

TCP-ADaLR: TCP WITH ADAPTIVE DELAY AND LOSS

RESPONSE FOR BROADBAND GEO SATELLITE
NETWORKS

by

Modupe Omogbohun Omueti
B.Sc., Obafemi Awolowo University, 2001

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

In the
 School

of
Engineering Science

© Modupe Omogbohun Omueti 2007

SIMON FRASER UNIVERSITY

2007

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

 ii

APPROVAL

Name: Modupe Omogbohun Omueti

Degree: Master of Applied Science

Title of Thesis: TCP-ADaLR: TCP with Adaptive Delay and Loss
Response for Broadband GEO Satellite Networks

Examining Committee:

 Chair: Dr. Jie Liang
Assistant Professor of School of Engineering Science

 Dr. Ljiljana Trajković
Senior Supervisor
Professor of School of Engineering Science

 Dr. Rodney Vaughan
Supervisor
Professor of School of Engineering Science

 Dr. Stephen Hardy
Internal Examiner
Professor of School of Engineering Science

Date Defended/Approved: ___

 iii

ABSTRACT

Transmission Control Protocol (TCP) performance degrades in broadband

geostationary satellite networks due to long propagation delays and high bit error rates. In

this thesis, we propose TCP with algorithm modifications for adaptive delay and loss

response (TCP-ADaLR) to improve TCP performance. TCP-ADaLR incorporates

delayed acknowledgement mechanism recommended for Internet hosts. We evaluate and

compare the performance of TCP-ADaLR, TCP SACK, and TCP NewReno, with and

without delayed acknowledgements. In the ideal channel case, TCP-ADaLR exhibits the

lowest user-perceived latency for FTP and HTTP applications. In the presence of

congestion, TCP-ADaLR shows comparable performance to TCP SACK and TCP

NewReno. In the presence of error losses, TCP-ADaLR exhibits improvements up to

61% and 76% in throughput and utilization, respectively. In the presence of both

congestion and error losses, TCP-ADaLR exhibits goodput and throughput improvements

up to 43%. TCP-ADaLR exhibits better fairness and friendliness than TCP NewReno and

maintains TCP end-to-end semantics.

Keywords: Transmission control protocol (TCP); delayed acknowledgement; high bit

error rate; GEO satellite networks; performance evaluation

 iv

DEDICATION

To my fathers:

God Almighty from whom all blessings flow

Late Dr. J. O. Omueti

 v

ACKNOWLEDGEMENTS

This work would not have come to fruition without the multifaceted support of

many people to whom I am ever so grateful. There are many of such people and my

sincere apologies go to anyone whose name is not explicitly mentioned. Thank you to all

of you.

I express my heartfelt gratitude to my senior supervisor Dr. Ljiljana Trajković for

spotting in me great academic and authorial potential and, thus, accepting me into the

Communication Networks Laboratory. Thank you for your distinct and thorough

supervision, your relentless effort in ensuring a “job well done”, your patience, guidance,

and warmth, and your moral, intellectual, and financial support.

My sincere thanks go to Dr. Rodney Vaughan and Dr. Steve Hardy for serving on

my examining committee. Your sound intellectual questions and insightful suggestions

are greatly appreciated. I thank Dr. Jie Liang for accepting and carrying out the role of

chairing my defence with such poise and professionalism.

I am blessed with such a wonderful family that stood by me with their love and

prayers all through the period of my graduate studies: my mother Prof. O. Omueti, my

siblings Bamidele and Temitope Omueti, and Bosede and Ayodeji Adebayo, and all

members of my extended family. I could not have made it without your moral, emotional,

and intellectual support. Thank you all for believing in me and encouraging me to pursue

greater achievements.

 vi

My sincere appreciation goes to all the members of the Communication Networks

Laboratory for their constructive suggestions and comments. In particular, I must

mention Savio Lau and Renju Narayanan for their friendship and all-round support for

my thesis work. I am appreciative of Olasoji Alakofa, Adelle C. Knight, Ben Ong, and

Chiaka Drakes for their encouragement and support.

I am grateful to Dr. B. O. Babalakin for believing in my academic ability and,

thus, providing financial support for my graduate studies at Simon Fraser University.

