝑓-),

where:
n 𝑙 K : loss function
n 𝑦0: true value of the 𝑖3% data point

n ŷ0
(-) is the predicted output of the 𝑖3% data point for the kth iteration

n Ω(𝑓-): (optional) regularization term
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GBDT: XGBoost

n The 2nd order Taylor series approximates the objective function:

ℒ(-) ≃ E
0 1 '

2

𝑙 𝑦0 − ŷ0
-,' + 𝑔0𝑓- 𝒙0 +

1
2
ℎ0𝑓-*(𝒙0) + Ω(𝑓-),

where 𝑔0 and ℎ0 are the known terms and 𝑙 K is the constant term
n For a known tree structure 𝑞(𝑿), 𝐼3 is a set containing the indices of data 

points in leaf 𝑡
n Setting the derivative of the objective function approximation to zero gives 

the optimal weight 𝜔3∗ for leaf 𝑡:

𝜔3∗ = −
∑0∈6# 𝑔0

∑0∈6# ℎ0 + 𝜆
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GBDT: XGBoost

n Optimal solution of the objective function:

ℒ∗(-) = −
1
2 E
31'

+ ∑0∈6# 𝑔0
*

∑0∈6# ℎ0 + 𝜆
+ 𝛾𝑇

n This optimal value is used to evaluate the quality of a tree structure 𝑞(𝑿)
n Tree structure with the lowest optimal value is selected for each iteration
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GBDT: LightGBM

n In a decision tree, nodes are split based on features with the largest 
information gain, which depends on the variance gain Ṽ7 for feature 𝑗 computed 
after splitting as:

Ṽ! 𝑑 =
1

𝑁 ×𝑁"
!(𝑑)

)
𝒙!∈𝑨$

𝑔$ +
1 − 𝑎
𝑏

)
𝒙!∈𝑩$

𝑔$
'

+
1

𝑁 ×𝑁(
!(𝑑)

)
𝒙!∈𝑨%

𝑔$ +
1 − 𝑎
𝑏

)
𝒙!∈𝑩%

𝑔$
'

where:
n 𝑑: splitting point
n 𝑁: number of data points
n 𝑁8

7 and 𝑁9
7: numbers of data points related to left and right child nodes

n 𝑔0: gradient for data point 𝒙0
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GBDT: LightGBM

n The sampling ratios 𝑎 and 𝑏 are used to calculate the normalization 
coefficient ' ,(

:
n Subsets of 𝑨(𝑩): 

n 𝑨8(𝑩8): left child nodes
n 𝑨9(𝑩9): right child nodes
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GBDT: CatBoost

n CatBoost is introduced to deal with categorical features
n It employs the ordered boosting algorithm and offers an effective approach 

when compared to XGBoost and LightGBM
n Target statistic was used to convert categorical features to numerical 

features while keeping the dimension of the dataset unchanged
n Ordered boosting addresses the prediction shift when building the decision 

trees during the training process
n Symmetric (oblivious) decision trees are used to avoid over-fitting and 

reduce the time required to grow the tree
n CatBoost offers plain and ordered boosting modes with target statistic and 

ordered boosting, respectively
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Canadian Institute for Cybersecurity datasets

CICIDS2017, CSE-CIC-IDS2018, and CICDDoS2019: 
n Testbed used to create the publicly available dataset that includes multiple 

types of recent cyber attacks
n Dataset features: extracted from collected TCP and UDP network flows with 

a network traffic flow analyzer
n Each dataset: over 80 features including destination IP and port, protocol 

type, flow duration, and maximum/minimum packet size
n Network traffic collected:

n Monday, 03.07.2017 to Friday, 07.07.2017
n Wednesday, 14.02.2018 to Friday, 02.03.2018
n Saturday, 03.11.2018 and Saturday, 01.12.2018
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CIC datasets: DoS and DDoS attacks 

Dataset Attack Number of Data 
Points

GoldenEye 10,293
CCIDS2017 Hulk 230,124
July 05, 2017 SlowHTTPTest 5,499

Slowloris 5,796
CSE-CIC-IDS2018 GoldenEye 41,508
February 15, 2018 Slowloris 10,990
CICDDoS2019 Domain Name System 5,071,011
December 01, 2018 Lightweight Directory Access Protocol 2,179,930

Network Time Protocol 1,202,642
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n Application-layer DoS and TCP/UDP DDoS attacks
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Experimental procedure

§ Step 1: Use subsets of the CIC datasets to create training and test datasets
§ Step 2: Normalize training and test datasets
§ Step 3: Train and tune parameters of the BLS and GBDT models using 

time series split for 10-fold cross-validation
§ Step 4: Evaluate model performance based on:

§ Training time
§ Accuracy
§ F-score
§ Precision
§ Sensitivity 
§ Confusion matrix
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*GBDT: gradient boosting decision trees 

