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Abstract

Satellite data networks provide broadband access for areas not served by traditional

broadband technologies. In this thesis, we describe a collection of traffic data (billing

records and tcpdump traces) from a satellite Internet service provider in China. We use

the billing records to investigate the downloaded and uploaded traffic volume and the

aggregate user behavior. We examine daily and weekly cycles and effects of holidays

on traffic patterns. We also employ cluster analysis methods to classify the users

according to their traffic. Analysis of the tcpdump traces indicates that transmission

control protocol (TCP) accounts for the majority of data transfers. The analysis also

includes the detection of anomalies such as invalid TCP flag combinations, port scans,

and anomalies in traffic volume.

Keywords: Satellite-terrestrial networks, TCP, traffic measurements, cluster analy-

sis, anomaly detection
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Chapter 1

Introduction

Continuous increase in demand for broadband Internet access has resulted in the

increased volume of data traffic and development of new protocols and access tech-

nologies. Measurements and analysis of genuine network traffic traces have been used

to understand traffic dynamics, characterize traffic, develop new traffic models, and

ultimately evaluate network performance.

1.1 Motivations

During the past decade, various traces of wired and wireless terrestrial Internet traffic

data have been collected and characterized. Traffic traces collected from university

campuses and research institutions have been made publicly available [1]. However,

few traces from commercial satellite networks have been made available to the research

community. Hence, analysis of traffic data from deployed networks such as ChinaSat is

important. Such analysis may provide new insights as technology and usage patterns

change.

1
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1.2 Related work

Analysis of traffic traces have dealt with identifying characteristics of TCP connections

[2] and network traffic patterns [3]–[7]. It has been found that the Internet traffic is

bursty and long-range dependent. Analysis of users from deployed networks have

found that a small number of users in a network contributes the majority of traffic.

Furthermore, the development of new access technologies have resulted in methods

to improve characteristics of TCP over lossy links. Many enhancements have been

proposed to improve TCP performance over high speed and wireless networks.

Traffic has also been modelled using statistical distributions [8], [9] and cluster

analysis [10]. Due to the long-range dependent and non-stationarity nature of Internet

traffic, most statistical traffic models do not fully capture the traffic dynamics.

The architecture and performance enhancement of the DirecPC network was aler-

ady described in [11]. By using a split-connection architecture, the performance of

TCP was greatly improved. The performance of hypertext transfer protocol (HTTP)

connections in the DirecPC environment has also been evaluated [12], [13]. It was

found that performance of short-lived connections such as HTTP greatly depends

on the enhancements made to the TCP slow-start algorithm due to the long delays

present in satellite links.

Detailed statistical analysis of the DirecPC traffic data was previously reported

[14], where the TCP connection inter-arrival time and the number of downloaded bytes

were modelled. The inter-arrival time is best modeled by the Weibull distribution

while the number of downloaded bytes is best modeled by the lognormal distribution.

Based on the IP addresses, the distribution of visited websites is best modeled by the

discrete Gaussian exponential (DGX) distribution. Furthermore, the ChinaSat traffic
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is determined to be self-similar and non-stationary, where measure of self-similarity

(the Hurst parameter) differs depending on traffic load.

Traffic was also predicted using the autoregressive integrative moving average

(ARIMA) model and a wavelet / auto-regressive model. ARIMA model was able

to predict the uploaded traffic but not the downloaded traffic due to the traffic dy-

namics. The wavelet + autoregressive model was found to outperform the ARIMA

model.

In recent years, researchers have focused on the classification of network anomalies

[15]–[17]. Statistical methods [18], wavelets [19], and principal component analysis [20]

have been employed to detect network anomalies. These methods determine network

anomalies by first defining the normal network behavior. Using heuristics, deviation of

traffic patterns of one or more connections compared to the normal network behavior

are classified as anomalies.

1.3 Contributions

In this thesis, we analyze patterns and statistical properties of two sets of traffic

data (billing records, tcpdump [21] traces) collected from the DirecPC network. The

network is a hybrid satellite-terrestrial network operated by ChinaSat, a commercial

satellite Internet service provider located in China.

Using the billing records, we investigate the daily and weekly traffic patterns and

the effect of holidays on traffic [22]. We also categorize the network users by employing

k -means and hierarchical clustering.

From the tcpdump traces, we analyze the general characteristics of the traffic data
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[22]. As a measure of network optimization, we examine the Transmission Control

Protocol (TCP) [23] options to identify recommended TCP extensions used in the

ChinaSat network. To confirm our observations regarding TCP extensions, we employ

operating system (OS) fingerprinting techniques to identify TCP implementations.

We also investigate traffic anomalies such as invalid TCP flag combinations, port

scans, and anomalies in traffic volume [22]. Lastly, we developed the C program

pcapread to parse tcpdump traces.

1.4 Organization

The remaining of this thesis is organized as follows. In Chapter 2, we describe the

ChinaSat network architecture and the use of TCP in satellite networks. In Chapter

3, we discuss the mathematical tools employed for our analysis. In Chapter 4, we

present the analysis of the billing records, observed traffic patterns, and the user

classification using clustering techniques. Analysis of tcpdump traces and detection

of data traffic anomalies are given in Chapter 5. We conclude with Chapter 6.



Chapter 2

ChinaSat: network architecture

and TCP

2.1 DirecPC system

DirecPC is an asymmetric geosynchronous satellite network deployed by Hughes Net-

work Systems. It provides television and data services including: DirecTV (a satellite

television service), DirecPC (a unidirectional satellite data service), and DirecWay [24]

(a new bidirectional satellite data service intended to replace DirecPC). Turbo Internet

is the Internet access component of DirecPC. It provides broadband access through a

satellite downlink and a return path through a terrestrial dial-up modem. The down-

link path has an advertised rate of 400 kb/s while the uplink path is limited to 33.6

kb/s.

ChinaSat provides Internet access through the DirecPC to individual users, busi-

nesses, and over 200 Internet cafés across provinces in China. DirecPC employs TCP

5
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splitting with spoofing to improve network performance, which is described in Sec-

tion 2.3.5. A user’s request to browse a website is not sent directly to the destination.

Instead, the DirecPC software installed in a satellite user’s system adds an Inter-

net Protocol (IP) [25] “tunneling header” to the request IP datagram, redirecting

the datagram to the network operations center (NOC). At the NOC, the tunneling

header is removed and the request is forwarded to the website using a high-speed

terrestrial link. The NOC receives the reply from the website and forwards it to the

user via the DirecPC satellite link. Data paths of the DirecPC system are shown in

Figure 2.1. IP headers and the tunneling header at the user and the website hosts are

shown in Figure 2.2. Each box indicates an IP source/destination pair. At the client

(satellite user), the <Satellite IP, Destination IP> datagram is redirected to NOC by

embedding the datagram into the tunneling header <Dial-up IP, NOC IP>.

Figure 2.1. Data paths in the DirecPC system.
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Figure 2.2. IP headers used in the DirecPC system.

2.2 Characteristics of satellite networks

Satellite networks such as the DirecPC broadcast information over a large geographical

area and provide the last mile access for remote sites, aircrafts, and ships. Satellites

can be classified into two categories: geostationary earth orbit (GEO) and non-GEO

(NGEO). GEO satellites orbit at an altitude of ∼36,000 km [26], [27]. NGEO satellites

can be further classified into low earth orbit (LEO) satellites and medium earth orbit

(MEO) satellites. LEO satellites orbit at altitudes 2,000 km or less. MEO satellites

orbit between 2,000 and 12,000 km above the earth’s surface. Although LEO and

MEO satellites have lower propagation delay due to their shorter distance to the

earth’s surface, GEO satellites have a 24-hour rotation period and appear stationary

from the earth’s surface. They also have a large footprint, which eliminates the

need of tracking equipment for satellite receivers. However, GEO satellites have four

undesirable characteristics that degrade TCP performance in satellite links: long

propagation delay, large bandwidth-delay product (BDP), high bit error rates (BERs),

and path asymmetry.
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2.2.1 Long propagation delay

In satellite networks, propagation delay is the dominant component of the total end-

to-end delay. GEO links introduce ∼250 ms delay for signals travelling between two

earth stations via a satellite link [27]. NGEO links have delays from 1 ms to 100 ms.

2.2.2 Large bandwidth-delay product

In addition to the long propagation delay, satellite links also possess large bandwidth.

Large bandwidth and long propagation delay result in a large BDP value. BDP

indicates the amount of data required to be in transit (unacknowledged) in order to

maximize the transfer rate between two connection endpoints. It is defined as

BDP = RTT× C, (2.1)

where RTT is the round-trip time delay (seconds) and C is the bandwidth of the

satellite link (bits per second). A small TCP window prevents a connection from

sending the maximum amount of unacknowledged data specified by BDP.

2.2.3 High bit error rates

Satellite links exhibit higher BERs compared to terrestrial networks, usually in the

order of 10−6 [28]. BERs in satellite links could degrade to 10−3 or 10−2 because

of propagation losses, noise, and interference. High BERs have a significant impact

on networks with long propagation delays. The commonly deployed TCP NewReno

may only correct a single missing segment per round-trip time by employing its fast

retransmit and fast recovery algorithms. Additional missing segments will cause TCP

to enter the slow-start phase, resulting in reduced throughput [27], [29].
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2.2.4 Path asymmetry

Satellite networks often employ different bandwidths for uplink and downlink paths.

Similar to cellular networks, two-way satellite networks employ a broadcast downlink

path and a multiple-access uplink path [27]. Furthermore, the amount of bandwidth

may be different due to design and cost considerations. For hybrid satellite-terrestrial

networks such as the DirecPC, the uplink path from a user employs terrestrial modems

that is limited to 33.6 kb/s while the downlink path from a satellite to a user is 400

kb/s or higher.

2.3 TCP extensions for satellite environments

TCP, the most common Internet transport layer protocol [23], was originally designed

for terrestrial wired networks. TCP does not perform well in satellite networks because

they exhibit long propagation delay, large bandwidth-delay product, high bit error

rates, and path asymmetry, as described in Section 2.2.

Various TCP modifications have improved TCP performance in satellite net-

works [12], [27], [30]–[33]. The proposed mechanisms to enhance TCP for satellite

networks [27] include: the option of increasing the initial TCP congestion window [34],

TCP sliding window scale option [29], selective acknowledgement (SACK) option [35],

and sending path maximum transmission unit (MTU) discovery [36]. Although rec-

ommended, only a small number of these extensions are widely deployed. Performance

enhancing proxies (PEPs) [31] have also been successfully deployed to improve TCP

performance in satellite networks.
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2.3.1 Increasing initial TCP congestion window

TCP avoids transmitting a large burst of data traffic by employing the slow-start

algorithm. To begin, the congestion window (cwnd) is set to one or two segments de-

pending on the implementation. Subsequently, each received acknowledgement (ACK)

during slow-start increases cwnd by one segment. In networks with long propagation

delays, the sending rate increases slowly because of the delay and the low number of

received ACKs. The initial cwnd size of ∼4 kB (4 segments) has been recommended

to increase the number of received ACKs at the beginning of slow-start [12], [35].

2.3.2 TCP sliding window scale option

This extension expands the default TCP window size from 16 bits to 32 bits. The

scale factor is included in an 8-bit field named WSCALE of the TCP SYN segment.

This field value may be different for each direction. A TCP implementation using the

scale factor will right-shift the sliding window by the value of the scale factor [29].

2.3.3 Selective acknowledgment (SACK) option

Fast retransmit and fast recovery algorithms enable TCP NewReno to recover at most

one lost segment per round trip time (RTT). However, in environments with high

BERs and long propagation delays, additional lost segment(s) cause retransmission

time-out(s). Subsequent retransmissions resume from the slow-start phase, which has

inferior performance because of a small initial cwnd. SACK allows a TCP receiver to

explicitly acknowledge the segments that have been received. When a sender identifies

lost segment(s) through SACK, it can retransmit earlier and avoid the performance
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penalty associated with retransmission time-outs and the slow-start algorithm. SACK

significantly improves TCP throughput in lossy environments when RTT is large [12].

In TCP implementations, the SACK option is enabled in the TCP SYN packet using

TCP option 4 (SACKOK). A TCP receiver identifies missing packets using TCP

option 5 (SACK).

2.3.4 Path maximum transmission unit (MTU) discovery

This extension is used to determine the maximum packet size supported by the links

between two endpoints without the fragmentation of an IP packet [36]. Packets with

the “do not fragment” (DF) flag set are transmitted from source to destination. If

a link along the path between the source and the destination does not support the

packet size without fragmentation, the intermediate router returns an Internet Control

Message Protocol (ICMP) [37] packet of type “destination unreachable”. On receipt

of the ICMP message, progressively smaller packets are sent until no ICMP message

returns. The size of the final packet is chosen as the MTU. Path MTU discovery

allows TCP to maximize the ratio of data to overhead bytes. Hence, a larger MTU

value enables TCP senders to reach maximum throughput more rapidly because the

increase of cwnd is determined by the number of received ACKs.

2.3.5 Performance enhancing proxies (PEPs)

PEPs [31] are employed to improve degraded TCP performance caused by link char-

acteristics. PEPs are not intended for general use because they have an undesirable

property of violating the TCP end-to-end semantics.
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Figure 2.3. TCP splitting with spoofing.

The DirecPC system employs TCP splitting with spoofing in its PEPs, as illus-

trated in Figure 2.3 [38], [39]. A TCP connection is split at the NOC (centered vertical

line), the intermediary between a satellite user (client) and a website (server). The

three-way TCP handshake (SYN, SYN/ACK, and ACK) used in a split connection is

identical to the handshake in the end-to-end TCP connections. However, subsequent

TCP segments from both the client and the server (endpoints) are acknowledged by

the NOC on behalf of the other endpoint using spoofed ACKs (dashed lines). ACKs

transmitted by the two endpoints are ignored by the NOC (dotted lines). The spoofed

ACKs from the NOC arrives at the two endpoints earlier compared to ACK arrivals

in an end-to-end connection. TCP spoofing allows the cwnd to grow faster, resulting

in improved performance.
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TCP splitting with spoofing improves TCP performance in PEPs. However, it im-

poses considerable memory requirements at the NOC. All segments prematurely ac-

knowledged by the NOC must be kept in local buffers until segments are acknowledged

by the endpoints. As a consequence, the NOC is also responsible for retransmitting

all lost segments.

2.4 Network anomalies

With the changing nature of network traffic, variety of network anomalies have

emerged. Network anomalies refer to deviations from expected traffic patterns.

Anomalies such as scans and worms are security threats. Others, such as denial of

service (DoS) attacks and flash crowds, impact network performance. Hence, detec-

tion of network anomalies remains an important issue and is an open problem. The

most common types of network anomalies are scans and worms, DoS, flash crowd,

traffic shift, alpha traffic, and volume anomalies [15], [20], [40].

2.4.1 Scans and worms

There are two types of scans: network scans and port scans. Network scans are

characterized by packets sent from a single host to probe network hosts at a single

port. Port scans target multiple ports on host(s). In small networks, the two types

of scans are difficult to distinguish. Unlike network scans, packets sent by worms

originates from multiple hosts. In most instances, scans and worms are malicious in

nature. They are used to discover and exploit network resources.
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2.4.2 Denial of service

Denial of service (DoS) attacks and distributed denial of service (DDoS) attacks are

characterized by a large number of packets from one or many hosts sent to a sin-

gle destination. These packets may be TCP SYN packets (SYN flood), ICMP ping

packets (ping flood), TCP RST packets (reflection attack), or other types of packets.

The goal of DoS or DDoS is to render a host incapable of handling incoming connec-

tions or to exhaust the available network bandwidth along the network path(s) to the

destination.

2.4.3 Flash crowd

Flash crowd refers to a high volume of traffic destined to a single IP. Flash crowds

connections differ from DoS attacks because they are usually short-lived and only

involve a single occurrence. Flash crowd events are often caused by the availability of

certain information such as breaking news, product announcements, and new software

releases.

