Comparison of Machine Learning Algorithms for Detection of Network Intrusions

Zhida Li, Prerna Batta, and Ljiljana Trajković Communication Networks Laboratory, Simon Fraser University, Vancouver, British Columbia, Canada

INTRODUCTION

- Detecting and analyzing network anomalies and intrusions are important topics in cyber security.
- Network intrusions may be classified using machine learning algorithms such as Recurrent Neural Networks (RNNs) and Broad Learning System (BLS).
- Classification models are trained and tested using the NSL-KDD dataset containing information about intrusion and regular network connections.
- Performance results indicate that the BLS algorithm shows comparable performance and has shorter training time.

INTRUSION DETECTION

- Various detection systems have been designed using machine learning techniques that help detect malicious intentions of network users.
 - Classification algorithms: J48, naive Bayes (NB), NB Tree, Random Forests (RF), Random Tree (RT), Multilayer Perception (MP), Support Vector Machine (SVM)
 - Deep learning algorithms: Network (NIDS) and Recurrent Neural Network (RNN-IDS) Intrusion Detection Systems
 - Hybrid framework: Binary Classifier (BC) modules based on the C4.5 algorithm, aggregation module, and k-NN module

 Module of the Broad Learning System algorithm with increment of mapped features, enhancement nodes, and new input data:

- Recurrent Neural Networks (RNNs): Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Bidirectional LSTM (Bi-LSTM)
- Broad Learning System (BLS): an alternative to deep learning networks with increased number of mapped features and enhancement nodes

DATA PROCESSING

NSL-KDD DATASET: TYPES OF INTRUSION ATTACKS

Туре	Intrusion attacks
DoS	back, land, neptune, pod, smurf, teardrop, mailbomb, processtable, udpstorm, apache2, worm
U2R	buffer-overflow, loadmodule, perl, rootkit, sqlattack, xterm, ps
R2L	fpt-write, guess-passwd, imap, multihop, phf, spy, warezmaster, xlock, xsnoop, snmpguess, snmpgetattack, httptunnel, sendmail, named
Probe	ipsweep, nmap, portsweep, satan, mscan, saint

NSL-KDD DATASET: NUMBER OF DATA POINTS

	Regular	DoS	U2R	R2L	Probe	Total
KDDTrain+	67,343	45,927	52	995	11,656	125,973
KDDTest+	9,711	7,458	200	2,754	2,421	22,544
KDDTest ⁻²¹	2,152	4,342	200	2,754	2,402	11,850

CLASSIFICATION ALGORITHMS

EXPERIMENTAL PROCEDURE

- Step 1: Convert categorical into numerical features using dummy coding for training and test datasets
 Step 2: Normalize training and test datasets
- Step 3: Tune the model parameters during the 10-fold validation
- Step 4: Test LSTM, GRU, Bi-LSTM, and BLS models using KDDTest⁺ and KDDTest⁻²¹ datasets
- Step 5: Evaluate derived models based on accuracy and F-Score for binary and multiple classes

PERFORMANCE EVALUATION

Model			LSTM			GRU		Bi-LSTM	BLS	
Two-way classi	ficatic	n								
Accuracy (%)		KDDTest+		82.68		82.87			81.03	84.14
		KDDTest ⁻²¹		64.32		65.42			64.31	72.64
F-Score (%)		KDDTest+		82.76		83.05			81.23	84.68
		KDDTest ⁻²¹		73.18		74.60		73.49	80.61	
Five-way classi	ficatio	n				·				
		KDDTest ⁺		79.56			80.17		79.44	82.47
Accuracy (%)		KDDTest ²¹		6	60.51		60.75		60.80	70.30
Model			NB Tree [1]		RT [1]		NIDS [2]		RNN-IDS [3] BC+k-NN [4]
Two-way classi	ficatio	n								
Accuracy (%)	KDD	KDDTest ⁺		82.02		81.59		75.75		94.92
	KDD	Test ⁻²¹	66,	.16	58.5	1	N/A		68.55	91.35
Model J48			[3] NB [3		3]	NB Tree [3]		MP [3]	RNN-IDS [3]	
Five-way classi	ficatio	n								
Accuracy (%)	KDDTest ⁺		74.	60	74.40		75.40		78.10	81.29
	KDD	KDDTest ⁻²¹		51.90		55.77		55.40		64.67
14 C. A. M. A. M. A.	11		172				1//			
Model		LSTM		GRU		Bi	Bi-LSTM		BLS	RNN-IDS [3]
Training time (s)		355.86		345.04		497.66			21.92	5,516.00

• Repeating module for the LSTM neural network:

• Deep learning neural network model:

CONCLUSION

- Three types of RNNs and a BLS have been employed to detect network intrusions.
- KDDTest⁺ and KDDTest⁻²¹ datasets: BLS shows better performance than LSTM, GRU, Bi-LSTM, and most reported results.
- BLS performance depends on the number of mapped features and enhancement nodes.
- While additional mapped features and enhancement nodes improve BLS performance, they require more memory and longer training time.
- Advantage of the BLS model is that it requires considerably shorter time for training than the conventional deep learning networks.

REFERENCES

[1] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, "A detailed analysis of the KDD CUP 99 data set," in *Proc. IEEE Symp. Comput. Intell. in Security and Defense Appl. (CISDA)*, Ottawa, ON, Canada, July 2009, pp. 1–6.

[2] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho, "Deep learning approach for network intrusion detection in software defined networking," in *Proc. Wireless Netw. Mobile Commun. (WINCOM)*, Fez, Morocco, Oct. 2016, pp. 258–263.

[3] C. Yin, Y. Zhu, J. Fei, and X. He, "A deep learning approach for intrusion detection using recurrent neural networks," *IEEE Access*, vol. 5, pp. 21954–21961, Nov. 2017.

[4] L. Li, Y. Yu, S. Bai, Y. Hou, and X. Chen, "An effective two-step intrusion detection approach based on binary classification and k-NN," *IEEE Access*, vol. 6, pp. 12060–12073, Mar. 2018.

[5] C. L. P. Chen and Z. Liu, "Broad learning system: an effective and efficient incremental learning system without the need for deep architecture," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 29, no. 1, pp. 10–24, Jan. 2018.

[6] NSL-KDD Data Set [Online]. Available: https://web.archive.org/web/20150205070216/http://nsl.cs.unb.ca/NSL-KDD/. Accessed: July 18, 2018.

SMC 2018 IEEE International Conference on Systems, Man, and Cybernetics October 2018, Miyazaki, Japan

Communication Networks Laboratory http://www.ensc.sfu.ca/~ljilja/cnl