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Motivation

� Modeling TCP Reno with RED is important to:
� examine the interactions between TCP and RED
� understand and predict the dynamical network 

behavior
� analyze the impact of system parameters
� investigate bifurcations and complex behavior

TCP: Transmission Control Protocol

RED: Random Early Detection Gateways for Congestion Avoidance
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TCP

� TCP: Transmission Control Protocol
� Fourth layer of the OSI model
� Connection oriented, reliable, and byte-stream service
� Employs window based flow and congestion control 

algorithms

OSI: Open System Interconnection reference model

6        5       4        3        2        1  

window size: 5 packets
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TCP

� Several flavors of TCP:
� Tahoe: 4.3 BSD Tahoe (~ 1988)

� slow start, congestion avoidance, and fast 
retransmit (RFC 793, RFC 2001)

� Reno: 4.3 BSD Reno (~ 1990)
� slow start, congestion avoidance, fast retransmit, 

and fast recovery (RFC 2001, RFC 2581)
� NewReno (~ 1996)

� new fast recovery algorithm (RFC 2582)
� SACK (~ 1996, RFC 2018)
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TCP Reno

SS CA
Fast retransmit and fast recovery

CA SS

TO
SS: Slow Start
CA: Congestion Avoidance
TO: Timeout

t

CWND

ssthresh2

ssthresh1



August 18, 2006 IEEE International Workshop on Complex Systems and Networks 9

TCP Reno: 
slow start and congestion avoidance

� Slow start:
� cwnd = IW (1 or 2 packets)
� when cwnd <ssthresh

cwnd = cwnd + 1 for each received ACK
� Congestion avoidance:

� when cwnd > ssthresh
cwnd = cwnd + 1/cwnd for each ACK

cwnd : congestion window size
IW : initial window size
ssthresh : slow start threshold 
ACK : acknowledgement 
RTT : round trip time
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TCP Reno: 
fast retransmit and fast recovery

� three duplicate ACKs are 
received

� retransmit the packet
� ssthresh = cwnd/2, 

cwnd = ssthresh + 3 packets
� cwnd = cwnd + 1, for each 

additional duplicate ACK
� transmit the new data, if 

cwnd allows
� cwnd = ssthresh, if ACK for 

new data is received

16

17

18

19

20

21

17

ACK 16

ACK 16
ACK 16
ACK 16
ACK 16

TCP sender TCP receiver

three duplicate ACKs
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TCP Reno: timeout

� TCP maintains a retransmission timer
� The duration of the timer is called 

retransmission timeout
� Timeout occurs when the ACK for the 

delivered data is not received before 
the retransmission timer expires

� TCP sender retransmits the lost packet
� ssthresh = cwnd/2

cwnd = 1 or 2 packets

1

1

TO
ACK1
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AQM: Active Queue Management

� AQM (RFC 2309):

� reduces bursty packet drops in routers
� provides lower-delay interactive service
� avoids the “lock-out” problem
� reacts to the incipient congestion before buffers 

overflow
� AQM algorithms:

� RED (RFC 2309)
� ARED, CHOKe, BLUE, …
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RED

� Random Early Detection Gateways for Congestion 
Avoidance

� Proposed by S. Floyd and V. Jacobson, LBN, 1993:
S. Floyd and V. Jacobson, “Random early detection gateways 
for congestion avoidance,” IEEE/ACM Trans. Networking, 
vol. 1, no. 4, pp. 397–413, Aug. 1993.