2.4.4 Traffic shift

Traffic shifts occur when traffic is redirected from one set of paths to another. They

are usually the consequence of route changes caused by link unavailability, network

congestion, and routing table changes.
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2.4.5 Alpha traffic

Alpha traffic refers to unusually high volume of traffic between a pair of endpoints

resulting from bandwidth measurements or file transfers. Even though such traffic

may not be malicious in nature, presence of alpha traffic increases the overall network

delay and may cause network congestion.

2.4.6 Volume anomalies

Traffic volume anomalies include both outages and short-term increases in traffic

demand. Outages are caused by the unavailability of network resources and can be

caused by unavailable links, crashed servers, or routing problems. Short-term increases

in traffic demand involve multiple sources or destinations and may be caused by short

term demands such as activities during holidays. Both anomalies are characterized

by a significant deviation of traffic volume from the usual daily or weekly patterns.



Chapter 3

Mathematical tools for statistical

analysis

3.1 Cluster analysis background

Cluster analysis employs algorithms to group data objects into clusters based on their

common characteristic(s) that may not be known. [41]–[43]. Similarity is the measure

of the common characteristic(s), which is often defined as the distance between the

objects. Objects are grouped into clusters by maximizing the intracluster similarity

and minimizing the intercluster similarity. Hence, the goal of clustering is to group

objects that have high similarity to each other within the same cluster (high intra-

cluster similarity) while the objects in one cluster are dissimilar to objects in other

clusters (low intercluster similarity). Cluster quality is the measure of the similar-

ity within a cluster and dissimilarity between clusters. Two categories of clustering

methods that we employed are partitioning methods and hierarchical methods.

16
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3.1.1 Partition clustering

Partition clustering constructs k clusters (partitions) of the data from n objects where

k ≤ n. In partitioning methods, the objects are first divided among the k clusters.

An iterative relocation technique is then used to improve the cluster quality. The

partitioning algorithm has two constraints:

1. each cluster should contain at least one object and

2. each object should belong to exactly one cluster.

Exhaustive enumeration of all possible combinations is required to find the optimal

clustering result. Hence, a heuristic method such the k -means algorithm is employed.

3.1.1.1 k-means clustering

The k -means algorithm [44] generates k clusters from n objects in d -dimensional

space. They also require two inputs: k number of desired partitions and n objects.

The goal of the clustering method is to produce clusters that have high intracluster

similarity and low intercluster similarity. The cluster similarity in the k -means algo-

rithm is measured by distance between the objects inside the cluster. The k -means

algorithm is executed in the following steps:

1. k objects are selected randomly to be the centers of the k clusters.

2. Each remaining object is assigned to the most similar cluster. The similarity

is measured by the distance between each object and the cluster mean.

3. The cluster mean is recalculated after all objects are (re)assigned.

4. All objects are re-evaluated and placed in the most similar cluster.

5. Steps 3 and 4 are repeated until no changes are made between iterations (full

convergence) or until the maximum number of iterations is reached (partial
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convergence).

The mean squared-error (MSE) is minimized upon convergence. The error function

is computed as

E =
k∑

i=1

∑
p∈Ci

|p−mi|2, (3.1)

where E is the sum of squared-error of all objects, p is the coordinate of an object

and mi is the mean of cluster Ci. There are several methods to compute the distance

measure for the minimum MSE (MMSE) in multi-variable (multi-dimension) k -means

clustering. The most common measure is the Euclidean distance, where the cluster

centroid is calculated from the mean of all objects within a cluster in all dimensions.

Another distance measure called “cityblock” is used for objects whose dimensions

have no Euclidean distance relationships. This distance measure is the sum of absolute

differences in each dimension. Hence, the centroid in the “cityblock” distance measure

is the mean between the points for each dimension.

The k -means algorithm may only be applied to data sets that have a defined

cluster mean. The computational complexity of the algorithm is O(nkt), where n is

the number of objects, k is the number of clusters, and t is the number of iterations.

One of the challenges of the k -means algorithm is the need to define k a priori.

However, the natural number of clusters is usually not known before the algorithm

is applied. Furthermore, the k -means algorithm is sensitive to outliers. The choice

of objects for the initial centers may also affect the clustering result because the k -

means algorithm converges to the local minima. This can be mitigated by repeating

the algorithm several times with different initial cluster centers and by selecting the

best result through measuring cluster quality.
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3.1.1.2 Measuring cluster quality and determining the number of clusters

using silhouette coefficients

The k -means error function drops monotonically as the number of clusters k increases.

Hence, cluster quality should be independent of k. Silhouette coefficients (SC) have

been used to identify the quality of clustering results [45], [46]. The SC of an object

i within a cluster A is calculated as follows:

1. Set ai to be the average distance of object i to all other objects in cluster A.

2. For all clusters that is not A, calculate the average distance of object i to the

objects in each of these clusters. Set bi to be the minimum of these average

distances and B to be the cluster with this minimum average distance to object

i.

3. The silhouette coefficient si for object i is given by

si =
bi − ai

max(ai, bi)
. (3.2)

The SC value lies between -1 and 1. An object i with a SC value of -1 is poorly

clustered since object i is closer to objects in cluster B than it is to the objects in

cluster A. On the contrary, SC value of 1 denotes a well-clustered object. An object

with SC value of 0 can be grouped into either cluster A or B.

To evaluate cluster quality, the average SC value from all points in a cluster is

calculated. The relationship between SC value and cluster quality is shown in Table

3.1. A cluster exhibits strong cluster quality if its average SC value is 0.7 < SC

≤ 1.0 [46]. Average SC value of 0.5 < SC ≤ 0.7 indicates medium cluster quality.

Average SC 0.25 < SC≤ 0.5 indicates low cluster quality. Average SC≤ 0.25 indicates

an absence of cluster structure. In k -means clustering, the natural number of clusters
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Table 3.1. Cluster quality measured by average SC values [46].

Average SC value Cluster quality
0.7 < SC ≤ 1.0 Good
0.5 < SC ≤ 0.7 Medium
0.25 < SC ≤ 0.5 Low

SC ≤ 0.25 Absence of cluster structure

can be found by plotting the average SC value versus k and by locating its local

maximum.

3.1.2 Hierarchical clustering methods

Hierarchical clustering methods place objects into a hierarchical tree of clusters called

a dendrogram. At the leaves of a dendrogram, each object is in its own cluster. At

the top of a dendrogram, all objects belong to a single cluster. Hierarchical clustering

can be divided into agglomerative (bottom-up) and divisive (top-down) approaches.

In the agglomerative approach, each object begins in its own cluster. Successive steps

merge into a cluster objects that are close to each other until all objects are merged

into one cluster or the termination condition is reached. In contrast, the divisive

approach starts with all objects belonging to a single cluster. In each successive it-

eration, clusters are divided into smaller clusters until each object belongs to its own

cluster or the termination condition is reached. For both approaches, the most com-

mon termination condition is the number of desired clusters k. Another termination

condition for the agglomerative (divisive) approach is to set the maximum (minimum)

distance for merging (dividing) clusters.

Most hierarchical clustering methods employ the agglomerative approach. They
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differ in their definitions of intercluster similarity and optimizations employed to im-

prove cluster quality. Four common intercluster distance measures are: minimum,

maximum, mean, and average. For two clusters Ci and Cj, the distance between

pi ∈ Ci, pj ∈ Cj is |pi − pj|. The mean and the number of object for clusters Ci

and Cj are mi, mj, ni, and nj, respectively. The four distance measures are defined

as [41]:

• minimum distance (single linkage):

dmin(Ci, Cj) = min
pi∈Ci,pj∈Cj

|pi − pj|

• maximum distance (complete linkage):

dmax(Ci, Cj) = max
pi∈Ci,pj∈Cj

|pi − pj|

• mean distance (centroid linkage):

dmean(Ci, Cj) = |mi −mj|

• average distance (average linkage):

davg(Ci, Cj) =
1

ninj

∑
pi∈Ci

∑
pj∈Cj

|pi − pj|.

With the minimum distance measure, two clusters Ci and Cj are merged if the closest

distance between pi and pj is the smallest. With the maximum distance measure, two

clusters Ci and Cj are merged if the largest distance between pi and pj is the smallest.

With the mean distance measure, the merge criterion is based on the smallest distance

between the centroids of two clusters Ci and Cj. Finally, with the average distance

measure, the merge criterion is based on the smallest of the average distance between

all objects in the two clusters. A graphical illustration of the four distance measures
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is shown in Figure 3.1. The major challenge of hierarchical methods is that once a

step (either merge or split) is performed, it cannot be reversed. An erroneous merge

or split would result in a sub-optimal clustering result.

Figure 3.1. A graphical illustration of the four distance measures (minimum, maxi-
mum, mean, average) used in hierarchical clustering.

3.1.2.1 Implementation of agglomerative hierarchical clustering

Agglomerative hierarchical clustering is implemented in the following steps:

1. For n objects, a similarity matrix of size n × n is generated. The similarity

matrix records the distance or, in the case of two number series, the number

of identical points. The similarity matrix can be represented by a vector of

size n×(n−1)
2

. For some implementations, a dissimilarity matrix is used. This

matrix records the number of differences between two objects rather than the

number of similarities.

2. Each of the n objects is assigned to clusters from 1 to n.
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3. For each iteration, two objects most similar to each other (the largest similarity

value or the smallest dissimilarity value) are merged into one cluster. A label

is created for the new cluster that becomes the parent of the two child clusters.

Hence, an object merged into a new cluster belongs to both the original cluster

and the parent cluster.

4. The location of the centroid may change at the end of each iteration. Hence,

if the mean distance measure is used, the similarity matrix is recomputed to

reflect the creation of parent clusters.

5. Steps 3 and 4 are repeated until all objects are merged into a single cluster or

the termination condition is reached.

6. Groups can be found by selecting either a desired number of clusters k or by

selecting a maximum merge distance.

3.1.2.2 Visualization of hierarchical clustering

The results from hierarchical clustering can be visualized by plotting the dendrogram.

An example of a dendrogram is shown in Figure 3.2. The merge distance between two

objects is represented by the height of the link. Longer links indicate greater merge

distances.

Groups can be determined using two methods. If the desired number of clusters k

is chosen, the clusters can be determined by drawing a horizontal line such that the

number of intersections between the line and the dendrogram is equal to k. Intersected

links are removed. In Figure 3.2, a line is drawn for k=3. Each remaining binary tree

is a cluster. A second method employs the inconsistency coefficient. This coefficient

compares the height of a link in a cluster hierarchy with the average height of the
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links at the same level. Links connecting two distinct clusters have high inconsistency

coefficient values whereas links connecting leaf clusters have values of zero. Links are

removed if the inconsistency coefficient value is above a selected cutoff. Again, each

remaining binary tree is labelled as a cluster. The inconsistency coefficient is defined

as [47]:

IC =
Zij − µz considered

σz considered

, (3.3)

where

• Zij = link distances between objects i and j in the hierarchical tree Z

• µz considered = mean of link distances considered in the calculation. Links con-

sidered are defined as links at the same level as Zij and links up to depth d

below. The default value of d is 2.

• σz considered = standard deviations of link distances considered in the calculation

3.1.2.3 Measuring cluster quality in hierarchical clustering methods

For hierarchical clustering, cluster quality can be visualized by plotting the similarity

matrix. The matrix is first reorganized by ordering objects based on the cluster label

at a chosen level. The matrix values are then normalized between 0 and 1, where a

value of 1 indicates two objects as being identical. A value of 0 indicates two objects

being entirely dissimilar. The normalized matrix value for an object i is calculated as

normalized matrix valuei = 1− maximum similarity value− similarity valuei

maximum similarity value
.

(3.4)

For well-clustered results, the plot of this matrix should be approximately block di-

agonal. Off-diagonal blocks indicate similarity between clusters.
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Figure 3.2. A dendrogram with 20 objects. The height of the links indicates the
merge distances. The horizontal line intersects the dendrogram at 3 links, separating
the dendrogram into 3 clusters, indicated by the 3 boxes.

The cophenetic correlation coefficient (CPCC) [41] is used to determine the best

choice of distance measure for hierarchical clustering. CPCC is the correlation co-

efficient between the cophenetic distance matrix and the similarity matrix, where

cophenetic distance is defined as the distance between two objects in the dendrogram

to their common parent. CPCC is defined as [48]:

CPCC =

∑
i<j(Yij − y)(Zij − z)√∑

i<j(Yij − y)2
∑

i<j(Zij − z)2
, (3.5)

where

• Y = the actual distances between objects, Z is distances between objects in the

hierarchical tree

• Yij = distances between objects i and j in Y

• Zij = distances between objects i and j in Z
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• y = average distance of all of objects in Y and

• z = average distance of all objects in Z.

If the distance between two merged clusters is 0.1, the cophenetic distance between

all points within one cluster to the points in the second cluster is also 0.1. A higher

correlation coefficient indicates better clustering results.

3.2 Wavelet analysis

Wavelet transforms have been used to evaluate non-stationary signals [49]–[51]. They

are employed to decompose a signal into different time scales, enabling analysis in both

time and frequency domains. In comparison, the common Fourier transform discards

the locality information from the time domain and cannot accurately reconstruct

non-stationary signals.

The discrete wavelet transform (DWT) is used to analyze discrete signals such as

data traffic. The most common type of DWT is the dyadic, where signals are sampled

in powers of two. The dyadic DWT is defined as

dj,k =

∫ ∞
∞

X(t)2−
j
2ψ
(
2−jt− k

)
dt (3.6)

=

∫ ∞
∞

X(t)ψj,k(t)dt, (3.7)

where dj,k is the wavelet coefficient at scale level j and translation k, X(t) is the

original signal, and ψj,k(t) is the basis function of the transform. The series of wavelet

coefficients at scale level j is referred to as the detail coefficients dj. The basis function

ψj,k(t) is obtained by dilating the mother wavelet ψ(t) by a factor of j and translating

(time shifting) by k time units. The relationship between the mother wavelet ψ(t)
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and the basis function ψj,k(t) is

ψj,k(t) =
1√
j
ψ

(
t− k
j

)
, j ∈ R+, k ∈ R. (3.8)

The inverse DWT is defined as

X(t) =
∞∑

j=0

∞∑
k=−∞

dj,kψj,k(t). (3.9)

Equation (3.9) can be rewritten as

X(t) =
∞∑

j=l+1

∞∑
k=−∞

dj,kψj,k(t) +
l∑

j=0

∞∑
k=−∞

dj,kψj,k(t) (3.10)

=
∞∑

k=−∞

al,kφl,k(t) +
l∑

j=0

∞∑
k=−∞

dj,kψj,k(t). (3.11)

In (3.10) and (3.11), the sum over j is divided into two regions. The first summation

is an approximation of the original signal X(t) at scale level l and refers to the

approximation coefficients al. The number of coefficients in the approximation is

length of X(t)
2l . Higher values of l indicate coarser approximations. The function φl,k(t)

is the scaling function at scale level l. The second summation is the sum of the details

at the scale level l.



Chapter 4

Analysis of billing records

We analyze two months of billing records collected from the DirecPC system. The

records contain a collection of hourly-generated files with information about traffic

volume in terms of packets and bytes. These billing records capture the hourly network

dynamics.

4.1 Data format

DirecPC billing records contain hourly summary of satellite user activities. We use

1,688 and 1,704 files of billing record collected from two hosts Turbo1 and Turbo2,

respectively. The hosts were located at the NOC. Each file records the activity of

DirecPC users during a particular hour and has the file extension *.bil. The records

are collected continuously every hour from 23:00 on Oct. 31, 2002 to 11:00 on Jan. 10,

2003. In total, 1,691 hours of billing records were collected. The hourly activities for

a satellite user are usually recorded in one of the two hosts. However, if a satellite user

disconnects from the network and reconnects during an hour, a non-overlapping record

28
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for the user may also be present on the second host. The files contain information

about satellite user activities using the eleven fields shown in Table 4.1 [52]. The field

names for each entry are: RecLen, RecTyp, SiteID, Start, Stop, Cmin, Bill, CTxByt,

CRxByt, CTxPkt, and CRxPkt. We are interested in SiteID, Start, CTxByt, CRxByt,

CTxPkt, and CRxPkt. SiteID is a unique hexadecimal ID for each user, Start is

the hourly timestamp while CTxByt, CRxByt, CTxPkt, and CRxPkt summarize the

number of bytes and packets for each direction of data transfer. In the billing records,

Tx refers to the traffic sent by the NOC to a user through the satellite link while Rx

refers to the traffic sent by the user to the NOC through terrestrial dial-up modem.

