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Complex Networks: The Internet

https://en.wikipedia.org/wiki/Complex_network#/media/File:Internet_map_1024.jpg
By The Opte Project - Originally from the English Wikipedia 
https://commons.wikimedia.org/w/index.php?curid=1538544
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Machine Learning

n Using machine learning techniques to detect network 
intrusions is an important topic in cybersecurity.

n Machine learning algorithms have been used to 
successfully classify network anomalies and intrusions. 

n Supervised machine learning algorithms:
n Support vector machine: SVM
n Long short-term memory: LSTM
n Gated recurrent unit: GRU
n Broad learning system: BLS
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CICIDS2017 and CSE-CIC-IDS2018

§ CICIDS2017 and CSE-CIC-IDS2018: 
§ Testbed used to create the publicly available dataset 

that includes multiple types of recent cyber attacks. 
§ Network traffic collected between:

§ Monday, 03.07.2017
§ Friday, 07.07.2017
§ Wednesday, 14.02.2018
§ Friday, 02.03.2018

8CPMMI 2020, Novi Pazar, SerbiaSeptember 21, 2020



CICD2017 Dataset: 
Types of Intrusion Attacks

Attack Label Day Number of intrusions

Brute force FTP, SSH Tuesday 7,935; 5,897
Heartbleed Heartbleed Wednesday 11

Web attack
Brute force, 
XSS, SQL 
Injection

Thursday 
morning 1,507; 652; 21

Infiltration Infiltration, 
PortScan

Thursday and 
Friday 
afternoons

36; 158,930

Botnet Bot Friday morning 1,956

DoS
Slowloris, Hulk, 
GoldenEye, 
SlowHTTPTest

Wednesday 5,796; 230,124; 10,293; 5,499

DDos DDoS Friday 
afternoon 128,027

9CPMMI 2020, Novi Pazar, SerbiaSeptember 21, 2020



CICD2017 Dataset: Number of Flows

Day Valid flows Total
Monday 529,481 529,918

Tuesday 445,645 445,909

Wednesday 691,406 692,703

Thursday (morning) 170,231 170,366

Thursday (afternoon) 288,395 288,602

Friday (morning) 190,911 191,033

Friday (afternoon, PortScan) 286,096 286,467

Friday (afternoon, DDoS) 225,711 225,745
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Deep Learning Neural Network

n 37 (BGP)/109 (NSL-KDD) RNNs, 80 FC1, 32 FC2, and 
16 FC3 fully connected (FC) hidden nodes:
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Long Short-Term Memory

n Repeating module for the Long Short-Term Memory 
(LSTM) neural network:
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Gated Recurrent Unit

n Repeating module for the Gated Recurrent Unit (GRU) 
neural network:
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Broad Learning System

n Module of the Broad Learning System (BLS) algorithm 
with increments of mapped features, enhancement 
nodes, and new input data:
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Original BLS

n Matrix 𝑨! is constructed from groups of mapped 
features 𝒁" and groups of enhancement nodes 𝑯# as:

where:
n 𝜙 and 𝜉: projection mappings 
n 𝑾$!, 𝑾%": weights
n 𝛽$!, 𝛽%": bias parameters

Modified to include additional mapped features 𝒁"&', 
enhancement nodes 𝑯#&', and/or input nodes 𝑿(

𝐴! = 𝒁" 𝑯#]
= 𝜙 𝑿𝑾$! + 𝛽$! | 𝜉(𝒁!"𝑾%" + 𝛽%") ,
𝑖 = 1, 2, … , 𝑛 and 𝑗 = 1, 2, … ,𝑚
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Original BLS

n Moore-Penrose pseudo inverse of matrix 𝑨! is 
computed to calculate the weights of the output:

n During the training process, data labels are deduced 
using the calculated weights 𝑾"

#, mapped features 𝒁", 
and enhancement nodes 𝑯# :