� Main concept: 
� drop packets before the queue becomes full
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RED variables and parameters

� Main variables and parameters:
� average queue size:
� instantaneous queue size:
� drop probability:
� queue weight:
� maximum drop probability:
� queue thresholds:       and 

maxp
minq maxq

qw
1+kp

1+kq
1+kq



August 18, 2006 IEEE International Workshop on Complex Systems and Networks 15

RED algorithm

Calculate:
� average queue size for each packet arrival

� drop probability

11 )1( ++ ⋅+⋅−= kqkqk qwqwq

pk+1

1+kqminq maxq

maxp

1
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RED algorithm: drop probability

� if

count: number of packets that arrived since the last packet drop 

� else if 

� else

� Mark or drop the arriving packet with probability      

)( minqq <
0=ap

1=ap
)( maxqq >

ap

minmax

min
max qq

qqppb −
−×=

)( maxmin qqq <<

b

b
a pcount

pp
×−

=
1
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RED algorithm: drop probability

� if

� else if 

� else

� mark or drop the arriving packet with probability      

)( min1 qqk ≤+

01 =+kp

11 =+kp
)( max1 qqk ≥+

1+kp

max
minmax

min1
1 p

qq
qqp k

k −
−= +

+

)( max1min qqq k << +
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Simulation tool: ns-2

� ns-2 is a discrete event network simulator
http://www.isi.edu/nsnam/ns

� Supports simulation of TCP, routing, and multicast 
protocols over wired and wireless networks

� We used ns-2 to validate the proposed S-TCP/RED model
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Modeling methodology

� Categories of TCP models:
� averaged and discrete-time models
� short-lived and long-lived TCP connections

� S-TCP/RED models:
� discrete-time model with a long-lived connection

� State variables:
� window size (TCP)
� average queue size (RED)
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S-TCP/RED model

� Key properties of the proposed S-TCP/RED models:
� slow start, congestion avoidance, fast retransmit, and 

fast recovery (simplified)
� Timeout:

J. Padhye, V. Firoiu, and D. F. Towsley, “Modeling TCP Reno 
performance: a simple model and its empirical validation,”
IEEE/ACM Trans. Networking, vol. 8, no. 2, pp. 133–145, Apr. 
2000.

� Captures the basic RED algorithm
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Assumptions

� Long-lived TCP connection
� Constant propagation delay between the source and the 

destination
� Constant packet size 
� ACK packets are never lost
� Timeout occurs only due to packet loss
� The system is sampled at the end of every RTT interval
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TCP/RED model simplifications

� Simplified fast recovery

SS CA

Fast retransmit and fast recovery

CA SS

TO

SS: Slow Start
CA: Congestion Avoidance
TO: Timeout

cwnd

t

ssthresh 2
ssthresh 1
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TCP Reno: fast recovery

SS CA
Fast retransmit and fast recovery

CA SS

TO
SS: Slow Start
CA: Congestion Avoidance
TO: Timeout

t

CWND

ssthresh2

ssthresh1
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S-TCP/RED model simplifications

� TO = 5 RTT
V. Firoiu and M. Borden, “A study of active queue management for 
congestion control,” in Proc. of IEEE INFOCOM 2000, vol. 3, pp. 
1435–1444, Tel-Aviv, Israel, Mar. 2000.

� RED: parameter count is not used

ba pp =

minmax

min
max qq

qqppb −
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Network topology

� Components: one source, two routers, and one 
destination

� The link between routers 1 and 2 is the only bottleneck
� RED algorithm is deployed in router 1

Source Router 1 Router 2 Destination

Bottleneck



August 18, 2006 IEEE International Workshop on Complex Systems and Networks 27

Roadmap

� Introduction
� TCP/RED congestion control algorithms: an overview
� Discrete-time dynamical models of TCP Reno with RED:

� modeling assumptions
� S-TCP/RED models with:

� one state variable
� two state variables

� model validation and modifications 
� comparison of TCP/RED models

� Bifurcation and chaos phenomena in TCP/RED
� discontinuity-induced bifurcations

� Conclusion and references



August 18, 2006 IEEE International Workshop on Complex Systems and Networks 28

TCP/RED models

� S-models: discrete nonlinear dynamical models of TCP 
Reno with RED

� State variables: 
� window size
� average queue size

� The proposed TCP/RED models are:
� simple and intuitively derived
� able to capture detailed dynamical behavior of 

TCP/RED systems
� have been verified via ns-2 simulations
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S-TCP/RED: parameters and variables