We refer to the Tx direction as download and the Rx direction as upload with respect

to a user.

4.2 Data pre-processing

We use MATLAB [53] to analyze the billing records. Prior to the analysis, we com-

bined the files, remove the invalid entries, and then merge the remaining entries.

The first step is to combine all entries from the *.bil files into a single file using a

Linux Bash script file combine.sh. The script concatenates all *.bil files collected

from Turbo1 and Turbo2 into a single file. We then examine the file manually to

remove invalid entries. Invalid entries occur when a billing file is empty and the text

“[MMDDhhmm]: writing billing records” appear instead of an entry (MMDDhhmm

refers to the month, date, hour, and minutes). The lines containing these texts are

manually deleted before the next processing stage. The fields in the file are tab-

delimited. Hence, the script file delimit.sh is used to change the tab-delimited file to
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Table 4.1. DirecPC billing record format.

Field name Field Length Description
(without delimiter)

RecLen 5 Length of record including new line character
(value is 00100)

RecTyp 3 DirecPC record type (value is 001)
SiteID 10 Identifies a subscriber by an unique alphanu-

meric string
Start 14 Start time of the call record with format

YYYYMMDDhhmmss (20021031230007)
Stop 14 Stop time of the call record with format

YYYYMMDDhhmmss (20021101000007)
Cmin 3 Number of active minutes (minutes in the

recorded period during which the subscriber
transmitted or received packets)

Bill 1 Identifies a subscriber’s dial-up method
CTxByt 10 Number of bytes the NOC has transmitted to

the subscriber through the satellite link (num-
ber of downloaded bytes the subscriber has re-
ceived using the satellite link)

CRxByt 10 Number of bytes the NOC has received from
the subscriber (number of uploaded bytes the
subscriber has transmitted to the NOC using
dial-up)

CTxPkt 10 Number of packets the NOC has transmitted to
the subscriber through the satellite link (num-
ber of downloaded packets the subscriber has
received using the satellite link)

CRxPkt 10 Number of packets the NOC has received from
the subscriber (number of uploaded packets the
subscriber has transmitted to the NOC using
dial-up)
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the comma-delimited format and convert the hexadecimal siteID to base 10. These

changes are required to facilitate data import into MATLAB.

The normalize.m function that we developed is used to convert the hourly records

from the YYYYMMDDhhmmss format to hours numbered from 0 to 1691 (YYYYM-

MDDhhmmss refers to year, month, hour, minute, and second). The last pre-process-

ing step is performed through the mergebilling.m function. This function sorts the

entries according to the hour and the SiteID and combines two entries if their hour

and SiteID are identical.

4.3 Analysis of the aggregated traffic

After pre-processing, we aggregate the billing records by hour and by day. For each

hour and day, four values are recorded: downloaded bytes, uploaded bytes, down-

loaded packets, and uploaded packets.

4.3.1 Hourly and daily traffic volume

The aggregated downloaded and uploaded hourly and daily traffic data in terms of

packet and bytes are shown in Figures 4.1 – 4.8. The downloaded traffic (bytes) is

higher than the uploaded traffic (bytes) by an order of magnitude. Uploaded number

of packets is only slightly larger compared to downloaded number of packets because

sent requests are usually followed by a received response. The difference may be at-

tributed to the presence of the User Datagram Protocol (UDP) packets because UDP

does not require acknowledgement for packets sent, unlike TCP. A regular pattern

that repeats every 24 hours is observed in Figures 4.1 – 4.4. An exception occurs
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on Dec. 24, 2002, when the daily minimum traffic volume is much higher compared

to other daily minima. On Jan. 3, 2003, the traffic volume decreased to almost zero

followed by the highest recorded traffic volume, as shown in Figures 4.1 and 4.2. This

change in the traffic pattern was caused by a network outage followed by the trans-

mission of queued data after recovery. The maximum number of downloaded packets

is recorded on Dec. 24, 2002, as shown in Figures 4.5 and 4.6, indicating the change

in traffic dynamics during holidays. We also observed a drastic reduction in traffic

volume during the extended holiday season between Jan. 1, 2003 and Jan. 10, 2003,

as shown in Figures 4.5 – 4.8.

4.3.2 Daily (diurnal) and weekly cycles

Daily and weekly cycles are observed by averaging the data traffic for the same hour

over all days or over the same day of a week. The daily cycles for packets and bytes

are shown in Figures 4.9 and 4.10, respectively. The weekly traffic averages for packets

and bytes are shown in Figures 4.11 and 4.12, respectively.

A daily minimum appears at 7 AM. The data traffic volume then rises rapidly until

it reaches daily maxima at 11 AM, 3 PM, and 7 PM. The traffic volume decreases

monotonically from 7 PM until 7 AM. Similar traffic patterns have been reported [54],

with the third daily maximum occurring later in the evening (between 9 PM and 10

PM) rather than at 7 PM. As expected, the traffic volume on weekends is lower than

on working weekdays. The three daily maxima for Wednesdays are not as visible as

for other days, as shown in Figure 4.12, because both Dec. 24 and Dec. 31, 2002 occur

on a Wednesday. This suggests that traffic volume may have different patterns on

days immediately prior to holidays.
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Figure 4.1. Aggregated traffic: downloaded packets (hourly). The data was recorded
from 23:00 on Oct. 31, 2002 to 10:00 on Jan. 10, 2003. The highest packet volume
was recorded on Jan. 3, 2003.

Figure 4.2. Aggregated traffic: uploaded packets (hourly). The data was recorded
from 23:00 on Oct. 31, 2002 to 10:00 on Jan. 10, 2003. Highest packet volume was
recorded on Jan. 3, 2003.
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Figure 4.3. Aggregated traffic: downloaded bytes (hourly). Highest daily minimum
downloaded traffic volume was recorded on Dec. 24, 2002.

Figure 4.4. Aggregated traffic: uploaded bytes (hourly). The uploaded bytes is one
order of magnitude smaller than downloaded bytes.
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Figure 4.5. Aggregated traffic: downloaded packets (daily). Downloaded packet
volume is lower between Jan. 1 and Jan. 10 compared to the rest of the recorded
period.

Figure 4.6. Aggregated traffic: uploaded packets (daily). Uploaded packet volume is
lower between Jan. 1 and Jan. 10 compared to the rest of the recorded period.
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Figure 4.7. Aggregated traffic: downloaded bytes (daily). The highest number of
daily downloaded bytes was recorded on Dec. 24, 2002.

Figure 4.8. Aggregated traffic: uploaded bytes (daily). The highest number of daily
uploaded bytes was recorded on Nov. 13, 2002.
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Figure 4.9. Average daily downloaded and uploaded traffic volume in packets obtained
by averaging all recorded values for the same hour. The data was recorded from 23:00
on Oct. 31, 2002 to 10:00 on Jan. 10, 2003.

Figure 4.10. Average daily downloaded and uploaded traffic volume in bytes obtained
by averaging all recorded values for the same hour. Average number of uploaded bytes
is one order of magnitude smaller than average downloaded bytes.
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Figure 4.11. Average weekly downloaded traffic volume in packets obtained by aver-
aging all recorded values for the same hour on the same weekday.

Figure 4.12. Average weekly downloaded traffic volume in bytes obtained by averaging
all recorded values for the same hour on the same weekday.
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4.4 Analysis of user behavior

In Section 4.3.2, we examined the aggregated records. While aggregated records

enable us to observe the general characteristics of the traffic, the aggregation process

discards information about individual users. In this Section, we investigate the traffic

patterns of the 186 users identified in the ChinaSat billing records. We examine the

traffic volume contributed by each user through ranking and we construct cumulative

distribution functions (CDFs). We then classify the satellite users into distinct groups

using cluster analysis. k -means cluster analysis is employed to classify users according

to their average traffic per hour. Hierarchical clustering is employed to classify users

based on their traffic patterns. We then refine the hierarchical clustering results by

classifying users into the three most common traffic patterns.

4.4.1 Ranking of user traffic

We sum the total number of packets and bytes of each ChinaSat user. From the billing

records, the user with the most traffic downloaded received 78.8 GB and uploaded

11.9 GB during the recorded period. The same user also downloaded/uploaded the

most number of packets (∼205 million packets).

We rank the users according to their total traffic in descending order in terms

of downloaded and uploaded packets and bytes. The user who contributed the most

traffic is placed at rank 1. The user ranks according to downloaded bytes are shown in

Figure 4.13. Uploaded bytes and downloaded and uploaded packets have ranks that

exhibit similar patterns. A user may not have the same rank across the four traffic

statistics. Table 4.2 lists the ranks of the first 20 users ordered by decreasing number
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Figure 4.13. Users ranked by downloaded bytes. The user with the most downloaded
bytes has rank equal to 1.

of downloaded bytes. Even though the user with the heaviest traffic is ranked 1 in all

four rankings, the user with the second most downloaded bytes ranked only eighth in

terms of the number of downloaded/uploaded packets.

From the ranks, we construct CDFs according to the traffic volume of each user.

The results for downloaded traffic is shown in Figure 4.14. The top user accounts for

11% and the top 25 users account for 93.3% of the total downloaded bytes. The top

37 users contributed 99% of the total traffic. The four CDFs are shown in Figure

4.15. Although the CDF curves differ slightly, the distributions of downloaded and

uploaded packets and bytes are very similar.

We use histograms to examine the relationship between traffic volume and number

of users. The histogram for downloaded bytes is shown in Figure 4.16. More than

150 users downloaded less than 0.5× 1010 bytes. The remaining 36 users downloaded
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Table 4.2. Ranking of the 20 SiteIDs with the most downloaded bytes. The users are
listed by the order of downloaded bytes. Rank 1 refers to the user with the highest
number of downloaded bytes.

SiteID Downloaded Uploaded Downloaded Uploaded
packets packets bytes bytes

71910659 1 1 1 1
128651268 8 8 2 13
73249794 7 11 3 8
72721924 4 4 4 4
72783107 11 9 5 11
71908356 2 2 6 3
73252098 3 3 7 2
72928519 5 5 8 6
73245697 10 10 9 10
72805121 9 7 10 5
72754948 6 6 11 7
73257474 13 13 12 9
72691714 17 17 13 17
72718850 12 12 14 12
72535041 18 19 15 16
71749895 21 21 16 18
72721923 16 15 17 15
73252102 14 14 18 14
72177156 19 18 19 24
73132546 22 23 20 20
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Figure 4.14. CDF of downloaded bytes. 99% of total traffic is contributed by the top
37 users.

Figure 4.15. CDFs of downloaded and uploaded packets and bytes. The CDFs are
very similar.
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Figure 4.16. Histogram of the downloaded traffic. Majority of users (150) downloaded
less than 0.5× 1010 bytes.

Figure 4.17. Histogram of the downloaded traffic for the 36 users who downloaded
> 0.5× 1010 bytes. With the exception of the first two bins, most bins have only two
or fewer users.
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between 0.5× 1010 and 8× 1010 bytes. The histogram for the 36 users with the most

number of downloaded bytes is shown in Figure 4.17. The bars with higher number

of users correspond to smaller number of downloaded bytes, as shown in Figure 4.17.

However, the number of data points is insufficient to model the total user downloaded

bytes using statistical distributions.

4.4.2 Classification of users with k-means clustering

We employ the k -means clustering method described in Section 3.1.1.1 to classify the

ChinaSat users. We choose the MATLAB k -means implementation for our analysis.

For the single-variable k -means clustering, we group the users according to the average

traffic they contributed. For the multi-variable clustering, we combine the results from

the single-variable clustering.

4.4.2.1 single-variable k-means clustering

Prior to employing the k -means algorithm, we first find the average packets and bytes

downloaded/uploaded by each user. We choose to use average traffic per hour instead

of total traffic because not all users are active through the entire period when the

billing records were captured. For example, the user with SiteID 72721924 was only

active between Nov. 23, 2002 and Jan. 10, 2003, as shown in Figure 4.18. This user

contributed the fourth most downloaded and uploaded packets and bytes, as recorded

in Table 4.2. Thus, if we use total traffic as the metric, a heavy traffic user who was

active for only part of the recorded period may be misclassified as a medium traffic

user. Hence, the average traffic would better serve our goal of classifying users.

We do not know a priori the natural number of groups that classifies the collected
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Figure 4.18. Downloaded bytes of user with SiteID 72721924. The vertical axis is
offset to show the absence of traffic between June 30 and Nov. 23, 2002. Even though
this user was one of the top traffic contributors, the user was only active from Nov. 23,
2002 to Jan. 10, 2003.

data. Hence, we tested k from 2 to 10. To mitigate the problem of empty clusters,

MATLAB is configured to create a new cluster consisting of the one object furthest

from its centroid. Furthermore, to avoid converging to a local minimum, we repeat

the algorithm 15 times for each value of k using different sets of initial objects. We

set the number of iterations to be 50,000 to ensure full convergence. Finally, we use

silhouette coefficients to quantify the cluster quality.

All runs of the k -means clustering algorithm were completed within 50 iterations

and within 2 minutes to full convergence. The average SCs from the cluster analysis

of downloaded and uploaded packets are shown in Tables 4.3 and 4.4 and Figures

4.19 and 4.20, respectively. The natural number of clusters for both downloaded and

uploaded packets is 2.
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Table 4.3. Average SC for k -means clustering of downloaded packets.

k Average silhouette
coefficient

(downloaded packets)
2 0.92729
3 0.92504
4 0.87268
5 0.8736
6 0.89665
7 0.89697
8 0.8926
9 0.87825
10 0.81644

Figure 4.19. Plot of the average SC and k for downloaded packets. The natural
number of clusters for a set of objects correspond to the local maxima of the average
SC.
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Table 4.4. Average SC for k -means clustering of uploaded packets.

k Average silhouette
coefficient

(uploaded packets)
2 0.92534
3 0.91675
4 0.91256
5 0.8754
6 0.90034
7 0.90433
8 0.81919
9 0.90045
10 0.77038

Figure 4.20. Plot of the average SC and k for uploaded packets. The natural number
of clusters for a set of objects correspond to the local maxima of the average SC.
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The k -means clustering results for downloaded and uploaded bytes differ from

downloaded and uploaded packets, as shown in Tables 4.5 and 4.6 and Figures 4.21

and 4.22, respectively. The natural number of clusters for downloaded and uploaded

bytes is 3. By examining the cluster boundaries, we refer to the three clusters as

heavy, medium, and light traffic users.

Table 4.5. Average SC for k -means clustering of downloaded bytes.

k Average silhouette
coefficient

(downloaded bytes)
2 0.89442
3 0.92996
4 0.89852
5 0.91555
6 0.89345
7 0.89431
8 0.8939
9 0.83582
10 0.8541

Table 4.6. Average SC for k -means clustering of uploaded bytes.

k Average silhouette
coefficient

(uploaded bytes)
2 0.92134
3 0.92805
4 0.89049
5 0.89382
6 0.90428
7 0.90256
8 0.75551
9 0.80786
10 0.76943
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Figure 4.21. Plot of the average SC and k for downloaded bytes. The natural number
of clusters for a set of objects correspond to the local maxima of the average SC.

Figure 4.22. Plot of the average SC and k for uploaded bytes. The natural number
of clusters for a set of objects correspond to the local maxima of the average SC.
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We also examine the results for downloaded bytes. We list the cluster size, object

boundaries, and average SC for each of the k clusters for downloaded bytes in Tables

4.7 and 4.8. Cluster 1 contains users who contributed the least amount of traffic while

the cluster with the largest cluster number contains users who contributed the most

volume of traffic.

The SC plot for each value of k is shown in Figures 4.23 – 4.31. Note that

the SC plots for k=6 and 7 have no negative SC values. The lack of negative SC

values suggests that k=6 and 7 may also be natural number of clusters. Nevertheless,

the lower average SC values indicate that objects clustered using k=6 and k=7 are

clustered worse compared to k=3 even though all objects have positive SC values.