Finally, my sincere appreciation goes to persons and organization that provided further

financial support for this work, namely Dean of Graduate Studies SFU, Faculty of

Applied Science SFU, School of Engineering Science SFU, Natural Sciences and

Engineering Research Council, Canada Foundation for Innovation, and donors of the

Eileen Purkiss memorial award and Kaltenegger family graduate scholarship in expert

systems.

 vii

TABLE OF CONTENTS

Approval .. ii

Abstract... iii

Dedication ... iv

Acknowledgements ..v

Table of Contents .. vii

List of Figures...x

List of Tables .. xvi

Glossary .. xix

Chapter 1: INTRODUCTION..1
1.1 Motivation ...2
1.2 Contribution...3
1.3 Thesis outline...5

Chapter 2: TRANSMISSION CONTROL PROTOCOL..6
2.1 TCP connection establishment and termination ..6
2.2 TCP flow control ...8
2.3 TCP congestion control algorithms ...9

2.3.1 Slow start ...9
2.3.2 Congestion avoidance..10
2.3.3 Fast retransmit ...11
2.3.4 Fast recovery..11

2.4 Retransmission time-out..12
2.5 Delayed acknowledgement..14

Chapter 3: SATELLITE NETWORKS...16
3.1 Types of satellites ..17

3.1.1 Geostationary earth orbit satellite..17
3.1.2 Non-geostationary earth orbit satellite...18

3.2 Characteristics of GEO satellite links..18
3.2.1 Long propagation delay ...18
3.2.2 Large bandwidth delay product ...19
3.2.3 High bit error rates...19
3.2.4 Bandwidth asymmetry...20

Chapter 4: TCP PERFORMANCE IN SATELLITE NETWORKS..........................21
4.1 Impact of GEO satellite link characteristics on TCP performance21

 viii

4.1.1 Effect of long propagation delay on slow start and RTO
mechanism ...21

4.1.2 Effect of large BDP on TCP window size...22
4.1.3 Effect of high BERs on TCP congestion control algorithms.....................23
4.1.4 Effect of bandwidth asymmetry on TCP congestion control

algorithms ..23
4.2 Survey of proposed solutions for improving TCP performance23

4.2.1 End-to-end TCP solutions ...24
4.2.2 Split TCP solutions..28
4.2.3 Link layer solutions ...30
4.2.4 Non-TCP satellite-optimized transport protocols......................................31

Chapter 5: TCP WITH ADAPTIVE DELAY AND LOSS RESPONSE....................33
5.1 Overview ...33
5.2 The proposed TCP-ADaLR algorithm ..34

5.2.1 Adaptive cwnd increase mechanism..34
5.2.2 Adaptive rwnd increase mechanism ..39
5.2.3 Loss recovery mechanism..40

Chapter 6: TCP-ADaLR IMPLEMENTATION IN THE OPNET
MODELER NETWORK SIMULATOR...42

6.1 OPNET Modeler..42
6.1.1 Project editor..42
6.1.2 Node editor ..43
6.1.3 Process editor...43
6.1.4 Specialized editors ...45

6.2 OPNET implementation of TCP-ADaLR ...45

Chapter 7: PERFORMANCE EVALUATION ..50
7.1 Error model..50
7.2 Network topology..52
7.3 Simulation scenarios and parameters ..53
7.4 Performance metrics ..56

7.4.1 FTP download response time...56
7.4.2 HTTP page response time..56
7.4.3 TCP goodput..57
7.4.4 TCP throughput ...57
7.4.5 Satellite link throughput ..57
7.4.6 Satellite link utilization..57
7.4.7 Calculation of percentage improvement..57

7.5 Simulation results ..58
7.5.1 Ideal channel with no congestion or error losses.......................................58
7.5.2 Error-free satellite channel with only congestion losses73
7.5.3 Satellite channel with only error losses ...79
7.5.4 Satellite channel with both congestion and error losses88
7.5.5 Fairness and friendliness..96

Chapter 8: CONCLUSIONS AND FUTURE WORK ...101

 ix

Appendix A: FEATURES OF OPNET SIMULATIONS ..104
A.1. FTP file download application ...105
A.2. HTTP web page download application ..107

Reference List...109

 x

LIST OF FIGURES

Figure 2.1. TCP header segment. The TCP header length (hlen) is 20 bytes if

there are no TCP options selected. ...7

Figure 2.2. TCP three-way handshake. The dashed lines represent exchanged
TCP segments. The initial sequence numbers are carried in the SYN
segments. Time increases from the top to the bottom of the figure.7