� Variables:
w : window size q : average queue size
p : drop probability      q : instantaneous queue size

� Parameters:
qmax: maximum queue threshold
qmin: minimum queue threshold
pmax: maximum drop probability 
wq : queue weight       d : propagation delay
M : packet size            C : link capacity
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Simplified S-TCP/RED model

� M-model, a discrete nonlinear dynamical model of TCP 
Reno with RED:
P. Ranjan, E. H. Abed, and R. J. La, “Nonlinear instabilities in TCP-RED,”
in Proc. IEEE INFOCOM 2002, New York, NY, USA, June 2002, vol. 1, 
pp. 249–258 and IEEE/ACM Trans. on Networking, vol. 12, no. 6, pp. 
1079–1092, Dec. 2004.
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Simplified S-TCP/RED model:
one state variable

� Variables:
� qk+1: average queue size in round k+1
� qk: average queue size in round k
� wq: queue weight in RED
� N: number of TCP connections
� K: constant =
� pk: drop probability in round k
� C: capacity of the link between the two routers
� d: round-trip propagation delay
� M: packet size
� rwnd: receiver's advertised window size

2/3
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Simplified S-TCP/RED model: packet lost

� Drop probability:

where:
: TCP sending rate
: the number of incoming packets
: the number of outgoing packets
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Simplified S-TCP/RED model: packet lost

The average queue size is:

hence
)0,max()1(1 M

dC
p
KNwqwq
k

qkqk
⋅−⋅⋅+⋅−=+

11 )1( ++ ⋅+⋅−= kqkqk qwqwq
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Simplified S-TCP/RED model: no loss

� Drop probability:

The average queue size is:

hence
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Simplified S-TCP/RED model

� Dynamical model of TCP/RED:
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TCP/RED model: 
state variable and parameters

� qk+1: instantaneous queue size in round k+1
� qk+1: average queue size in round k+1
� Wk+1: current TCP window size in round k+1
� wq: queue weight in RED
� pk: drop probability in round k
� RTTk+1: round-trip time at k+1
� C: capacity of the link between the two routers
� M: packet size
� d: round-trip propagation delay
� ssthesh: slow start threshold
� rwnd: receiver's advertised window size
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S-TCP/RED: discrete-time model for 
TCP Reno with RED

� Calculate the average queue size:

� the average queue size is updated after each packet 
arrival

� is updated       times in k+1-th round

From (1) and (2):
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S-TCP/RED model: drop probability

� Calculate the drop probability:
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S-TCP/RED model: three cases

� No packet lost: 
� slow start
� congestion avoidance

� Single packet lost:
� fast retransmit
� fast recovery

� At least two packets lost:
� timeout
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S-TCP/RED model: no packet loss

� number of lost packets: 
� window size:

� where:
� Wk+1: window size in round k+1
� ssthesh: slow start threshold
� rwnd: receiver's advertised window size




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S-TCP/RED model: no packet loss

� current queue size:

� where:
� RTTk+1: round-trip time at k+1
� C: capacity of the link between the two routers
� M: packet size
� d: round-trip propagation delay
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S-TCP/RED model: no packet loss

� average queue size:

� hence:
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S-TCP/RED model: no packet loss

� number of lost packets:

� window size:

� average queue size:
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S-TCP/RED model: one packet loss

� number of lost packets:

� window size:

� average queue size:
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S-TCP/RED model: two packet losses

� number of lost packets: 

� window size:

� average queue size:

5.1≥kkWp

01 =+kW

kk qq =+1



August 18, 2006 IEEE International Workshop on Complex Systems and Networks 48

Roadmap

� Introduction
� TCP/RED congestion control algorithms: an overview
� Discrete-time dynamical models of TCP Reno with RED:

� modeling assumptions
� S-TCP/RED models with:

� one state variable
� two state variables

� model validation and modifications
� comparison of TCP/RED models

� Bifurcation and chaos phenomena in TCP/RED
� discontinuity-induced bifurcations