Figure 4.23. Silhouette plot: average downloaded bytes for k=2.
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Table 4.7. Downloaded bytes: k -means clustering for k=2–7.

Lower Upper
Cluster Cluster cluster cluster Cluster

k number size boundary boundary silhouette
(MB) (MB) coefficient

2 1 163 0.0 23.3 0.97948
2 23 23,3 110.7 0.29158

3 1 159 0.0 16.8 0.9703
2 24 16.8 70.7 0.6706
3 3 70.7 110.7 0.8668

4 1 147 0.0 7.2 0.96424
2 16 7.2 21.1 0.73935
3 20 25.4 60.5 0.5499
4 3 80.8 110.7 0.85138

5 1 147 0.0 6.8 0.96424
2 16 7.5 23.3 0.69893
3 15 23.3 40.3 0.8044
4 5 40.3 70.7 0.62392
5 3 70.7 110.7 0.72696

6 1 135 0.0 3.5 0.97148
2 17 3.5 10.7 0.6062
3 11 10.7 23.3 0.72579
4 15 23.3 40.3 0.76279
5 5 40.3 70.7 0.62392
6 3 70.7 110.7 0.72696

7 1 118 0.0 1.4 0.96437
2 24 1.4 5.1 0.22518
3 10 5.1 10.8 0.60267
4 11 10.8 23.3 0.59385
5 15 23.3 40.3 0.76279
6 5 40.3 70.7 0.62392
7 3 70.7 110.7 0.72696
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Table 4.8. Downloaded bytes: k -means clustering for k=8–10.

Lower Upper
Cluster Cluster cluster cluster Cluster

k number size boundary boundary silhouette
(MB) (MB) coefficient

8 1 113 0.0 1.0 0.92901
2 22 1.0 3.5 0.70751
3 13 3.5 8.4 0.70863
4 9 8.4 14.3 0.71754
5 6 14.3 23.3 0.71955
6 15 23.3 40.3 0.67502
7 5 40.3 70.7 0.62392
8 3 70.7 110.7 0.72696

9 1 81 0.0 0.3 0.92754
2 35 0.3 1.2 0.58275
3 19 1.2 3.5 0.64552
4 13 3.5 8.4 0.68769
5 9 8.4 14.3 0.71754
6 6 14.3 23.3 0.71955
7 15 23.3 40.3 0.67502
8 5 40.3 70.7 0.62392
9 3 70.7 110.7 0.72696

10 1 113 0.0 1.0 0.92901
2 22 1.0 3.5 0.70751
3 13 3.5 8.4 0.70863
4 9 8.4 14.3 0.71754
5 6 14.3 23.3 0.70299
6 11 23.3 34.5 0.78432
7 7 34.5 48.4 0.62645
8 2 48.4 70.7 0.5498
9 1 70.7 95.8 1.0000
10 2 95.8 110.7 0.82208
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Figure 4.24. Silhouette plot: average downloaded bytes for k=3.

Figure 4.25. Silhouette plot: average downloaded bytes for k=4.
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Figure 4.26. Silhouette plot: average downloaded bytes for k=5.

Figure 4.27. Silhouette plot: average downloaded bytes for k=6.
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Figure 4.28. Silhouette plot: average downloaded bytes for k=7.

Figure 4.29. Silhouette plot: average downloaded bytes for k=8.
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Figure 4.30. Silhouette plot: average downloaded bytes for k=9.

Figure 4.31. Silhouette plot: average downloaded bytes for k=10.
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4.4.2.2 Multi-variable k-means clustering

For multi-variable k -means clustering, we combined the three variables from the Sec-

tion 4.4.2.1: average downloaded bytes, average uploaded bytes, and average down-

loaded packets. On average, the number of downloaded and uploaded packets are

identical. However, there is a relationship between the number of packets and number

of bytes a user downloads/uploads. Due to the maximum packet size at the Ethernet

layer, the number of packets downloaded/uploaded increases linearly as the number

of bytes increases. Hence, we choose to employ average bytes per downloaded packet

instead of average downloaded packets. These three variables are chosen because:

• Some users are web surfers and mainly download web pages. HTTP connections

employ small request packets and large response packets. Hence, such users have

high downloaded to uploaded bytes ratio. In contrast, users with interactive

applications such as telnet, instant messaging, and Voice over IP may have a

downloaded to uploaded bytes ratio closer to 1.

• TCP implementations and configurations may employ different MTU sizes. As

described in Section 2.3, a larger MTU size improves TCP performance. Hence,

users may be clustered based on their MTU size.

We employ the MATLAB k -means implementation in our analysis. Three di-

mensions (average downloaded bytes, average uploaded bytes, and average bytes per

downloaded packet) and the “cityblock” distance measure were chosen. This distance

measure sums the absolute differences in each dimension rather than measuring the

Euclidean distance. The algorithm was repeated 15 times for each k from 2 to 9 and

the clustering result was chosen with the MMSE, as defined in Section 3.1.1.1.
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The results for the multi-variable k -means clustering is shown in Table 4.9 and

Figure 4.32. The natural number of groups occurs at k=3. The results suggest that

the separation between clusters is mainly due to downloaded and uploaded bytes.

Table 4.9. Average SC for multi-variables k -means clustering.

k Average silhouette
coefficient

(multi-variables)
2 0.89438
3 0.92888
4 0.8949
5 0.91166
6 0.88658
7 0.87714
8 0.81643
9 0.73731

4.4.3 Classification of users by user activity

The k -means analysis from Section 4.4.2 grouped users by their traffic volume, which

reduced the traffic for each user to a single value representing average packets and

bytes. In this Section, we examine the traffic from each user by employing hierarchical

clustering. We first classify the users by employing hierarchical clustering on their

traffic patterns. We then refine the result of hierarchical clustering by classifying users

based on the three most common traffic patterns.

Pattern matching of signals has been reported to be a difficult task [55], [56]. In

the ChinaSat billing records, users have varying data traffic patterns. For example,

two business users may have similar traffic patterns that do not occur on the same

hour of the day (out of phase). Furthermore, bursty user traffic has different mean,
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Figure 4.32. Plot of the average SC and k for multi-variable k -means clustering. The
natural number of clusters for a set of objects correspond to the local maxima of the
average SC.

peak, and variance. Hence, to simplify our analysis, the hourly traffic for each user is

classified to values 1 (BUSY) or 0 (IDLE), as shown in Figure 4.33. For a particular

hour, a user is considered BUSY if its billing record entry exists during the hour.

Hence, BUSY indicates that a user has either downloaded or uploaded traffic during

the particular hour. If no billing record exists for a user during an hour, the user is

considered IDLE.

4.4.3.1 Hierarchical clustering

Not all users were BUSY for the entire recorded period. Hence, the similarity between

two users’ activities is calculated during the period when the users were BUSY instead

of using the entire recorded period. We assigned a value of 1 for each hour that

two users are either both BUSY or both IDLE and 0 otherwise. We call the sum



CHAPTER 4. ANALYSIS OF BILLING RECORDS 60

Figure 4.33. Classification of user traffic to values 1 (BUSY) or 0 (IDLE). For a
particular hour, a user is considered BUSY if the user has either downloaded or
uploaded traffic during the particular hour.
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of the values the similarity score. The similarity score is normalized to the length

of the recorded period. A similarity score of zero is assigned when the two traffic

patterns do not overlap. Furthermore, some users may only be BUSY for a few

hours in the billing records and have a short duration between their first and last day

of activity. The shortness of the comparison period may result in high normalized

similarity score between users who have a short activity duration and users who are

mostly BUSY. However, we cannot remove users who have short activity duration

from the analysis because transient users also contribute non-negligible traffic volume.

Hence, to prevent users who are mostly IDLE from achieving a high similarity score

with users who are mostly BUSY, we place a lower-bound on the minimum number

of comparisons to be 3 weeks (504 hours). The similarity scores are placed into a

similarity matrix of size 186× 186.

The similarity matrix is then converted into a distance vector of size n× (n− 1)

(186× 185) used by the MATLAB linkage function. For each of the four hierarchical

trees constructed using the distance vector and the linkage function, we use a different

distance measure. The four distance measures used are: minimum distance, maximum

distance, mean distance, and average distance, as described in Section 3.1.2. Next, we

calculate the cophenetic correlation coefficient (CPCC) for the four trees, as defined

in Section 3.1.2.3. The correlation coefficients are shown in Table 4.10. Although the

CPCC for the average distance measure is the highest, the clustering result is rejected

because a non-monotonic tree is created, as shown in Figure 4.34. The non-monotonic

links violate the hierarchical property of a tree. Hence, we choose the mean distance

measure for hierarchical clustering.

The dendrogram plot for the 186 users using the means distance measure is shown
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Table 4.10. Cophenetic correlation coefficients for the four distance measures. The
average distance measure is rejected because the hierarchical tree is not monotonic.
The mean distance is the best distance measure for creating a dendrogram of the
traffic patterns.

Distance Cophenetic correlation
measure coefficient (CPCC)

Minimum distance 0.68900
Maximum distance 0.77610

Mean distance 0.92768
Average distance 0.93630

Figure 4.34. Dendrogram plot of the topmost 30 clusters by employing the average
distance measure. The average distance measure is rejected because the created hier-
archical tree is not monotonic. The two circled links that are not shaped as inverted
“U” are not monotonic.



CHAPTER 4. ANALYSIS OF BILLING RECORDS 63

Figure 4.35. Dendrogram plot for all 186 users. The group of users clustered with
small merged distances on the left side of the graph are mostly IDLE. The group of
users on the right side with large merge distances exhibits cyclic activity.

in Figure 4.35. We employ the inconsistency coefficient described in Section 3.1.2.2 to

find the number of clusters. The largest computed inconsistency coefficient is 1.1547.

Hence, we select 1.10 (90% value) as cutoff for the inconsistency coefficient. This

cutoff value results in 68 clusters. Setting the cutoff at 0.9 results in 76 clusters. This

large number of clusters is caused by the comparison of traffic patterns of users whose

activities do not overlap.

We choose k=3 to generate 3 clusters from the dendrogram. The results are shown

in Table 4.11 and Figure 4.36. For clarity, only the topmost 30 clusters from Figure

4.35 are shown in Figure 4.36. By examining the user activity in each group, we found

that group 1 contains users that are mostly IDLE for the duration of the recorded

period and users that are BUSY 24 hours a day. No identifiable activity pattern can
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be found in group 2. Group 3 contains users who exhibit daily cycles of activity.

Table 4.11. Clustering results based on the hierarchical clustering and k=3. Group
1 contains users that are mostly IDLE for the duration of the recorded period and
users that are BUSY 24 hours a day. No common user pattern can be found in group
2. Group 3 contains users who are BUSY 8-12 hours a day.

Group number Number of users
1 171
2 3
3 12

Figure 4.36. Dendrogram plot for the top 30 cluster tree nodes. Shown are the
groups when k=3. Group 1 contains users that are mostly IDLE for the duration
of the recorded period and users who are BUSY 24 hours a day. Group 2 has no
identifiable pattern. Group 3 contains users who have cyclical activity patterns.



CHAPTER 4. ANALYSIS OF BILLING RECORDS 65

4.4.3.2 Clustering using the three most common traffic patterns

Using inconsistency coefficients, hierarchical clustering results in 68 clusters. From

the largest clusters, we observed three most common traffic patterns, as shown in

Figure 4.37. We assume that the traffic patterns of all users belong to one of the

three patterns:

1. Inactive users: The first group of users are mostly IDLE during the recorded

period. They are usually BUSY for less than 25% of the time and this group

of users download/upload the least amount of data. Their behavior is approx-

imated by a line of zero activity for the duration of the recorded period, as

shown in Figure 4.38.

Figure 4.37. Dendrogram plot for the top 30 cluster tree nodes (3 most common traffic
patterns). The leftmost group contains inactive users, the center group contains active
users, and the rightmost group contains semi-active users.
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2. Active users: The second group of users are BUSY for more than 18 hours a

day. We conjecture that this group is comprised of users in 24-hour Internet

cafés. We approximate their behavior by a line of full activity for the duration

of the recorded period, as shown in Figure 4.39.

3. Semi-active users: The third group of users are BUSY for 8 to 12 hours a day.

Although their BUSY hours overlap, their BUSY hours may not be identical.

Their behavior is approximated by using a 10 hours BUSY/14 hours IDLE

cycle for the duration of the recorded period, as shown in Figure 4.40.

Figure 4.38. Traffic pattern of inactive users. Their behavior is approximated by a
line of zero activity (IDLE hours) for the duration of the recorded period.

Users who are BUSY for 8-12 hours may be out of phase with the semi-active traffic

pattern. To adjust for the phase variance, we translate the active pattern by a few

hours so that the similarity score is maximized.
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Figure 4.39. Traffic pattern of active users. Their behavior is approximated by a line
of BUSY hours for the duration of the recorded period.

Figure 4.40. Traffic pattern of semi-active users. Their behavior is approximated by
using a 10 hours BUSY/14 hours IDLE cycle for the duration of the recorded period.
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We create a similarity matrix for each of the three patterns. Each user’s traffic

pattern is compared to the three common traffic patterns and a similarity score is

recorded in the corresponding matrix. We group a user’s traffic pattern into the

cluster where the similarity score is the highest. The result of the clustering is shown

in Table 4.12.

Table 4.12. Clustering results based on the three most common traffic patterns. Most
users are labelled as inactive for the duration of the recorded period.

Traffic pattern Number of users
Inactive users 162
Active users 16

Semi-active users 8

Although most users are classified correctly, some users may not fit the three

chosen traffic patterns. For example, the user with SiteID 72805121 is identified as

an inactive user even though the traffic pattern appears to be regular, as shown in

Figure 4.41. The user was classified as inactive because the traffic does not exhibit a

regular pattern. This user is usually active for 8 hours a day, but not during the same

hours every day. There are also days during which this user was active for 12-15 hours.

Thus, the user was classified as inactive even though the classification of semi-active

may have been a better choice.
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Figure 4.41. Downloaded bytes for user with SiteID 72805121. Although the traffic
pattern appears regular, the user is not active on the same hours every day. This user
is classified as inactive based on the three most common traffic patterns.

4.4.4 Combining clustering results from the k-means cluster-

ing and hierarchical clustering

We found no significant differences between using single and multi-variable clustering

as described in Section 4.4.2, where k=3 was chosen as the natural number of clus-

ters. Hence, we combine the single variable k -means clustering of downloaded bytes

with hierarchical clustering. We use the three most common traffic patterns because

hierarchical clustering produced too many clusters (using inconsistency coefficients)

or clusters with no distinguishable patterns (choosing k=3). We employ the 3 most

common traffic patterns and the best choice of k=3 from the k -means clustering.

Hence, we categorize the users into 9 (3 × 3) clusters. However, only 8 clusters are
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present since one of the clusters has no objects. The 8 clusters have the following

characteristics:

• Low traffic volume:

1. Inactive users: This is the largest cluster with 150 members. The mem-

bers concur with the histogram results given in Section 4.4.1, where 150

users downloaded less than 0.5× 1010 bytes.

2. Active users: 7.

3. Semi-active users: 2.

• Medium traffic volume:

1. Inactive users: 11.

2. Active users: 9.

3. Semi-active users: 4.

• High traffic volume:

1. Inactive users: Only one user belongs to this cluster. This particular user

contributed a large amount of traffic while BUSY, as shown in Figure 4.42.

However, the user was only active between Dec. 24, 2002 and Jan. 10, 2003

and generated no regular traffic pattern.

2. Semi-active users: The two users belonging to this cluster are most likely

businesses or Internet cafés. They contributed the largest volume of total

traffic and are open for ∼10 hours a day.
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Figure 4.42. Average traffic volume (downloaded bytes) for user with SiteID 72640513.
The user was active between Dec. 24, 2002 and Jan. 10, 2003. The user contributed
a large volume of traffic but generated no regular traffic pattern.