Figure 2.3. TCP connection termination initiated by the client. The dashed lines
represent TCP segments exchanged. The initial sequence numbers
are carried in the SYN segments. Time increases from the top to the
bottom of the figure..8

Figure 2.4. TCP congestion control algorithms. The congestion control
algorithms and the mechanism used to indicate congestion
determined the size of the congestion window. ...10

Figure 3.1. Types of satellite according to orbit altitude. Shown is only one orbit
for each altitude. Depending on the type of satellite, additional orbits
and satellites are required to provide continuous coverage..........................17

Figure 6.1. Hierarchy of OPNET modelling domain editors. The project editor
is used to define network topology. The node and process editors are
used to define node and process functions, respectively..............................44

Figure 6.2. The OPNET Ethernet server advanced node model. The
implementation of TCP-ADaLR requires modifications to the
process models in the highlighted TCP module...46

Figure 6.3. The tcp_manager_v3 process model. The dashed lines represent
conditions to transition from the state they originate from to the state
they terminate. The solid lines represent transitions without
conditions between the states they connect..47

Figure 6.4. The tcp_conn_v3 process model. The implementation of TCP-
ADaLR requires modification to the function block of the process
model. ...49

Figure 7.1. The OPNET PPP workstation advanced node model. We modified
the transmission receiver (ip_rx_0_0) to set the error correction
threshold for accepted packets. ..51

Figure 7.2. Network topology for direct to user hybrid terrestrial-satellite
network. The shown link propagation delays are one-way.52

 xi

Figure 7.3. The OPNET Ethernet4 slip8 gateway model attributes. Shown are
the modified IP module parameters employed to simulate congestion
losses for the FTP application. ...54

Figure 7.4. Goodput for scenarios with ideal lossless satellite channel. Received
segment sequence number is used as an indicator of goodput. TCP-
ADaLR exhibits the highest goodput when the delayed ACK option
is disabled. ..60

Figure 7.5. TCP throughput for scenarios with ideal lossless satellite channel.
For cases without delayed ACK, TCP-ADaLR throughput is ~63%
higher than TCP NewReno and TCP SACK..60

Figure 7.6. Satellite link throughput for scenarios with ideal lossless satellite
link. For cases with and without delayed ACK, TCP-ADaLR
exhibits ~53% and ~66% higher satellite link throughput than TCP
SACK and TCP NewReno, respectively..61

Figure 7.7. Satellite link utilization for scenarios with ideal lossless satellite
channel. TCP-ADaLR achieves 80% of the link capacity while TCP
SACK and TCP NewReno attain only 50% when the delayed ACK
option is disabled..62

Figure 7.8. Goodput for scenarios with ideal lossless satellite channel and
increased propagation delay. For cases with and without delayed
ACK, TCP-ADaLR exhibits ~33% and ~50% higher goodput than
TCP SACK and TCP NewReno, respectively. ..63

Figure 7.9. TCP throughput for scenarios with ideal lossless satellite channel
and increased propagation delay. For cases with and without delayed
ACK, TCP-ADaLR exhibits ~71% and ~79% higher TCP
throughput than TCP SACK and TCP NewReno, respectively.64

Figure 7.10. Satellite link throughput for scenarios with ideal lossless satellite
channel and increased propagation delay. For cases with and without
delayed ACK, TCP-ADaLR exhibits ~55% and ~63% higher
throughput than TCP SACK and TCP NewReno, respectively.64

Figure 7.11. Satellite link utilization for scenarios with ideal lossless satellite
channel and increased propagation delay. TCP-ADaLR exhibits
~80% peak percentage link utilization when the delayed ACK
option is disabled..65

Figure 7.12. Goodput for scenarios with ideal lossless satellite channel and
increased satellite link data rates. For cases with and without
delayed ACK, TCP-ADaLR exhibits up to 66% and 138% higher
goodput than TCP SACK and TCP NewReno, respectively.66