� Conclusion and references



August 18, 2006 IEEE International Workshop on Complex Systems and Networks 49

Simulation scenario

1.54 Mbps

10 ms delay
source                                 router 1                 router 2                             sink

100 Mbps

0 ms delay

100 Mbps

0 ms delay

� source to router1: 

� link capacity: 100 Mbps with 0 ms delay

� router 1 to router 2: the only bottleneck in the network

� link capacity: 1.54 Mbps with 10 ms delay

� router 2 to sink:

� link capacity: 100 Mbps with 0 ms delay
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RED: default parameters

15 (packets)Maximum queue threshold (qmax)

4,000 (bytes)Packet size (M)

5 (packets)Minimum queue threshold (qmin)

0.1Maximum drop probability (pmax )
0.002Queue weight (wq )

� RED parameters:

S. Floyd, “RED: Discussions of Setting Parameters,” Nov. 1997: 
http://www.icir.org/floyd/REDparameters.txt
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S-TCP/RED model validation

� Waveforms of the state variables with default parameters:
� window size
� average queue size

� Validation for various values of the system parameters:
� queue weight: wq
� maximum drop probability: pmax
� queue thresholds: qmin and qmax , qmax/qmin = 3
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Window size: waveforms
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S-TCP/RED model ns-2
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Model validation: wq

� wq =[0.001, 0.01], with other parameters default

� window size: wq = 0.006

S-TCP/RED model ns-2
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Model validation: wq

� average queue size during steady state:
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Model validation: wq

� Comparison of system variables:

11.720.550.610.083384.70385.028.9635.738.90.010

11.110.550.610.109384.68385.108.9035.839.00.008

7.910.560.600.093384.73385.088.9335.839.00.006

6.120.560.590.083384.79385.118.8036.239.40.004

2.560.550.560.056384.77384.9810.8336.039.90.002

1.290.540.550.073384.71384.9911.6336.140.30.001

Δ(%)ns-2S-RED 
modelΔ(%)ns-2S-RED 

modelΔ(%)ns-2S-RED 
modelweight (wq)

Drop rate (%)Sending rate
(packets/sec)Average RTT (msec)Parameters
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Model validation: pmax

� pmax = [0.05, 0.95], with other parameters default

� window size: waveforms, pmax = 0.5

S-TCP/RED ns-2
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Model validation: pmax

� average queue size during steady state:
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Model validation: pmax

� Comparison of system variables:

14.370.650.747.60357.55384.63-0.8535.134.80.75

19.090.610.731.48379.37384.983.8034.035.30.50

11.280.590.650.05384.73384.935.8034.536.50.25

2.560.550.560.06384.77384.9810.8336.039.90.10

-11.760.510.450.11384.70385.1316.2738.144.30.05

Δ(%)ns-2S-RED 
model Δ(%)ns-2S-RED 

modelΔ(%)ns-2S-RED 
modelpmax

Drop rate (%)Sending rate (packets/sec)Average RTT (msec)
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� qmin= [1, 20] packets, qmax/qmin = 3, with other 
parameters default
� window size: waveforms, qmin = 10 packets

S-TCP/RED ns-2

Model validation: qmin and qmax
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Model validation: qmin and qmax

� average queue size during steady state:
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Model validation: qmin and qmax

� Comparison of system variables:

-5.660.160.150.09384.95385.308.3673.079.120

-10.710.220.200.06384.83385.0612.2760.367.715

-6.340.330.310.06384.85385.1013.7248.154.710

2.560.550.560.06384.77384.9810.8336.039.95

10.010.710.780.20382.44383.227.431.133.43

Δ(%) ns-2S-RED 
modelΔ(%)ns-2S-RED 

modelΔ(%)ns-2S-RED 
model

qmin
(packets)

Drop rate (%)Sending rate (packets/sec)Average RTT (msec)
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S-TCP/RED: model evaluation