Chapter 5

Analysis of tcpdump traces

The PEP techniques employed in the DirecPC network reroute all satellite user traffic

to the NOC, as described in Section 2.3.5. Hence, the NOC is the ideal location to

collect traffic traces. The traces were collected from a port on the primary Cisco

router at the NOC, located in the Northwest rural area of Beijing, China. The router

provides access to the inbound and outbound packets sent between the hosts using

the NOCs 100 Mbps local area network (LAN). The NOC connects to the Internet

backbone through a 10 Mbps link.

We employed the open-source passive network monitor tool tcpdump to collect the

traffic traces. The tool was installed on a Linux PC equipped with a 100 Base-T Eth-

ernet adaptor and a high-resolution (100 µs) timer. The tcpdump tool was configured

to capture the first 68 bytes of each packet to ensure user privacy and to minimize

storage requirements while preserving the IP and TCP headers. The TCP payload

was not collected. The tcpdump traffic traces were continuously collected from 11:30

on Dec. 14, 2002 to 11:00 on Jan. 10, 2003. The collected traces were stored in 127

72
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files, containing ∼63 GB of data.

5.1 pcap file format

The tcpdump tool stores packets using the interface provided by the packet capture

library libpcap. Each packet trace (pcap file) contains a header section and a data

section. The layout of a pcap file is shown in Figure 5.1.

Figure 5.1. General layout of a pcap file. Each pcap file contains a header section
that describes the parameters used by tcpdump. pcap data include timestamps, packet
lengths, and the captured packet. They are variable in length.

The header fields of a pcap file and their sizes are shown in Figure 5.2. The first

field, magic number, contains a hexadecimal value of 0xa1b2c3d4 for big-endian sys-

tems or 0xd4c3b2a1 for little-endian systems. The endianness of a system determines

the storage order multi-byte data. Big-endian systems store the most significant byte

(MSB) at the lowest memory address while little-endian systems store the lowest

significant byte (LSB) at the lowest memory address. This magic number specifies

whether the multi-byte fields should be read in the big-endian or little-endian or-

der. The fields in Figures 5.2 - 5.4 labelled with “*” are impacted by the endianness

of a system. Pcap major version and Pcap minor version describe the version (ma-

jor.minor) of libpcap employed to record the trace. All ChinaSat tcpdump traces have
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Figure 5.2. The fields of a pcap file header. Magic number, local time offset, timer
accuracy, snap length, and link type are all 32 bits in length. pcap major version and
pcap minor version are 16 bits in length. All fields labelled with “*” are affected by
the endian order.

been recorded using libpcap version 2.4. Local time offset value indicates the differ-

ence (seconds) between the coordinated universal time (UTC) and the local time if the

recording machine uses UTC. The timer accuracy value indicates the precision of the

timer (microseconds). In the recorded tcpdump traces, both local time offset and timer

accuracy values use the default value of zero, implying that the timestamps employ

local time. Timer accuracy value zero means that the timer precision is not specified.

Snap length indicates the maximum number of bytes that will be captured from each

packet. In the recorded tcpdump traces, snap length has the default value of 68 bytes.

Hence, only the first 68 bytes of a packet are captured if the packet size is larger

than 68 bytes. Packets with sizes smaller than 68 bytes are fully captured. Link type

indicates the data link layer protocol used by the recording device. For the recorded

tcpdump trace, the link employed was Ethernet with link type EN10MB (value = 1).

EN10MB specifies Ethernet link speeds 10Mb/s, 100Mb/s, and 1,000Mb/s. The pcap

header values from the ChinaSat tcpdump traces are shown in Table 5.1.
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Table 5.1. Default header field values of a pcap file header.

Pcap file header field name Field value
Magic number 0xd4c3b2a1 (little endian)
Pcap major version 0x02
Pcap minor version 0x04
Local time offset 0 (not used)
Timer accuracy 0 (not used)
Snap length 0x44 (68 bytes)
Link type 1 (EN10MB: 10/100/1,000Mb/s Ethernet)

The data section of a pcap file contains numerous entries with packet-related in-

formation such as timestamps, packet lengths, and the captured packet, as shown in

Figure 5.3. There are two timestamp fields: seconds and microseconds. The seconds

field employs the Unix time format (the number of seconds elapsed since midnight on

the morning of Jan. 1, 1970). The seconds field stores either the UTC or the local time

depending on the value of local time offset field. The microseconds field records the

number of microseconds that has elapsed during the recorded second. There are two

fields for packet length: recorded packet length and actual packet length. The recorded

packet length field records the minimum of either the snap length (68 in our recorded

tcpdump traces) or the actual packet size. The actual packet length field records the

total length of the packet. The captured packet field includes the link layer frame and

the IP datagram and is preceded by timestamp and packet length fields.

The link layer header (Ethernet header) from the ChinaSat tcpdump trace is shown

in Figure 5.4. It contains destination and source Ethernet addresses (6 bytes each)

and the Ethernet (frame) type (2 bytes). In the ChinaSat tcpdump trace, only three
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Figure 5.3. The fields for each pcap data entry. The two timestamp and the packet
length fields are all 32 bits in length. The captured packet can be as long as the snap
length, which is 68 bytes.

Figure 5.4. The fields of an Ethernet header. Ethernet addresses are 48 bits long.
The 16-bit Ethernet type field indicates the type of a link.

distinct Ethernet addresses are recorded. One of the three Ethernet addresses be-

longs to the router. The other two addresses belong to the next-hop routers where

data from the Internet and from the ChinaSat users are sent/received, respectively.

The Ethernet type value recorded is 0x0800, corresponding to the value for Internet

Protocol version 4 (IPv4).

The IP datagram is preceded by the Ethernet header and is not affected by the

endian order. The transport layer packets (ICMP, UDP, and TCP) follow the IP
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header and are shown in Figures 5.5 – 5.7.

Figure 5.5. ICMP packet format.

Figure 5.6. UDP packet format.

The IP header is common to all three segments [57], [58]. The fields include

the IP version number, IP header length (IHL), type of service (ToS), total packet
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Figure 5.7. TCP packet format.

length, identification, IP flags, fragment offset, time-to-live (TTL), transport-layer

protocol type, IP header checksum, source and destination IP addresses, optional IP

options, and padding. In the ChinaSat tcpdump trace, the IP version number used

was 4 because IPv6 was not widely deployed in 2002. The IP header length field

indicates the length of the IP header measured in 32-bit words. The ToS field is not

used in the ChinaSat network. The total length field records the total size of the

datagram measured in bytes, including the IP header and the IP data. This value

is used for analysis. The identification field contains a unique integer that identifies

each IP datagram. The 3-bit flags field contains three boolean values from highest

bit to lowest: “reserved”, “do not fragment”, and “more fragments”. A set “do not
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fragment” bit is a signal to intermediate routers not to fragment the packet. An

ICMP error message should be returned if the packet cannot be transmitted in its

entirety. The “more fragments” bit indicates that a datagram is a fragment from a

larger datagram. All datagram fragments have the same identification value and all

fragments except for the final one have the “more fragment” bit set. The fragment

offset field specifies a datagram fragment’s location in the original datagram The

TTL field indicates the remaining number of hops a datagram is allowed to traverse.

Each intermediate router has to reduce the TTL value by 1 before forwarding an

IP datagram. When the TTL value is zero, the IP datagram is discarded and an

ICMP error message is returned to the sender. Various TCP/IP implementations

employ different default TTL values. The protocol field indicates the transport layer

protocol. For the recorded tcpdump trace, segments from three transport protocols

are captured: ICMP (protocol value 1), UDP (protocol value 17), and TCP (protocol

value 6). IP checksum ensures the integrity of the header values. The source and

destination IP address fields contain the source and destination IP addresses. In

the recorded trace, the ChinaSat network users employ IP addresses in the range

192.168.1.1 – 192.168.2.255. This address range is part of the private IP address

space [59]. The use of private IP addresses in a deployed network indicates that

Network Address Translation (NAT) [60] and dynamic IP [61] are employed. The IP

options field contains additional IP options, if they are used. None were recorded in

the ChinaSat tcpdump traces. Lastly, if an IP datagram does not end on the 32-bit

word boundary due to IP options, a variable length padding value of zero is added to

fill the remaining bits.

In addition to the IP header portion, an ICMP packet contains 4 fields: ICMP
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type, ICMP code, ICMP header checksum, and ICMP data. In the ChinaSat net-

work, we only detect two ICMP types: echo request (type 8) and echo reply (type 0).

The code field is zero for both types. ICMP header checksum ensures ICMP header

integrity. ICMP data is used for padding and specifying the size of a echo request.

From the UDP header, we are interested in the value of the destination port, which

may identify common applications. TCP header has several fields of interest: TCP

destination port, TCP flags, and TCP options. The TCP destination port identifies

the application, as shown in Table 5.2. The TCP flags are used for connection estab-

lishment and termination. The TCP options field specifies extensions to the original

TCP protocol [23] and are employed to enhance performance.

Table 5.2. Common TCP applications sorted by ports used.

TCP application Full name TCP Port
FTP data File transfer protocol data 20

FTP control/command File transfer protocol control/command 21
SSH Secure shell protocol 22

Telnet Teletype network protocol 23
SMTP Simple mail transfer protocol 25
HTTP Hypertext transfer protocol 80
POP3 Post office protocol version 3 110

NETBEUI NetBIOS extended user inferface 139
IRC Internet relay chat 194

HTTPS HTTP over secure socket layer (SSL) 443
MS SQL Microsoft structured query language server 1433
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5.2 Constancy of IP addresses

The ChinaSat users have allocated private IP addresses in the range of 192.168.1.1 –

192.168.2.255. The use of a private IP address range is an indication that NAT [60]

and dynamic IPs [61] are used. When these two techniques are deployed, a user’s IP

may change every time the computer connects to the network. While we may assume

that a satellite user retains the same IP over a few hours, a user may not retain the

same IP over a few days. Hence, a particular IP address could belong to two different

satellite users at separate times. User analysis for the full duration of the three weeks

trace cannot be performed because it is not possible to identify a particular satellite

user in the tcpdump traces. As a consequence, cluster analysis cannot be performed.

We also cannot associate satellite user SiteIDs with IP addresses to gain additional

insights. Instead, we analyze the behavior of users by assuming that the IP addresses

remain constant for a few hours.

5.3 General characteristics of traffic data

5.3.1 Protocols and applications

It is not surprising that the collected traffic traces contain only IP packets because

IP is the most widely used network layer protocol. We did not capture traffic from

protocols such as the address resolution protocol (ARP) [62] and the reverse address

resolution protocol (RARP) [63] due to the tcpdump defaults. The distribution of

traffic data by protocols is shown in Table 5.3. We also analyze the activity by TCP

port numbers because TCP accounts for majority of the packets. Traffic data in
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terms of applications, connections, and bytes are shown in Table 5.4. World Wide

Web (WWW) traffic (port 80) is the most widely used TCP application in terms of

number of bytes, followed by FTP. Approximately 10% of all connections use unknown

ports.

Table 5.3. Characteristics of traffic data sorted by protocols.

Protocol Bytes (%) Packets (%)
TCP 94.50 84.30
UDP 5.06 14.20
ICMP 0.45 1.45
Total 100.00 100.00

Table 5.4. Characteristics of traffic data sorted by TCP applications.

Applications Connections (%) Bytes (%)
WWW (80) 90.00 76.800
FTP-data (20) 0.20 10.700
IRC (194) 0.80 0.008
SMTP (25) 0.10 0.010
POP3 (110) 0.03 0.020
Telnet (23) 0.02 0.002
Others 8.90 12.500
Total 100.00 100.00

Only a few known applications use a standard UDP port. UDP, an unreliable

transport layer protocol, is mainly used for real-time applications such as video

streaming and Internet telephony. Many of these applications use random ports.

Hence, we cannot identify the majority of UDP applications based on UDP ports and
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can only identify the Routing Information Protocol (RIP) [64] packets transmitted

on UDP port 520. RIP is used for packet routing between various hosts in a local

network. The RIP packets were sent between the three Ethernet addresses described

in Section 5.1. Although we are able to identify a large number of RIP packets, they

are not related to the DirecPC traffic in the ChinaSat network. Therefore, we did not

analyze these packets further.

5.3.2 TCP options

In Section 2.3, we described TCP options such as SACK, the sliding window scale

option, increasing the initial cwnd, and path MTU discovery. These extensions are

requested during the TCP three-way handshake. Hence, we examine the initial two

segments (SYN and SYN/ACK) of the TCP connections and identify that SACK is

widely used in the ChinaSat network. Over 60% of connections support the SACK

option. Less than 5% of connections use the sliding window scale option. The com-

monly deployed Microsoft Windows OS versions 98 and higher support and enable

SACK by default [65]. The sliding window scale option is disabled by default. A small

number of Linux distributions employ sliding window scale option with the value of

zero. Hence, the prevalent usage of SACK and the infrequent usage of sliding window

scale option in the recorded tcpdump traces are caused by the Microsoft Windows

TCP implementation. In addition, most connections use the window size of 4 MSS or

larger. This is also the default for Windows. Lastly, there were no instances of path

MTU discovery. Most TCP implementations use a default MSS size of 1,460 bytes

instead of searching for a maximum MTU.
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5.3.3 Operating system fingerprinting

TCP SYN packets can be examined to identify the end users’ operating systems

(OSes) through techniques called OS fingerprinting. These techniques and are used

for intrusion detection, vulnerability discovery, and network auditing. In this Section,

we show that Microsoft Windows is the cause of the observed TCP options in the

ChinaSat network.

OS fingerprinting techniques are based on the fact that TCP/IP implementations

are unique [66]–[69]. For example, captured packets show that Microsoft Windows

enable SACK and set MSS to 1,460 bytes by default in TCP SYN packets [70]. Since

TCP options end on the 32-bit boundary, two TCP no operation (NOP) options

are used for padding. However, the Windows implementation is unique because the

NOPs are placed in front of SACKOK in the following order: MSS, NOP, NOP, and

SACKOK.

In addition to the order of TCP options, the IP TTL value, the TCP window

size, the IP DF flag, the IP ToS bits, and the TCP SYN packet size are also used to

identify an OS [67], [69]. The signatures for a few common OSes are listed in Table

5.5.

The TCP/IP implementation of different OSes can be determined actively or pas-

sively. Active OS fingerprinting techniques send SYN probes with various TCP op-

tions to hosts and determines the hosts’ OSes based on the replies. In contrast, passive

fingerprinting determines the OSes based on captured packets. We use the passive

open source OS fingerprinting tool p0f v2 [68], which supports the pcap file format.

For this OS fingerprint analysis, we choose the tcpdump traces collected over the

period of 9 hours on Dec. 14 and assume that the user IPs is constant throughout.
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Table 5.5. TCP SYN defaults for common Operating Systems.

OS TTL Window DF ToS Packet TCP
name size size options

Microsoft 128 16384 Y 0 48 MSS, SACKOK, 2 NOPs
Windows
IBM AIX 64 16384 Y 0 44 MSS
FreeBSD 64 Y 16 64 MSS, SACKOK
OpenBSD 64 16384 N 16 64 MSS, SACKOK,

WSCALE, 5 NOPs
Linux 64 5840 Y 0 60 MSS, SACKOK,

WSCALE, 1 NOP

The results from the analysis are shown in Table 5.6. We detected 171 users, of which

137 are inactive. Inactive users did not initiate TCP connections and, thus, we are not

able to determine their OS. Of the 17 active users, fourteen use Microsoft Windows

and two use Linux. The p0f tool identifies the unknown OS to be a MSS modifying

proxy. Even though the OS of the inactive users cannot be identified, the distribution

of active users suggest that the majority of ChinaSat users rely on Microsoft Windows

OS.

5.4 Data traffic anomalies

We use open-source programs Ethereal/Wireshark [71], tcptrace [72], and the devel-

oped program pcapread to examine the traffic traces. Analysis of the tcpdump traces

reveals data traffic anomalies such as packets with invalid TCP flag combinations,

large number of connections closed using TCP reset, port scans, and traffic volume

anomalies.
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Table 5.6. OS fingerprinting results. A total of 171 users are detected, of which 17

are active. 14 of the active users employ Microsoft Windows, 2 users employ Linux

as their OS, and 1 user employ OS that could not be determined.