Figure 7.13. TCP throughput for scenarios with ideal lossless satellite channel
and increased satellite link data rates. TCP-ADaLR exhibits
increasing throughput until the file transfer is completed and the
throughput reduces to zero. ..67

 xii

Figure 7.14. Satellite link throughput for scenarios with ideal lossless satellite
channel and increased satellite link data rates. For cases with and
without delayed ACK, TCP-ADaLR exhibits up to 150% and 250%
higher satellite link throughput than TCP SACK and TCP
NewReno, respectively...67

Figure 7.15. Satellite link utilization for scenarios with ideal lossless satellite
channel and increased satellite link data rates. TCP-ADaLR exhibits
higher utilization than TCP SACK and TCP NewReno.68

Figure 7.16. As the file size increases, TCP-ADaLR shows shorter download
response time than TCP SACK and TCP NewReno....................................69

Figure 7.17. As the file size increases, TCP throughput of TCP-ADaLR increases
9%–75% compared to TCP SACK and TCP NewReno.70

Figure 7.18. TCP-ADaLR exhibits up to 81% higher satellite link throughput
than TCP SACK and TCP NewReno. ..71

Figure 7.19. For all file sizes, TCP-ADaLR exhibits 57%–90% higher satellite
link utilization than TCP SACK and TCP NewReno.71

Figure 7.20. Goodput for scenarios with only congestion losses and delayed ACK
enabled. Received segment sequence number is used as an indicator
of goodput. The four TCP variants exhibit comparable goodput.................74

Figure 7.21. Goodput for scenarios with only congestion losses and delayed ACK
disabled. The received segment sequence number is used as an
indicator of goodput. The four TCP variants exhibit comparable
goodput...75

Figure 7.22. TCP throughput for scenarios with only congestion losses and
delayed ACK enabled. The four TCP variants exhibit TCP
throughput degradation when congestion losses are detected......................75

Figure 7.23. TCP throughput for scenarios with only congestion losses and
delayed ACK disabled. The TCP throughput is comparable for the
four TCP variants. ..76

Figure 7.24. Satellite link throughput for scenarios with only congestion losses
and delayed ACK enabled. The link throughput reduces when
congestion losses are detected and attains steady state after
transmission rate adjusted by the TCP congestion control algorithms
in response to congestion. ..76

Figure 7.25. Satellite link throughput for scenarios with only congestion losses
and delayed ACK disabled. Satellite link throughput is comparable
for the four TCP variants..77

Figure 7.26. Satellite link utilization for scenarios with only congestion losses
and delayed ACK enabled Satellite link utilization decreases when
congestion losses are detected. ...77

 xiii

Figure 7.27. Satellite link utilization for scenarios with only congestion losses
and delayed ACK disabled. Satellite link utilization is comparable
for the four TCP variants..78

Figure 7.28. FTP download response time for scenarios with only error losses
and delayed ACK enabled. TCP-ADaLR SACK exhibits up to 37%
shorter download response time than TCP SACK.80

Figure 7.29. FTP download response time for scenarios with only error losses
and delayed ACK disabled. At BER value of 10-6, TCP-ADaLR
SACK shows ~31% shorter download response time than TCP
SACK. ..81

Figure 7.30. Goodput for scenarios with only error losses and delayed ACK
enabled. TCP-ADaLR SACK exhibits up to 27% higher goodput
than TCP SACK. ..82

Figure 7.31. Goodput for scenarios with only error losses and delayed ACK
disabled. TCP-ADaLR SACK shows 7%–46% higher goodput than
TCP SACK...83

Figure 7.32. TCP throughput for scenarios with only error losses and delayed
ACK enabled. TCP-ADaLR SACK and TCP-ADaLR NewReno
exhibit higher TCP throughputs than TCP SACK and TCP
NewReno, respectively...83

Figure 7.33. TCP throughput for scenarios with only error losses and delayed
ACK disabled. For all BER values, TCP-ADaLR SACK exhibits the
highest throughput..84

Figure 7.34. Satellite link throughput for scenarios with only error losses and
delayed ACK enabled. TCP-ADaLR SACK exhibits up to 73%
higher satellite link throughput than TCP SACK...84

Figure 7.35. Satellite link throughput for scenarios with only error losses and
delayed ACK disabled. For all BER values, TCP-ADaLR SACK
exhibits the highest satellite link throughput..85

Figure 7.36. Satellite link utilization for scenarios with only error losses and
delayed ACK enabled. TCP-ADaLR SACK and TCP-ADaLR
NewReno exhibit comparable link utilization higher than TCP
SACK and TCP NewReno. ..85