� Waveforms of the window size:
� match the ns-2 simulation results

� The average queue size: 
� mismatch, but similar trend

� System variables RTT, sending rate, and drop rate:
� reasonable agreement with ns-2 simulation results, 

depending on the system parameters



August 18, 2006 IEEE International Workshop on Complex Systems and Networks 64

Roadmap

� Introduction
� TCP/RED congestion control algorithms: an overview
� Discrete-time dynamical models of TCP Reno with RED:

� modeling assumptions
� S-TCP/RED models with:

� one state variable
� two state variables

� model validation and modifications
� comparison of TCP/RED models

� Bifurcation and chaos phenomena in TCP/RED
� discontinuity-induced bifurcations

� Conclusion and references



August 18, 2006 IEEE International Workshop on Complex Systems and Networks 65

S-TCP/RED: modification

� The difference in the average queue size between 
S-TCP/RED model and ns-2 is due to the simplification 
of   :

� Modification of    : )1( >⋅= αα ba pp

p
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ba pp =

minmax

min
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Modified S-TCP/RED model

� Modification: 8.1=α
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Comparison: S-TCP/RED vs. M-model

� M-model:
A discrete nonlinear dynamical model of TCP Reno
with RED proposed by a research group from 
University of Maryland:
P. Ranjan, E. H. Abed, and R. J. La, “Nonlinear instabilities in TCP-
RED,” in Proc. IEEE INFOCOM 2002, New York, NY, USA, June 
2002, vol. 1, pp. 249–258 and IEEE/ACM Trans. on Networking, 
vol. 12, no. 6, pp. 1079–1092, Dec. 2004.

� One state variable: average queue size
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� The waveform of the average queue size with default 
RED parameters:

S-TCP/RED  M-model ns-2

Model comparison: default parameters
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Model comparisons: wq

� wq = [0.001, 0.01], with other parameters default
� average queue size during steady state:
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Model comparisons: wq

� system variables:

RTT                           sending rate                drop rate
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Model comparisons: pmax

� pmax= [0.05, 0.95], with other parameters default
� average queue size during steady state:
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Model comparisons: pmax

� system variables:

RTT                          sending rate                     drop rate
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Model comparisons: qmin and qmax

� qmin= [1, 20] packets, qmax/qmin =3, with other 
parameters default

� average queue size during steady state:
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Model comparisons: qmin and qmax

� system variables:

RTT                          sending rate                     drop rate
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Model comparison: summary

� S-TCP/RED model captures dynamical details of TCP/RED
� RTT, sending rate, and drop rate: S-TCP/RED model, in 

general, matches the ns-2 simulation results better than 
the M-model

� M-model: average queue size
� constant during steady-state
� matches better the ns-2 simulation results
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TCP/RED: bifurcation and chaos

� Bifurcation diagrams for various values of the system 
parameters:

� queue weight: wq

� maximum drop probability: pmax

� queue thresholds: qmin and qmax (qmax/qmin = 3)
� round-trip propagation delay: d

15 (packets)Maximum queue threshold (qmax)

4,000 (bytes)Packet size (M)

5 (packets)Minimum queue threshold (qmin)

0.1Maximum drop probability (pmax )

0.002Queue weight (wq )
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Queue size vs. wq

� pmax = 0.1, qmin = 5, qmax = 15
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Average queue size vs. wq

� pmax = 0.1, qmin = 5, qmax = 15
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Queue size vs. pmax

� wqx = 0.04, qmin = 5, qmax = 15
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Average queue size vs. pmax

� wq = 0.04, qmin = 5, qmax = 15
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Queue size vs. qmin/qmax

� wq = 0.2, pmax = 0.1, qmax= 3 × qmin
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Average queue size vs. qmin/qmax

� wq = 0.2, pmax = 0.1, qmax= 3 × qmin
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TCP/RED: bifurcation and chaos

� Bifurcation diagrams for various values of the system 
parameters:

� queue weight: wq

� maximum drop probability: pmax

� queue thresholds: qmin and qmax (qmax/qmin = 3)
� round-trip propagation delay: d