User type Operating Number
active/inactive system of users

inactive 137
active 17

Microsoft Windows 14
Linux 2

Unknown 1
Total 171

5.4.1 Packets with invalid TCP flag combinations

TCP SYN, FIN, and RST flags are used to open connections, close connections reg-

ularly, and close connections when an error occurs, respectively [23]. The TCP PSH

flag allows a TCP application to transmit all outstanding packets in the buffer without

delay. Packets with more than one SYN/FIN/RST flag set are invalid. Furthermore,

the TCP PSH flag cannot be used in combination with RST. Invalid flag combinations

may cause TCP/IP implementations to exhibit unexpected behavior or fail. They are

also used to test TCP/IP robustness [73]. Hence, it is unusual to find packets with

combinations of the TCP flags. Packets with invalid combinations may be sent by

malicious programs, viruses, or worms. A vulnerable TCP/IP implementation may

exhibit unexpected behavior even with a single invalid packet. The number of dis-

covered packets with invalid TCP flag combinations is shown in Table 5.7. 0.3% of

packets with TCP open/close flags have invalid combinations.
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Table 5.7. Packets with various TCP flag combinations. Marked with “*” are invalid

TCP flag combinations.

TCP flag Packet count % of Total
SYN only 19,050,849 48.500
RST only 7,440,418 18.900
FIN only 12,679,619 32.300
*SYN+FIN 408 0.001
*RST+FIN (no PSH) 85,571 0.200
*RST+PSH (no FIN) 18,111 0.050
*RST+FIN+PSH 8,329 0.020
*Total number of packets 112,419 0.300
with invalid TCP flag
combinations
Total packet count 39,283,305 100.000

5.4.2 Large number of TCP resets

A TCP connection is opened with the SYN flag and closed with the FIN flag. However,

data shown in Table 5.7 indicate that 37% (7,440,418 / (7,440,418 + 12,679,619))

of connections are closed by the RST flag. This is caused by Microsoft Internet

Explorer that employs RST instead of FIN to close connections in order to improve

web browsing performance [74]. This concurs with results reported in Section 5.3.3,

where most ChinaSat users are found to employ Microsoft Windows OS.

5.4.3 Port scans

Port scans are usually malicious in intent. In the ChinaSat network, both UDP and

TCP port scans are present.
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5.4.3.1 UDP port scans

Analysis of the tcpdump traces shows that UDP port scans occur on port 137, both

originate from and are directed to the ChinaSat network. UDP port 137 is used by the

Microsoft NETBEUI (NETBIOS extended user interface) protocol, which enables file

and printer sharing in a local network of Windows PCs. NETBEUI usually employs

UDP port 137 at both endpoints. Hence, traffic from UDP port 137 to other UDP

ports or traffic from other UDP ports to UDP port 137 indicate abnormal behavior.

An example of a host in the ChinaSat network (IP address 192.168.2.30) that

transmitted packets to Internet hosts from UDP port 137 is shown in Table 5.8.

For a certain destination IP (202.y.y.226), the ChinaSat host transmitted packets to

multiple ports (1025, 1027, 1028, and 1029). This behavior is known as a port scan

and usually indicates malicious intent. An example of a host external to the ChinaSat

network (210.x.x.23) that transmitted packets from UDP port 1035 to ChinaSat hosts

at the destination UDP port 137 is shown in Table 5.9. Two Internet worms, Bugbear

and Opasoft, were prevalent when the tcpdump traces were captured. Both worms

use the NETBEUI protocol to propagate to other hosts. Without having the UDP

payload recorded, we are unable to determine if these two worms indeed generated

the port scans.

5.4.3.2 TCP port scans

TCP port scans on TCP ports 80, 139, 443, 1433, and 27374 are detected in the

tcpdump traces. The detected scans were directed to the ChinaSat users. TCP port

139 is the TCP NETBEUI port. Similar to the port scans on UDP port 137, these

packets are malicious in intent. On Dec. 14, 2002, three external addresses were
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Table 5.8. Port scan originating from the ChinaSat network. Targets are scanned at

random from UDP port 137. For some destinations (202.y.y.226), multiple UDP ports

(1025, 1027, 1028, and 1029) are scanned.

Origin IP:port Destination IP:port
192.168.2.30:137 195.x.x.98:1025
192.168.2.30:137 202.x.x.153:1027
192.168.2.30:137 210.x.x.23:1035
192.168.2.30:137 195.x.x.42:1026
192.168.2.30:137 202.y.y.226:1026
192.168.2.30:137 218.x.x.238:1025
192.168.2.30:137 202.y.y.226:1025
192.168.2.30:137 202.y.y.226:1027
192.168.2.30:137 202.y.y.226:1028
192.168.2.30:137 202.y.y.226:1029
192.168.2.30:137 202.y.y.242:1026

Table 5.9. Port scan directed to the ChinaSat network. The Internet host (210.x.x.23)

sent packets from UDP port 1035 to the Microsoft NETBEUI port (137) at multiple

ChinaSat network hosts.

Origin IP:port Destination IP:port
210.x.x.23:1035 192.168.1.121:137
210.x.x.23:1035 192.168.1.63:137
210.x.x.23:1035 192.168.2.11:137
210.x.x.23:1035 192.168.1.250:137
210.x.x.23:1035 192.168.1.25:137
210.x.x.23:1035 192.168.2.79:137
210.x.x.23:1035 192.168.1.52:137
210.x.x.23:1035 192.168.6.191:137
210.x.x.23:1035 192.168.1.241:137
210.x.x.23:1035 192.168.2.91:137
210.x.x.23:1035 192.168.1.5:137
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scanning on TCP port 139.

TCP ports 80 and 443 are used by the HTTP and the HTTPS (HTTP over Secure

Socket Layer), respectively. None of the ChinaSat users deployed web servers on either

ports. In the collected traces, the users either ignore the requests on these two ports or

reply back with TCP RSTs. On Dec. 14, 2002, there were over 15 external addresses

scanning on port 80 and one external address scanning on port 443.

Ports scans on TCP port 1433 were directed at MS SQL servers. Even though

our traces were recorded months before the well-known SQL Slammer worm was

released, another MS SQL vulnerability was discovered in Oct. 2002, the “HELLO

authentication buffer overflow” [75]. We suspect that the scans detected from the

Dec. 14 traces were related to this vulnerability.

There were also port scans on TCP port 27374. The only known application

that utilizes this port is the SubSeven trojan. Hence, scans directed toward TCP

27374 are intended to discover compromised systems. Interestingly, the SYN packets

originating from the three external addresses also contain invalid TCP options. These

options are listed in the following order: MSS, timestamp, end of options (EOL), other

options. The EOL TCP option signals the end of the TCP options list but is rarely

used in TCP/IP implementations. Instead of EOLs, NOPs are usually employed.

Furthermore, no other option should be present after the EOL option. Similar to

packets with invalid TCP flags, these scans may be used to exploit vulnerabilities in

TCP/IP implementations.
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5.4.4 Traffic volume anomalies

Wavelet decomposition of data traffic has been used to identify anomalies in traffic

volume [16], [19]. We record packet count and bytes from the collected tcpdump traces

and also employ wavelet decomposition to analyze 226,390 seconds of binned data.

The data is decomposed into 12 levels by employing the Debauchies 9 mother wavelet

in MATLAB. Each wavelet coefficient at the coarsest level approximately represents 6

minutes of traffic (226, 390/569× 60) with a shape similar to that of the billing data.

The approximation of the downloaded packets at the coarsest level (a12) is shown in

Figure 5.8. Detail coefficients from level 12 (d12, coarsest) to level 1 (d1, finest) are

shown in Figures 5.9 – 5.20, respectively.

Multiple spikes observed in Figure 5.9 correspond to large variations in the hourly

traffic volume. The spikes are detected by using a moving window of length 20 and

calculating the standard deviation for each window. Anomalies in traffic volume

are indicated by wavelet coefficients that are above or below 3 σ value (three times

the standard deviation). The 3 σ lines are shown in Figure 5.9 – 5.15 for wavelet

coefficients d12 to d6. An example of an anomaly is the one detected on Jan. 3, 2003.

It was due to a network outage and recovery that was also detected in the billing

records.

Finer detail levels can be used to detect anomalies at various time scales. The

detail coefficients d6 represents the time scale of one minute shown in Figure 5.15.

The anomaly detected on Dec. 19, 2002 cannot be observed from the coarser level

coefficients (such as d12). This anomaly was first detected at level 8. The anomaly

was caused by port scans that lasted approximately five minutes.
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Figure 5.8. Wavelet approximation of the tcpdump trace (downloaded packets) at the
coarsest time scale (a12).

Figure 5.9. Detail wavelet coefficients d12 of the tcpdump trace (downloaded packets)
at the coarsest level. Each coefficient represents 6 minutes of traffic.
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Figure 5.10. Detail wavelet coefficients d11 of the tcpdump trace (downloaded packets)
at level 11.

Figure 5.11. Detail wavelet coefficients d10 of the tcpdump trace (downloaded packets)
at level 10.



CHAPTER 5. ANALYSIS OF TCPDUMP TRACES 94

Figure 5.12. Detail wavelet coefficients d9 of the tcpdump trace (downloaded packets)
at level 9.

Figure 5.13. Detail wavelet coefficients d8 of the tcpdump trace (downloaded packets)
at level 8.
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Figure 5.14. Detail wavelet coefficients d7 of the tcpdump trace (downloaded packets)
at level 7.

Figure 5.15. Detail wavelet coefficients d6 of the tcpdump trace (downloaded packets)
at level 6 (time scale equals to 26 seconds).
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Figure 5.16. Detail wavelet coefficients d5 of the tcpdump trace (downloaded packets)
at level 5.

Figure 5.17. Detail wavelet coefficients d4 of the tcpdump trace (downloaded packets)
at level 4.
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Figure 5.18. Detail wavelet coefficients d3 of the tcpdump trace (downloaded packets)
at level 3.

Figure 5.19. Detail wavelet coefficients d2 of the tcpdump trace (downloaded packets)
at level 2.
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Figure 5.20. Detail wavelet coefficients d1 of the tcpdump trace (downloaded packets)
at the finest level (level 1).



Chapter 6

Conclusions and future work

In this thesis, we described traffic collection in a commercial hybrid satellite-terrestrial

network and analyzed the billing records and collected traffic traces. The billing

records indicate that the downloaded and uploaded traffic patterns were highly regu-

lar, exhibiting both daily and weekly cycles. A daily minimum occurs at 7 AM while

three daily maxima occur at 11 AM, 3 PM, and 7 PM. A minority of users contributed

the majority of traffic. k -means and hierarchical clustering were employed to clas-

sify the users. k -means clustering indicated that the natural number of clusters is 2

for both downloaded and uploaded packets and 3 for both downloaded and uploaded

bytes, respectively. We also employed hierarchical clustering to group users by their

traffic patterns. The use of inconsistency coefficients resulted in 64 clusters. We fur-

ther refined our results by clustering with the three most common traffic patterns:

inactive, active, and semi-active. Most users were found to be inactive.

Analysis of tcpdump traces showed that the trace is dominated by TCP traffic,
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with HTTP/WWW packets contributing to the majority of captured data. By exam-

ining the TCP SYN packets, we determined that SACK and increasing initial windows

size were the TCP options most widely used to improve performance in the ChinaSat

network. Based on this result, we propose that the hosts in the ChinaSat DirecPC

network may be further optimized by ensuring the SACK option is enabled and by en-

abling the sliding window scale option. We also detected data traffic anomalies using

open source tools and wavelet decomposition. The anomalies included invalid TCP

flag combinations, large number of TCP resets, port scans, and abnormal changes in

traffic volume. We provided plausible explanations for the origin of these anomalies.

Further analysis of the ChinaSat data work may focus on using patterns recogni-

tion techniques to classify users without the quantization of the traffic data. tcpdump

traces could also be further examined in detail to investigate the effects of illegitimate

traffic on the performance of the ChinaSat network.

Analysis techniques described in this thesis may be applied to data captured from

other deployed networks. Such results may be used to compare the difference in

performance and user behavior between ChinaSat and other networks. Lastly, if

additional billing records and traffic traces could be obtained, it would be worthwhile

to compare the analysis of traffic data from the newly deployed DirecWay network [24]

with the results presented in this thesis.
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over satellite links: problems and solutions,” Telecommun. Syst., vol. 13, no. 2–4,
pp. 199–212, July 2000.

[33] M. Omueti and Lj. Trajkovic, “TCP with adaptive delay and loss response for
heterogeneous networks,” to be presented at Wireless Internet Conf. (WICON)
2007, Vancouver, Canada, Aug. 2007.

[34] M. Allman, S. Floyd, and C. Partridge, “Increasing TCP’s initial window,” RFC
2414, Sept. 1998.

[35] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP selective acknowledg-
ment options,” RFC 2018, Oct. 1996.



REFERENCE LIST 104

[36] J. Mogul and S. Deering, “Path MTU discovery,” RFC 1191, Nov. 1990.

[37] J. Postel, “Internet Control Message Protocol,” RFC 792, Sept. 1981.

[38] J. S. Baras, S. Corson, S. Papademetriou, I. Secka, and N. Suphasindhu, “Fast
asymmetric Internet over wireless satellite-terrestrial networks,” in Proc. MIL-
COM ’97, Monterey, CA, Nov. 1997, pp. 372–377.

[39] J. Ishac and M. Allman, “On the performance of TCP spoofing in satellite net-
works,” in Proc. MILCOM 2001, Vienna, VA, Oct. 2001, pp. 700–704.

[40] A. Lakhina, M. Crovella, and C. Diot, “Characterization of network-wide anoma-
lies in traffic flows,” in Proc. ACM SIGCOMM Internet Meas. Conf. 2004,
Taormina, Italy, Oct. 2004, pp. 201–206.

[41] J. Han and M. Kamber, Data Mining: concept and techniques. San Diego, CA:
Academic Press, 2001.

[42] W. Wu, H. Xiong, and S. Shekhar, Clustering and Information Retrieval. Nor-
well, MA: Kluwer Academic Publishers, 2004.

[43] Z. Chen, Data Mining and Uncertainty Reasoning: and integrated approach. New
York, NY: John Wiley & Sons, 2001.

[44] T. Kanungo, D. M. Mount, N. Netanyahu, C. Piatko, R. Silverman, and A. Y.
Wu, “An efficient k-means clustering algorithm: analysis and implementation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 881–892, July. 2002.

[45] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining. Reading,
MA: Addison-Wesley, 2006, pp. 487–568.

[46] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: an introduction to
cluster analysis. New York, NY: John Wiley & Sons, 1990.

[47] A. Jain and R. Dubes, Algorithms for Clustering Data. Englewood Cliffs, N.J.:
Prentice Hall, 1988.

[48] H. C. Romesburg, Cluster Analysis for Researchers. Morrisville, N.C.: Lulu
press, 2004.

[49] C. K. Chui, An Introduction to Wavelets. San Diego, CA: Academic Press
Professional, Inc., 1992.



REFERENCE LIST 105

[50] R. Carmona, W. Hwang, and B. Torrésani, Practical Time-Frequency Analy-
sis: continuous wavelet and Gabor transforms, with an implementation in S, ser.
Wavelet Analysis and its Applications. San Diego, CA: Academic Press, 1998,
vol. 9.

[51] Y. Y. Tang, L. H. Yang, J. Liu, and H. Ma, Eds., Wavelet Theory and Its
Application to Pattern Recognition. Singapore: World Scientific Publishing Co.
Pte. Ltd., 2000.

[52] DirecPC Product Technical Specification, Release 2.1, Hughes Network Systems,
1999.

[53] MATLAB. [Online]. Available: http://www.mathworks.com/products/matlab/.

[54] V. Paxson, “Empirically derived analytic models of wide-area TCP connections,”
IEEE/ACM Trans. Netw., vol. 2, no. 4, pp. 316–336, Aug. 1994.

[55] W.-K. Ching and M. K.-P. Ng, Eds., Advances in Data Mining and Modeling.
Singapore: World Scientific Publishing Co. Pte. Ltd., 2003.