October 17–20, 2021



CIC datasets: 2017, 2018, 2019 
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§ Incremental BLS (additional parameters):
§ Incremental learning steps: 2
§ Enhancement nodes/step: 20 (CICIDS2017, CSE-CIC-IDS2018), and 10 (CICDDoS2019)
§ Data points/step: 55,680 (CICIDS2017), 49,320 (CSE-CIC-IDS2018), and 382,929 (CICDDoS2019)

Best hyper-parameters: 
BLS and incremental BLS
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Model Dataset Mapped features Groups of 
mapped features

Enhancement 
nodes

BLS

RBF-BLS CICIDS2017 20 30 40

CFBLS CSE-CIC-IDS2018 20 10 80

BLS CICDDoS2019 15 5 20

Incremental BLS
CFBLS CICIDS2017 10 20 40

BLS CSE-CIC-IDS2018 15 30 20

CFBLS CICDDoS2019 20 5 10
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§ GBDT (additional parameters):
§ Maximum depth in a tree: 6 (XGBoost, CatBoost) 
§ Maximum number of leaves: 31 (LightGBM, CatBoost)
§ Loss function: log-loss
§ Boosting modes: gbtree (XGBoost), gbdt (LightGBM), and plain (CatBoost)

Best hyper-parameters: 
XGBoost, LightGBM, and CatBoost
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Model Dataset Number of estimators Learning rate

CICIDS2017 100 0.01

XGBoost CSE-CIC-IDS2018 100 0.01

CICDDoS2019 20 0.01

CICIDS2017 200 0.10

LightGBM CSE-CIC-IDS2018 150 0.02

CICDDoS2019 20 0.05

CICIDS2017 150 0.10

CatBoost CSE-CIC-IDS2018 150 0.01

CICDDoS2019 20 0.01
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Best performance: 
BLS and incremental BLS models
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Model Dataset Training 
time Accuracy F-Score Precision Sensitivity TP FP TN FN

BLS (s) (%) (%) (%) (%)

RBF-BLS CICIDS2017 37.72 96.63 96.87 97357 96.18 96,832 2,416 82,511 3,841

CFBLS CSE-CIC-IDS2018 17.04 97.46 81.46 98.26 69.56 14,597 258 240,057 6,388

BLS CICDDoS2019 46.64 99.98 99.99 99.99 99.99 2,541,533 204 954 220

Incremental 
BLS
CFBLS CICIDS2017 17.60 95.12 95.44 96.73 94.17 94,827 3,206 81,721 5,846

BLS CSE-CIC-IDS2018 38.09 97.47 81.35 99.51 68.80 14,437 71 240,244 6,548

CFBLS CICDDoS2019 79.01 99.97 99.99 99.97 99.99 2,541,764 646 512 9
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Best performance: 
XGBoost, LightGBM, and CatBoost models
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Model Dataset Training 
time Accuracy F-Score Precision Sensitivity TP FP TN FN

(s) (%) (%) (%) (%)

CICIDS2017 24.49 98.62 98.72 99.43 98.02 98,684 568 84,359 1,989

XGBoost CSE-CIC-IDS2018 14.43 99.90 99.39 99.99 98.79 20,731 1 240,314 254

CICDDoS2019 62.99 99.99 99.99 99.99 99.99 2,541,767 7 1,151 6

CICIDS2017 3.35 97.93 98.06 99.94 96.25 96,896 60 84,867 3,777

LightGBM CSE-CIC-IDS2018 1.73 98.73 91.44 99.99 84.23 17,675 1 240,314 3,310

CICDDoS2019 8.12 99.99 99.99 99.99 99.99 2,541,767 8 1,150 6

CICIDS2017 20.27 98.01 98.13 99.91 96.41 97,056 83 84,844 3,617

CatBoost CSE-CIC-IDS2018 19.03 99.95 99.72 99.97 99.46 20,872 6 240,309 113

CICDDoS2019 17.38 99.99 99.99 99.99 99.99 2,541,762 19 1,139 11
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Algorithm performance: 
effect of hyper-parameters

§ LightGBM models offer the shortest training time for all considered datasets
§ Their training time is approximately 20 times shorter than for BLS, XGBoost, 

and CatBoost models
§ The GBDT models outperform original and incremental BLS models using 

the CICIDS2017 and CSE-CIC-IDS2018 datasets
§ The best accuracy and F-Score:

§ XGBoost model and CICIDS2017 dataset
§ CatBoost model and CSE-CIC-IDS2018 dataset 

§ The lowest number of FNs is generated using XGBoost model with 
CICIDS2017 and CatBoost model with CSE-CIC-IDS2018 datasets

§ The BLS and GBDT models using the CICDDoS2019 dataset have similar  
and very high accuracy, F-Score, precision, and sensitivity
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Conclusion

§ We compared performance of BLS and GBDT algorithms using CIC datasets
§ Training time depends on:

§ BLS: number of mapped features, groups of mapped features, and 
enhancement nodes 

§ GBDT: number of estimators, learning rate, maximum depth, and number of 
leaves in the decision trees

§ The shortest training time was required for LightGBM models
§ The experiments illustrated advantages of GBDT algorithms when detecting DoS

and DDoS attacks
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