Figure 7.37. Satellite link utilization for scenarios with only error losses and
delayed ACK disabled. TCP-ADaLR variants exhibit up to 46%
higher satellite link utilization than TCP SACK and TCP NewReno..........86

Figure 7.38. HTTP page response time for scenarios with only error losses and
delayed ACK enabled. TCP-ADaLR SACK and TCP-ADaLR
NewReno show 2%–12% shorter page response times than TCP
SACK and TCP NewReno. ..87

 xiv

Figure 7.39. HTTP page response time for scenarios with only error losses and
delayed ACK disabled. TCP-ADaLR SACK and TCP-ADaLR
NewReno exhibit 7%–23% shorter page response times than TCP
SACK and TCP NewReno. ..88

Figure 7.40. FTP download response time for scenarios with both congestion and
error losses and delayed ACK enabled. When BER is higher than
10-7, TCP-ADaLR variants exhibit shorter download response times
than TCP SACK and TCP NewReno. ..89

Figure 7.41. FTP download response time for scenarios with both congestion and
error losses and delayed ACK disabled. TCP-ADaLR SACK
exhibits 23%–28% shorter download response times than TCP
SACK. ..90

Figure 7.42. Goodput for scenarios with both congestion and error losses and
delayed ACK enabled. TCP-ADaLR SACK exhibits 36%–43%
higher goodput than TCP SACK and TCP NewReno at BER higher
than 10-7..90

Figure 7.43. Goodput for scenarios with both congestion and error losses and
delayed ACK disabled. TCP-ADaLR SACK shows 32% higher
goodput than TCP SACK for BER values of 10-6 and 10-5,
respectively...91

Figure 7.44. TCP throughput for scenarios with both congestion and error losses
and delayed ACK enabled. For BER values higher than 10-7, TCP-
ADaLR SACK and TCP-ADaLR NewReno exhibit 42%–43% and
10%–39% higher throughput than TCP SACK and TCP NewReno,
respectively...91

Figure 7.45. TCP throughput for scenarios with both congestion and error losses
and delayed ACK disabled. At BER values higher than 10-7, TCP-
ADaLR SACK exhibits 32%–39% higher throughput than TCP
SACK. ..92

Figure 7.46. Satellite link throughput for scenarios with both congestion and
error losses and delayed ACK disabled is comparable for all TCP
variants at low BER values. TCP-ADaLR SACK shows 57%–86%
higher satellite link throughput than TCP SACK with delayed ACK..........92

Figure 7.47. Satellite link throughput for scenarios with both congestion and
error losses and delayed ACK disabled. TCP-ADaLR SACK shows
51%–79% higher satellite link throughput than TCP SACK.......................93

Figure 7.48. Satellite link utilization for scenarios with both congestion and error
losses and delayed ACK enabled. The satellite link utilization for the
four TCP variants is severely reduced because of the heavy losses
caused by congestion and satellite link errors. ...93

 xv

Figure 7.49. Satellite link utilization for scenarios with both congestion and error
losses and delayed ACK disabled. At BER greater than 10-7, TCP-
ADaLR SACK exhibits the best performance. ..94

Figure 7.50. HTTP page response time for scenarios with both congestion and
error losses and delayed ACK enabled. For most BER values, TCP-
ADaLR SACK exhibits the best performance. ..95

Figure 7.51. HTTP page response time for scenarios with both congestion and
error losses and delayed ACK disabled. TCP-ADaLR SACK and
TCP-ADaLR NewReno exhibit comparable performance and
outperform both TCP SACK and TCP NewReno..96

Figure 7.52. Network configuration for evaluating TCP fairness and TCP
friendliness of TCP-ADaLR NewReno..98

Figure A.1. The OPNET simulation set info menu for specifying simulator
parameters. The common attributes include duration, seed, values
per statistic, update interval, and simulation kernel.105

 xvi

LIST OF TABLES

Table 3.1. Satellite frequency bands of operation. Shown are the different

services specified for each band. The Q and V frequency bands are
considered experimental and have not been employed for satellite
services [35]. ..16

Table 3.2. Propagation mode losses in dB that affect GEO satellite links. Free
space path loss is the dominating contributor. ...19