[56] M. Last, A. Kandel, and H. Bunke, Eds., Data Mining in Time Series Databases.
Singapore: World Scientific Publishing Co. Pte. Ltd., 2004.

[57] D. E. Comer, Internetworking with TCP/IP, Vol 1: Principles, Protocols, and
Architecture, 4th ed. Upper Saddle River, NJ: Prentice-Hall, 2000.

[58] W. R. Stevens, TCP/IP Illustrated (vol. 1): The Protocols. Reading, MA:
Addison-Wesley, 1994.

[59] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear, “Address
allocation for private Internets,” RFC 1918, Feb. 1996.

[60] K. Egevang, “The IP network address translator (NAT),” RFC 1631, May 1994.

[61] R. Droms, “Dynamic Host Configuration Protocol,” RFC 2131, Mar. 1997.

[62] D. C. Plummer, “An Ethernet address reolution protocol,” RFC 826, Nov. 1982.

[63] R. Finlayson, T. Mann, J. Mogul, and M. Theimer, “A reverse address resolution
protocol,” RFC 903, June 1984.

[64] G. Malkin, “RIP version 2,” RFC 2453, Nov. 1998.

[65] Microsoft Windows 2000 TCP/IP implementation details. [Online]. Avail-
able: http://www.microsoft.com/technet/itsolutions/network/deploy/depovg
/tcpip2k.mspx.



REFERENCE LIST 106

[66] R. Beverly, “A robust classifier for passive TCP/IP fingerprinting,” in Proc.
Passive and Active Meas. Workshop 2004, Antibes Juan-les-Pins, France, Apr.
2004, pp. 158–167.

[67] C. Smith and P. Grundl, “Know your enemy: passive fingerprinting,” The
Honeynet Project, Mar. 2002. [Online]. Available: http://www.honeynet.org/
papers/finger/.

[68] Passive OS fingerprinting tool ver. 2 (p0f v2). [Online]. Available:
http://lcamtuf.coredump.cx/p0f.shtml.

[69] B. Petersen, “Intrusion detection FAQ: what is p0f and what does it do?”
The SysAdmin, Audit, Network, Security (SANS) Institute. [Online]. Available:
http://www.sans.org/resources/idfaq/p0f.php.

[70] T. Miller, “Passive OS fingerprinting: details and techniques,” The
SysAdmin, Audit, Network, Security (SANS) Institute. [Online]. Available:
http://www.sans.org/reading room/special.php.

[71] Wireshark (formerly Ethereal). [Online]. Available: http://www.wireshark.org/.

[72] tcptrace. [Online]. Available: http://jarok.cs.ohiou.edu/software/tcptrace/.

[73] J. Postel, “TCP and IP bake off,” RFC 1025, Sept. 1987.

[74] M. Arlitt and C. Williamson, “An analysis of TCP reset behaviour on the Inter-
net,” ACM SIGCOMM Comput. Commun. Rev., vol. 35, no. 1, pp. 37–44, Jan.
2005.

[75] Microsoft Security Bulletin MS02-056, October 2002. [Online]. Available:
http://www.microsoft.com/technet/security/bulletin/MS02-056.mspx.



Appendix A

Code listing

A.1 Pre-processing code

A.1.1 normalize.m

%Normalizetime function

%Input: a processed version of the ChinaSat billing data

%(with invalid entries removed)

%Output: returns the earliest time in the data set (baseline)

%and also returns norm_time_data, which is the delimiteddata

%matrix augmented with 7 columns attached to the end.

%

% baseline is a 1x7 matrix consisting of the following:

% (1,1): the earliest START_TIME timestamp recording

% in the billing data format (ex. 20021031230007)

% (1,2): the 4 digit year value from the START_TIME

% timestamp recorded in (1,1) (ex. 2002)

% (1,3): the 2 digit month value from the START_TIME

% timestamp recorded in (1,1) (ex. 10)

% (1,4): the 2 digit day value from the START_TIME

% timestamp recorded in (1,1) (ex. 31)
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% (1,5): the 2 digit hour (24 hr based) value from

% the START_TIME timestamp recorded in (1,1) (ex. 23)

% (1,6): the value, in hours, from January first of

% the year recorded in (1,1) (ex. 7319)

% (1,7): the value, in days, from January first of

% the year recorded in (1,1) (ex. 304)

%

% The first 5 columns augmented to norm_time_data has

% the same description as the columns (1,2) to (1,7),

% with the START_TIME timestamp find in the 4th

% column of the norm_time_data. The 6th added column

% contains the value of the the 5th and 6th added column

% in norm_time_data subtracted by the (1,6) and (1,7)

% value in baseline, respectivcely.

% Thus, the value stored in this 6th column is the

% difference in hours from the first recorded START_TIME

% timestamp. For example, an timestamp with the date of

% 20021101000055 (Nov 1st, 2002, 0000 hours) will have a

% value of 7320 in the 5th added column. The value in the

% 6th added column will be 1, since it is 1 hour away from

% the starting time of 20021031230007.

function [norm_time_data,baseline] = normalizetime(delimiteddata)

%Create a matrix called norm_time_data that is 6 columns wider than

%delimiteddata. Copy delimiteddata to the first 11 columns of

%norm_time_data.

norm_time_data=zeros(size(delimiteddata,1),size(delimiteddata,2)+8);

norm_time_data(:,1:11)=delimiteddata(:,1:11);

%Creates the baseline variable and find the earliest time stamp
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% recorded in the norm_time_data’s START_TIME column.

% baseline (1,2) to (1,5) are the year, month, day, and hour

%value in the START_TIME, respectively.

baseline = zeros(1,7);

baseline(1,1) = min(norm_time_data(:,4));

baseline(1,2) = floor(baseline(1,1)/1e10);

baseline(1,3) = floor(rem(baseline(1,1)/1e8,100));

baseline(1,4) = floor(rem(baseline(1,1)/1e6,100));

baseline(1,5) = floor(rem(baseline(1,1)/1e4,100));

%The switch statement returns temp, the number of days in the year

%preceding the start of the month value recorded in baseline(1,3).

%The code commented out is not used since the obtained data set do

%not contain any leap years.

switch baseline(1,3)

case (1)

temp = 0;

case (2)

temp = 31;

case (3)

temp = 59;

case (4)

temp = 90;

case (5)

temp = 120;

case (6)

temp = 151;

case (7)

temp = 181;

case (8)
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temp = 212;

case (9)

temp = 243;

case (10)

temp = 273;

case (11)

temp = 304;

case (12)

temp = 334;

end

%end

%temp2 returns the year value difference from 2002 (expressed

%in days)

temp2 = (baseline(1,2) - 2002)*365;

%baseline(1,6) returns the number of hours since Jan 1st, 2002

%comapred to the earliest recorded START_TIME timestamp.

baseline(1,6) = baseline(1,5) + (temp2 + temp + baseline(1,4)) * 24;

baseline(1,7) = baseline(1,4)+ temp + temp2;

clear temp temp2;

%norm_time_data (:,12) to (:,15) are the year, month, day, and hour

%value in the START_TIME column (:,4), respectively.

norm_time_data(:,12)=floor(norm_time_data(:,4)/1e10);

norm_time_data(:,13)=floor(rem(norm_time_data(:,4)/1e8,100));

norm_time_data(:,14)=floor(rem(norm_time_data(:,4)/1e6,100));

norm_time_data(:,15)=floor(rem(norm_time_data(:,4)/1e4,100));

%The switch statement returns temp, the number of days in the year
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%preceding the start of the month value recorded in the 4th column

%(START_TIME timestamp).

for i = 1:size(norm_time_data,1)

switch norm_time_data(i,13)

case (1)

temp = 0;

case (2)

temp = 31;

case (3)

temp = 59;

case (4)

temp = 90;

case (5)

temp = 120;

case (6)

temp = 151;

case (7)

temp = 181;

case (8)

temp = 212;

case (9)

temp = 243;

case (10)

temp = 273;

case (11)

temp = 304;

case (12)

temp = 334;

end

%temp2 returns the year value difference from 2002
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%(expressed in days)

temp2 = (norm_time_data(i,12) - 2002)*365;

%norm_time_data(i,16) returns the number of hours since

%Jan 1st, 2002 compared to the START_TIME timestamp

%in the 4th column.

norm_time_data(i,16) = norm_time_data(i,15)

+ (temp2 + temp + norm_time_data(i,14)) * 24;

%norm_time_data(i,17) returns the difference in hours

%compared to the value recorded in baseline(1,6)

norm_time_data(i,17) = norm_time_data(i,16) - baseline(1,6);

norm_time_data(i,18) = norm_time_data(i,14) + temp + temp2;

norm_time_data(i,19) = norm_time_data(i,18) - baseline(1,7);

end

A.1.2 mergebilling.m

%mergebilling function

%Input: the data set (norm_time_data) with normalized time

%(from normalizetime function)

%Output: returns the the merged billing data (merged_data)

%and the aggregated data (agg_data)

%

% merged_data is a truncated version of norm_time_data.

% As there are two billing data collection points,

% some users’ activities may be recorded on two separate

% files for the same hour. This function combines the

% entries that have the same SiteID and START_TIME.

%
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% merged_data has 11 column and the following statistics,

% in order: SiteID, normalized hour value, Cmin, CTxByte,

% CRxByte, CTxPkt, CRxPkt, year, month, day and hour.

%

% agg_data is the SiteID-aggregated data. All SiteID

% statistics from the same hour are combined into one

% entry. agg_data has 6 columns in the following order:

% normalized hour, Cmin, CTxByte, CRxByte, CTxPkt, CRxPkt.

%

% CTxByte (Tx byte count), CRxByte (Rx byte count),

% CTxPkt (Tx packet count) and CRxPkt (Rx packet count)

% are combined by additions. Cmin is combined by taking the

% minimum of (Cmin sum, 60). Note that the ChinaSat dataset

% contains entries where the Cmin > 60. Those entries

% are truncated to be 60.

function [merged_data,agg_by_hour,agg_by_date,temp] =

mergebilling(norm_time_data)

%copy and arrange norm_time_data to the desired arrangement

temp5 = zeros(size(norm_time_data,1),12);

temp5(:,1) = norm_time_data(:,3);

temp5(:,2) = norm_time_data(:,17);

temp5(:,3) = norm_time_data(:,19);

temp5(:,4) = norm_time_data(:,6);

temp5(:,5) = norm_time_data(:,8);

temp5(:,6) = norm_time_data(:,9);

temp5(:,7) = norm_time_data(:,10);

temp5(:,8) = norm_time_data(:,11);

temp5(:,9) = norm_time_data(:,12);

temp5(:,10) = norm_time_data(:,13);

temp5(:,11) = norm_time_data(:,14);
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temp5(:,12) = norm_time_data(:,15);

%Sort temp5, the rearranged norm_time_data matrix by siteID

temp5 = sortrows(temp5,1);

temp = zeros(size(temp5,1),size(temp5,2));

%Combine the rows that have same SiteID and normalized hour

%value

temp(1,:)=temp5(1,:);

j = 2;

for i = 2:size(temp5,1)

if (temp(j-1,1) == temp5(i,1)) && (temp(j-1,2) == temp5(i,2))

temp(j-1,4) = min(60,temp(j-1,4)+min(60,temp5(i,4)));

temp(j-1,5) = temp(j-1,5)+temp5(i,5);

temp(j-1,6) = temp(j-1,6)+temp5(i,6);

temp(j-1,7) = temp(j-1,7)+temp5(i,7);

temp(j-1,8) = temp(j-1,8)+temp5(i,8);

else

temp(j,:) = temp5(i,:);

temp(j,4) = min(60,temp(j,4));

j=j+1;

end

end

%Remove the emptry rows

filled_rows = max(find(temp(:,1)));

merged_data = zeros(filled_rows,size(temp5,2));

for i = 1:filled_rows

merged_data(i,:)=temp(i,:);

end

clear temp temp5;
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%Sort merged_data by normalized time value and place into temp.

temp = sortrows(merged_data,2);

temp2 = zeros(size(merged_data,1),size(merged_data,2)-1);

%Regardless of SiteID, combine all entries that have the same

%normalized hour value.

for k =2:size(merged_data,2)

temp2(1,k-1)=temp(1,k);

end

j=2;

for i = 2:size(temp,1)

if (temp2(j-1,1)==temp(i,2))

temp2(j-1,3)=max(temp2(j-1,3),temp(i,4));

temp2(j-1,4)=temp2(j-1,4)+temp(i,5);

temp2(j-1,5)=temp2(j-1,5)+temp(i,6);

temp2(j-1,6)=temp2(j-1,6)+temp(i,7);

temp2(j-1,7)=temp2(j-1,7)+temp(i,8);

else

for k = 2:size(temp,2)

temp2(j,k-1)=temp(i,k);

end

j=j+1;

end

end

filled_rows = max(find(temp2(:,1)));

agg_by_hour = zeros(filled_rows,size(temp2,2));

for i = 1:filled_rows

agg_by_hour(i,:)=temp2(i,:);

end
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clear temp1, temp2;

temp = sortrows(agg_by_hour,2);

temp2 = zeros(size(agg_by_hour,1),size(agg_by_hour,2)-1);

%Regardless of SiteID, combine all entries that have the same

%normalized hour value.

for k =2:size(agg_by_hour,2)

temp2(1,k-1)=temp(1,k);

end

j=2;

for i = 2:size(temp,1)

if (temp2(j-1,1)==temp(i,2))

temp2(j-1,2)=max(temp2(j-1,2),temp(i,3));

temp2(j-1,3)=temp2(j-1,3)+temp(i,4);

temp2(j-1,4)=temp2(j-1,4)+temp(i,5);

temp2(j-1,5)=temp2(j-1,5)+temp(i,6);

temp2(j-1,6)=temp2(j-1,6)+temp(i,7);

else

for k = 2:size(temp,2)

temp2(j,k-1)=temp(i,k);

end

j=j+1;

end

end

filled_rows = max(find(temp2(:,1)));

agg_by_date = zeros(filled_rows,size(temp2,2));

for i = 1:filled_rows

agg_by_date(i,:)=temp2(i,:);

end
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A.2 pcapread code

A.2.1 pcapread.h

#include <stdio.h>

#include <string>

#include <time.h>

#include <getopt.h>

#define ETH_ADDR_LEN 6 /* Ethernet address length */

#define IP_ADDR_LEN 4 /* IP address length */

#define IP_ADDR_SKIP 12

/* IP addresses are from 12 byte of ip header */

#define HEADER_LEN (6+6+2+IP_ADDR_SKIP+4+4)

/* 34 byte of header info of record */

#define IP_TYPE (0x0800)

/* 0x0800 is hte value of type field for IP packets */

#define TCP_OPT0_LEN 1

#define TCP_OPT1_LEN 1

#define TCP_OPT2_LEN 4

#define TCP_OPT3_LEN 3

#define TCP_OPT4_LEN 2

#define TCP_OPT8_LEN 10

using namespace std;

static struct option main_longopt[] = {

{ "ethernet", no_argument, 0, ’e’ },

{ "tcpopt", no_argument, 0, ’o’ },

{ "readfile", required_argument, 0, ’r’ },
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{0, 0, 0, 0}

};

typedef unsigned char u_char;

typedef unsigned short u_short;

typedef unsigned long u_long;

typedef struct timeval TimeStamp;

long snap_len;

typedef struct

{

TimeStamp ts; // timestamp

int pkt_len; //Ethernet packet length

int rec_len; //record length

u_char src_eaddr[ETH_ADDR_LEN]; //source Ethernet address

u_char dst_eaddr[ETH_ADDR_LEN]; //destination Ethernet address

u_short type; // type field

u_char ip_ver;

u_char ip_hdr_len;

u_char ip_tos;

u_short ip_pkt_len;

u_short ip_id;

u_char ip_flags;

u_short ip_frag_offset;

u_char ip_ttl;

u_char ip_proto;

u_short ip_hdr_chksum;

u_char src_ip_addr[IP_ADDR_LEN]; //source IP address (32 bits)

u_char dst_ip_addr[IP_ADDR_LEN]; //destination IP address (32 bits)

u_short tcp_src_port; // source TCP port number
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u_short tcp_dst_port;// destination TCP port number

u_long tcp_seq_num;

u_long tcp_ack_num;

u_char tcp_hdr_len;

u_short tcp_ctrl_bits;

u_short tcp_win_size;

u_short tcp_chksum;

u_short tcp_urg_ptr;

u_short udp_src_port; // source UDP port number

u_short udp_dst_port;// destination UDP port number

u_short udp_hdr_len;

u_short udp_chksum;