15 (packets)Maximum queue threshold (qmax)

4,000 (bytes)Packet size (M)

5 (packets)Minimum queue threshold (qmin)

0.1Maximum drop probability (pmax )

0.002Queue weight (wq )
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Average queue size vs. wq

� pmax = 0.1, qmin = 5, qmax = 15, and sstresh = 80
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Average queue size vs. pmax

� wq = 0.01, qmin = 5, qmax = 15, and ssthresh = 20
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Average queue size vs. qmin/qmax

� wq = 0.01, pmax = 0.1, qmax= 3 qmin, and ssthresh = 20
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Average queue size vs. d

� wq = 0.01, pmax = 0.1, qmin= 5, qmax = 15, and ssthresh = 20
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An analytical explanation

� Nonsmooth systems may exhibit discontinuity-induced 
bifurcations: a class of bifurcations unique to their 
nonsmooth nature

� These phenomena occur when a fixed point, cycle, or 
aperiodic attractor interacts nontrivially with one of the 
phase space boundaries where the system is 
discontinuous
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� Standard: 
� SN (smooth saddle-node)
� PD (smooth period-doubling)

� C-bifurcations or DIBs
� PWS maps: border collisions of fixed points   
� PWS flows: discontinuous bifurcations of equilibriums
� Grazing bifurcations of periodic orbits
� Sliding bifurcations

Discontinuity-induced bifurcations: 
classification
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Border collisions in PWS maps

� Consider a map of the form:

� A fixed point is undergoing a border-collision bifurcation 
at p=0 if:

• µ ∈ (-ε,0) ⇒ x* ∈ S1

• µ ∈ (0,ε) ⇒ x* ∈ S2

• µ = 0 ⇒ x* ∈ Σ

• DF1 ≠ DF2 on Σ

1
1

2

( , ), ( ) 0
( , ), ( ) 0

k k
k

k k

F x p H x
x

F x p H x+

<
=  >
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Classifying border collisions

� Several scenarios are possible when a border-collision 
occurs

� They can be classified by observing the map 
eigenvalues on both sides of the boundary

� The phenomenon can be illustrated by a very simple 1D 
map where the eigenvalues are the slopes of the map 
on both sides of the boundary
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Persistence

µ < 0

µ = 0 µ > 0

0 µ

, 0
, 0

x c x
x

x c x
α µ
β µ

+ <
→  + >
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Non-smooth saddle-node

µ < 0

µ = 0 µ > 0

0 µ

, 0
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x c x
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α µ
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Border-collisions in the TCP/RED model

� The analysis has focussed mostly on continuous maps
� Recently proposed: further bifurcations are possible when 

the map is piecewise with a gap
� Complete classification method is available only for the 

one-dimensional case
� The TCP/RED case is a 2D map with a gap: its dynamics 

resemble closely those observed in very different systems: 
the impact oscillator considered by Budd and Piiroinen, 
2006

� They might be explained in terms of border-collision 
bifurcations of 2D discontinuous maps
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Numerical evidence

Cascades of corner-impact bifurcations in a forced impact 
oscillator show a striking resemblance to the phenomena 
detected in the TCP/RED model. They were explained in 
terms of border-collisions of local maps with a gap.

C. J. Budd and P. Piiroinen, “Corner bifurcations in nonsmoothly forced impact oscillators,” to appear in Physica D, 2005.
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Conclusions

� We developed two discrete-time models for TCP Reno
with RED

� S-TCP/RED models include:
� slow start, congestion avoidance, fast retransmit, 

timeout, elements of fast recovery, and RED
� Proposed models were validated by comparing their 

performance to ns-2 simulations
� They capture the main features of the dynamical 

behavior of TCP/RED communication algorithms
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Conclusions

� S-TCP/RED models were used to study bifurcations and 
chaos in TPC/RED systems with a single connection

� Bifurcations diagrams were characterized by period-
adding cascades and devil staircases

� The observed behavior can be explained in terms of a 
novel class of piecewise-smooth maps with a gap
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