𝑾"
# = [𝑨"#]&𝒀

𝒀 = 𝑨"#𝑾"
#

= 𝒁𝟏, … , 𝒁" 𝑯(, … ,𝑯#]𝑾"
#
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BLS Extensions

n Radial Basis Function with Gaussian kernel and BLS: 
RBF-BLS

n Cascades of Mapped Features: CFBLS
n Cascades of Enhancement Nodes: CEBLS
n Cascades with Incremental Learning: CFEBLS
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Cascades with Incremental Learning
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Intrusion Detection System

n Architecture:
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Most Relevant Features

§ CSE-CIC-IDS2018: 16 most relevant features
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Number Training Parameters: BLS

Parameters CICIDS2017 CSE-CIC-IDS2018
Number of features

BLS 78 64 32 78 64 32

Model RBF-
BLS BLS CEBLS CFBLS RBF-

BLS CEBLS

Mapped features 20 10 10 20 20 15
Groups of 
mapped features 30 30 10 10 10 20

Enhancement 
nodes 40 20 40 80 80 80

24CPMMI 2020, Novi Pazar, SerbiaSeptember 21, 2020



Number of Training Parameters: 
Incremental BLS

Parameters CICIDS2017 CSE-CIC-IDS2018
Number of features

Incremental BLS 78 64 32 78 64 32
Model CFBLS CFEBLS CEBLS BLS CEBLS BLS
Mapped features 10 20 10 15 20 10
Groups of mapped 
features 20 20 20 30 10 20

Enhancement 
nodes 40 20 40 20 40 20

Incremental 
learning steps 2 2 2 2 2 2

Data points/step 55,680 55,680 55,680 49,320 49,320 49,320

Enhancement 
nodes/step 20 20 20 20 20 20
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BLS Model: 
CICIDS2017 and CSE-CIC-IDS2018 Datasets

Number of 
features Dataset Accuracy 

(%)
F-Score 

(%) Model Training 
time (s)

BLS

78 CICIDS2017 96.63 96.87 RBF-BLS 15.60

CSE-CIC-
IDS2018 97.46 81.46 CFBLS 4.13

64 CICIDS2017 96.10 96.35 BLS 8.97

CSE-CIC-
IDS2018 98.60 90.49 RBF-BLS 4.65

32 CICIDS2017 96.34 96.62 CEBLS 39.25

CSE-CIC-
IDS2018 98.83 92.26 CEBLS 33.46
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Incremental BLS Model: 
CICIDS2017 and CSE-CIC-IDS2018 Datasets

Number of 
features Dataset Accuracy 

(%)
F-Score 

(%) Model Training 
time (s)

Incremental BLS

78 CICIDS2017 95.12 95.44 CFBLS 3.69

CSE-CIC-
IDS2018 97.47 81.35 BLS 6.78

64 CICIDS2017 94.44 95.38 CFBLS 7.39

CSE-CIC-
IDS2018 96.70 74.64 CEBLS 11.59

32 CICIDS2017 95.39 95.75 BLS 6.39

CSE-CIC-
IDS2018 97.08 77.89 BLS 5.65
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Performance: BLS and Incremental 
BLS, CICIDS2017
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Conclusions
n We evaluated performance of:

n LSTM and GRU deep recurrent neural networks 
with a variable number of hidden layers

n BLS models that employ radial basis function 
(RBF), cascades of mapped features and 
enhancement nodes, and incremental learning

n BLS and cascade combinations of mapped features 
and enhancement nodes achieved comparable 
performance and shorter training time because of 
their wide and deep structure. 
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Conclusions
n BLS models:

n consist of a small number of hidden layers and 
adjust weights using pseudoinverse instead of 
back-propagation

n dynamically update weights in case of incremental 
learning

n better optimized weights due to additional data 
points for large datasets (NSL-KDD)

n While increasing the number of mapped features and 
enhancement nodes as well as mapped groups led to 
better performance, it required additional memory 
and training time.
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References: Datasets
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http://www.bc.net/
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https://www.ripe.net/analyse/internet-measurements/routing-
information-service-ris
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https://www.unb.ca/cic/datasets/nsl.html

n CICIDS2017 dataset:
https://www.unb.ca/cic/datasets/ids-2017.html

n CSE-CIC-IDS2018 dataset:
https://www.unb.ca/cic/datasets/ids-2018.html
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