} DumpRecord;

void ReadRecord(FILE *fp, DumpRecord *dumpRec);

void PrintRecord(DumpRecord *dumpRec);

long ReadLong(FILE *fp);

long ReadLong_r(FILE *fp);

u_short ReadShort(FILE *fp);

u_short ReadShort_r(FILE *fp);

void ReadSummary(FILE *fp);

void PrintSummary();

//ReadLong(): reads next 4 bytes from file fp, converts value

//to long and returns the value (big endian)

long ReadLong(FILE *fp)

{

unsigned long val;

val = (u_long)fgetc(fp);
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val = val << 8 | (u_long)fgetc(fp);

val = val << 8 | (u_long)fgetc(fp);

val = val << 8 | (u_long)fgetc(fp);

return (long) val;

} //End ReadLong

//ReadLong_r(): reads next 4 bytes from file fp, converts value

//to long and returns the value (little endian)

long ReadLong_r(FILE *fp)

{

unsigned long val;

val = (u_long)fgetc(fp);

val = (u_long)fgetc(fp) << 8 | val;

val = (u_long)fgetc(fp) << 16 | val;

val = (u_long)fgetc(fp) << 24 | val;

return (long) val;

} //End ReadLong_r

//ReadShort(): reads next 2 bytes from file fp, converts value

//to short and returns the value (big endian)

u_short ReadShort(FILE *fp)

{

u_short val;

val = (u_short)fgetc(fp);

val = val << 8 | (u_short)fgetc(fp);
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return val;

} // End ReadShort

//ReadShort_r(): reads next 2 bytes from file fp, converts value

//to short and returns the value (little endian)

u_short ReadShort_r(FILE *fp)

{

u_short val;

val = (u_short)fgetc(fp);

val = (u_short)fgetc(fp) << 8 | val;

return val;

} // End ReadShort_r

/*ReadRecord(): reads a character at time and dumps the

various fields of the next record.*/

A.2.2 pcapread.c

#include "pcapread.h"

/*ReadRecord(): reads a character at time and dumps the

various fields of the next record.*/

void ReadRecord(FILE *fp, DumpRecord *dumpRec)

{

int i, ip_opt_size, tcp_opt_size, tcp_opt_size2,
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skip_length, rem_rec_len;

u_char u_char_temp;

u_short u_short_temp, icmp_chksum;

u_char tcp_opt_temp, sack_size;

u_char icmp_type, icmp_code;

dumpRec->ts.tv_sec = ReadLong_r(fp); // read sec of timestamp

if (feof(fp))

return;

dumpRec->ts.tv_usec = ReadLong_r(fp);

// read usec of timestamp

dumpRec->rec_len = ReadLong_r(fp);

// recorded Ethernet packet length

dumpRec->pkt_len = ReadLong_r(fp);

//actual Ethernet packet length

printf("%i %i %s",dumpRec->ts.tv_sec, dumpRec->ts.tv_usec,

ctime(&dumpRec->ts.tv_sec));

printf("pkt_len %i rec_len %i\n",dumpRec->pkt_len,

dumpRec->rec_len);

rem_rec_len = dumpRec->rec_len;

// reading destination Ethernet address

for (i = 0; i < ETH_ADDR_LEN; i++)

{

dumpRec->dst_eaddr[i] = fgetc(fp);

}

rem_rec_len=rem_rec_len-ETH_ADDR_LEN;

// reading source Ethernet address

for (i = 0; i < ETH_ADDR_LEN; i++)

{

dumpRec->src_eaddr[i] = fgetc(fp);

}
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rem_rec_len=rem_rec_len-ETH_ADDR_LEN;

dumpRec->type = ReadShort(fp); //read Ethernet type field

rem_rec_len=rem_rec_len-2;

// skip byte till ip address fields

u_char_temp = fgetc(fp);

rem_rec_len=rem_rec_len-1;

dumpRec->ip_ver = u_char_temp >> 4;

dumpRec->ip_hdr_len = u_char_temp & 15;

dumpRec->ip_tos = fgetc(fp);

rem_rec_len=rem_rec_len-1;

dumpRec->ip_pkt_len = ReadShort(fp);

rem_rec_len=rem_rec_len-2;

dumpRec->ip_id = ReadShort(fp);

rem_rec_len=rem_rec_len-2;

u_short_temp = ReadShort(fp);

rem_rec_len=rem_rec_len-2;

dumpRec->ip_flags = u_short_temp >> 12;

dumpRec->ip_frag_offset = u_short_temp & 4095;

printf("ip_ver %x ip_hdr_len %x ip_tos %x ip_pkt_len

%i ip_id %i \n", dumpRec->ip_ver,dumpRec->ip_hdr_len,

dumpRec->ip_tos, dumpRec->ip_pkt_len, dumpRec->ip_id);

printf("ip_flags %x ip_frag_offset %x \n",dumpRec->ip_flags,

dumpRec->ip_frag_offset);

dumpRec->ip_ttl = fgetc(fp);

dumpRec->ip_proto = fgetc(fp);

dumpRec->ip_hdr_chksum = ReadShort(fp);

rem_rec_len=rem_rec_len-4;

printf("ip_ttl %u ip_proto %u ip_hdr_chksum %02x\n",

dumpRec->ip_ttl, dumpRec->ip_proto, dumpRec->ip_hdr_chksum);
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for (i = 0; i < IP_ADDR_LEN; i++)

dumpRec->src_ip_addr[i] = fgetc(fp);

rem_rec_len=rem_rec_len-IP_ADDR_LEN;

for (i = 0; i < IP_ADDR_LEN; i++)

dumpRec->dst_ip_addr[i] = fgetc(fp);

rem_rec_len=rem_rec_len-IP_ADDR_LEN;

printf("dumpRec->rec_len %i HEADER_LEN %i\n", dumpRec->rec_len,

HEADER_LEN);

ip_opt_size = dumpRec->ip_hdr_len - 5;

while (ip_opt_size > 0)

{

printf("IP packet options are:");

for (i = 0; i < 4; i++)

{

printf("%02x",fgetc(fp));

rem_rec_len=rem_rec_len-1;

}

printf("\n");

ip_opt_size--;

}

if (dumpRec->ip_proto == 1)

{

if (rem_rec_len > 4)

{

icmp_type=fgetc(fp);

icmp_code=fgetc(fp);

icmp_chksum=ReadShort(fp);
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printf("ICMP type %i code %i chksum %i\n",icmp_type,

icmp_code, icmp_chksum);

rem_rec_len = rem_rec_len - 4;

printf("ICMP data ");

for (i = 0; i < rem_rec_len; i++)

{

printf("%02x",fgetc(fp));

}

printf("\n");

printf("rec_len %i HEADER_LEN %i ip_hdr_len %i\n",

dumpRec->rec_len, HEADER_LEN, dumpRec->ip_hdr_len);

}

else

{

printf("truncated ICMP fields\n");

for (i = 0; i < rem_rec_len; i++)

{

printf("%02x",fgetc(fp));

}

printf("\n");

}

}

else if (dumpRec->ip_proto == 6)

{

dumpRec->tcp_src_port = ReadShort(fp);

dumpRec->tcp_dst_port = ReadShort(fp);

dumpRec->tcp_seq_num = ReadLong(fp);

dumpRec->tcp_ack_num = ReadLong(fp);
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u_short_temp = ReadShort(fp);

dumpRec->tcp_hdr_len = u_short_temp >> 12;

dumpRec->tcp_ctrl_bits = u_short_temp & 63;

dumpRec->tcp_win_size = ReadShort(fp);

dumpRec->tcp_chksum = ReadShort(fp);

dumpRec->tcp_urg_ptr = ReadShort(fp);

rem_rec_len=rem_rec_len-2-2-4-4-2-2-2-2;

tcp_opt_size = dumpRec->tcp_hdr_len - 5;

printf("TCP: src_port %i dst_port %i seq_num %02x

ack_num %02x hdr_len %i ctrl_bits %02x win_size

%u chksum %02x urg_ptr %02x\n", dumpRec->tcp_src_port,

dumpRec->tcp_dst_port, dumpRec->tcp_seq_num,

dumpRec->tcp_ack_num, dumpRec->tcp_hdr_len,

dumpRec->tcp_ctrl_bits, dumpRec->tcp_win_size,

dumpRec->tcp_chksum, dumpRec->tcp_urg_ptr);

skip_length = HEADER_LEN + 4*(dumpRec->ip_hdr_len - 5)

+ 20 + 4*(dumpRec->tcp_hdr_len - 5);

printf("skip length %i; remaining rec_len %i\n",

dumpRec->rec_len-skip_length, rem_rec_len);

printf("rec_len %i HEADER_LEN %i ip_hdr_len %i skip_length

%i\n", dumpRec->rec_len, HEADER_LEN, dumpRec->ip_hdr_len,

skip_length);

tcp_opt_size2 = tcp_opt_size * 4;

// printf("tcp_opt_size2 %i \n",tcp_opt_size2);

// if (skip_length > dumpRec->rec_len)

// {

// printf("tcp options truncated!\n");
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// tcp_opt_size2 = tcp_opt_size2 + dumpRec->rec_len

// - skip_length;

// }

while (tcp_opt_size2 > 0 && rem_rec_len > 0)

{

tcp_opt_temp = fgetc(fp);

rem_rec_len = rem_rec_len -1;

switch (tcp_opt_temp)

{

case 0:

printf("eol\n");

tcp_opt_size2--;

case 1:

printf("nop\n");

tcp_opt_size2--;

break;

case 2:

printf("mss ");

if (rem_rec_len >= TCP_OPT2_LEN - 1)

{

(void)fgetc(fp);

ReadShort(fp);

printf("%i\n",ReadShort(fp));

tcp_opt_size2 = tcp_opt_size2 - 4;

rem_rec_len = rem_rec_len - 3;

}

else

{

printf("incomplete mss \n");

tcp_opt_size2=-1;

}
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break;

case 3:

printf("wscale ");

if (rem_rec_len >= TCP_OPT3_LEN - 1)

{

(void)fgetc(fp);

fgetc(fp);

printf("%i\n",fgetc(fp));

tcp_opt_size2 = tcp_opt_size2 - 3;

rem_rec_len = rem_rec_len - 2;

}

else

{

printf("incomplete wscale \n");

tcp_opt_size2=-1;

}

break;

case 4:

printf("SACKOK\n");

if (rem_rec_len >= TCP_OPT4_LEN - 1)

{

(void)fgetc(fp);

tcp_opt_size2 = tcp_opt_size2 - 2;

rem_rec_len = rem_rec_len - 1;

}

else

{

printf("SACKOK incomplete \n");

tcp_opt_size2=-1;

}

break;
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case 5:

printf("SACK ");

if (rem_rec_len < 1)

{

tcp_opt_size2=-1;

}

else

{

sack_size = fgetc(fp);

rem_rec_len = rem_rec_len - 1;

if (rem_rec_len >= (sack_size-2) * 4)

{

printf("sacksize %i\n",sack_size);

tcp_opt_size2 = tcp_opt_size2 - sack_size;

sack_size = sack_size - 2;

while (sack_size > 0)

{

printf("%02x",fgetc(fp));

rem_rec_len = rem_rec_len - 1;

sack_size--;

if (sack_size % 4 == 0)

printf("\n");

}

}

else

{

printf("incomplete SACK \n");

tcp_opt_size2=-1;

}

}

break;
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case 8:

printf("TSOpt ");

if (rem_rec_len >= TCP_OPT8_LEN - 1)

{

(void)fgetc(fp);

printf("%16x ",ReadLong(fp));

printf("%16x\n",ReadLong(fp));

tcp_opt_size2 = tcp_opt_size2 - 10;

rem_rec_len = rem_rec_len - 9;

}

else

{

printf("incomplete TSOpt \n");

tcp_opt_size2=-1;

}

break;

default:

//need to add support for length

printf("unsupported TCP option %i\n",tcp_opt_temp);

printf("tcp_opt_size2 %i \n",tcp_opt_size2);

while ((tcp_opt_size2 -1 > 0) && (rem_rec_len > 0))

{

printf("%02x",fgetc(fp));

rem_rec_len = rem_rec_len - 1;

tcp_opt_size2 = tcp_opt_size2 - 1;

}

printf("\n");

tcp_opt_size2 = 0;

}

}

}
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else if (dumpRec->ip_proto == 17)

{

dumpRec->udp_src_port = ReadShort(fp);

dumpRec->udp_dst_port = ReadShort(fp);

dumpRec->udp_hdr_len = ReadShort(fp);

dumpRec->udp_chksum = ReadShort(fp);

printf("UDP: src_port %i dst_port %i hdr_len %i

chksum %02x\n", dumpRec->udp_src_port,

dumpRec->udp_dst_port, dumpRec->udp_hdr_len,

dumpRec->udp_chksum);

skip_length = dumpRec->rec_len - HEADER_LEN

- 4*(dumpRec->ip_hdr_len - 5) - 8;

printf("rec_len %i HEADER_LEN %i ip_hdr_len %i

skip_length %i skip_length2 %i \n",dumpRec->rec_len,

HEADER_LEN, dumpRec->ip_hdr_len, skip_length,

dumpRec->rec_len - HEADER_LEN

- 4*(dumpRec->ip_hdr_len -5) - 8);

for (i = 0; i < skip_length; i++)

printf("%02x",fgetc(fp));

printf("\n");

printf("UDP dport %u bytes %u\n",dumpRec->udp_dst_port,

dumpRec->ip_pkt_len);

}

else

{

printf("unknown IP protocol %i\n",dumpRec->ip_proto);

printf("rec_len %i HEADER_LEN %i ip_hdr_len %i\n",

dumpRec->rec_len, HEADER_LEN, dumpRec->ip_hdr_len);

for (i = 0; i < dumpRec->rec_len - (HEADER_LEN +

4*(dumpRec->ip_hdr_len - 5)); i++)

(void)fgetc(fp);
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}

printf("\n");

} // End ReadRecord

int main (int argc, char *argv[])

{

char buffer[256];

char* filename;

u_char magic_number[4];

u_short temp[2];

u_short pcap_ver_mjr, pcap_ver_min;

long offset_sec, offset_acc, link_type;

FILE *fp;

int i, r, option_idx;

DumpRecord dumpRec;

while ((r=getopt_long(argc,argv, "eor:", main_longopt,

&option_idx)) != -1)

{

switch (r)

{

case ’e’:

printf("e opt\n");

break;

case ’o’:

printf("o opt\n");

break;

case ’r’:

if (strlen(optarg) > 100)

{
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printf("filename too long\n");

return 1;

}

else

{

filename=optarg;

printf("filename is %s\n", filename);

}

}

}

if ( (fp = fopen(filename, "r")) != NULL)

{

printf("successful in opening %s in read mode\n", filename);

for (i = 0; i < 4; i++)

magic_number[i]=fgetc(fp);

printf("The magic number is %x%x%x%x\n",magic_number[0],

magic_number[1], magic_number[2],magic_number[3]);

pcap_ver_mjr = ReadShort_r(fp);

pcap_ver_min = ReadShort_r(fp);

printf("Pcap version is %i.%i for file %s\n",pcap_ver_mjr,

pcap_ver_min,filename);

offset_sec = ReadLong_r(fp);

offset_acc = ReadLong_r(fp);

printf("Local time offset and accuracy are %i sec %i sec\n\n",

offset_sec,offset_acc);

snap_len = ReadLong_r(fp);

link_type = ReadLong_r(fp);

printf("snap length for the link type %i is %i\n",

link_type,snap_len);

while (!feof(fp))
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{

ReadRecord(fp,&dumpRec);

}

}

else

{

printf("file open failed\n");

return 1;

}

printf("Program ending. closing file\n");

fclose(fp);

return 0;

}