Table 4.1. Duration of the slow start phase for various transmission rates for a
GEO satellite link with RTT 500 ms. The higher the transmission
rates, the longer the time spent in the slow start phase.22

Table 5.1. FTP download response time for 50 MB file used to determine the
instance when propagation delay impacts the file download.36

Table 7.1. Post-FEC BERs and corresponding PERs for the AWGN-modelled
GEO satellite link calculated using (7.1). ..51

Table 7.2. FTP file download application parameters. The file inter-request
time is large to ensure a single file download is completed during
each simulation...54

Table 7.3. Simulated HTTP webpage download parameters.55

Table 7.4. TCP parameters when the delayed ACK option is disabled (without
delayed ACK). All parameters except two remain unchanged when
the delayed ACK option is enabled (i.e., with delayed ACK).55

Table 7.5. FTP download response times for scenarios with ideal lossless
satellite channel. For the case without delayed ACK, TCP-ADaLR
shows ~28% shorter FTP download response times than TCP SACK
and TCP NewReno...59

Table 7.6. FTP download response time for scenarios with ideal lossless
satellite channel and increased propagation delay. For cases with
and without delayed ACK, TCP-ADaLR shows ~26% and ~32%
shorter download response time than TCP SACK and TCP
NewReno, respectively...63

Table 7.7. FTP download response time for scenarios with ideal lossless
satellite channel and increased satellite link data rates. For cases
with and without delayed ACK, TCP-ADaLR shows up to 38% and
48% shorter download response times than TCP SACK and TCP
NewReno, respectively...66

 xvi

Table 7.8. HTTP page response time for scenarios with ideal lossless satellite
channel. For cases with and without delayed ACK, TCP-ADaLR
shows ~10% and ~9% shorter page response times than TCP SACK
and TCP NewReno...72

Table 7.9. FTP download response time for scenarios with only congestion
losses. For both cases with and without delayed ACK, TCP-ADaLR
variants exhibit download response times comparable to TCP SACK
and TCP NewReno...74

Table 7.10. HTTP page response time for scenarios with only congestion losses.
For cases with and without delayed ACK, TCP-ADaLR SACK
exhibits 33% and 12% shorter page response times than TCP SACK,
respectively...79

Table 7.11. Average throughput achieved by six competing TCP-ADaLR
NewReno connections, each with distinct RTTs. ..99

Table 7.12. Average throughput achieved by six competing TCP NewReno
connections, each with distinct RTTs...99

Table 7.13. TCP fairness values of TCP-ADaLR NewReno and TCP NewReno
using the Jain’s metric of fairness and max-min fairness metric.99

Table 7.14. Average throughput achieved by six competing TCP connections
using distinct TCP variants. ...100

Table 7.15. TCP friendliness of TCP-ADaLR NewReno and TCP NewReno
competing connections. ..100

Table A.1. Simulation times for the four TCP variants with delayed ACK
enabled in the ideal lossless satellite channel scenario for the
simulated 50 MB FTP file download application.105

Table A.2. Simulation times (s) for TCP-ADaLR NewReno and TCP NewReno
with delayed ACK enabled for various file sizes in the ideal lossless
satellite channel scenarios for evaluating the effect of increasing file
size..106

Table A.3. Simulation times for the four TCP variants with delayed ACK
enabled in the scenarios with only congestion losses for the
simulated 50 MB FTP file download application.106

Table A.4. Simulation times (s) for the four TCP variants with delayed ACK
enabled in the scenarios with only error losses for the simulated 50
MB FTP file download application. ...106

Table A.5. Simulation times for the four TCP variants with delayed ACK
enabled in the scenarios with both congestion and error losses for
the simulated 50 MB FTP file download application.106

Table A.6. Simulation times for the four TCP variants with delayed ACK
enabled in the ideal lossless satellite channel scenarios for the
simulated HTTP web page download application......................................107

 xvi

Table A.7. Simulation times for the four TCP variants with delayed ACK
enabled in the scenarios with only congestion losses for the
simulated HTTP web page download application......................................107

Table A.8. Simulation times (s) for the four TCP variants with delayed ACK
enabled in the scenarios with only error losses for the simulated
HTTP web page download application. ...107

Table A.9. Simulation times (s) for the four TCP variants with delayed ACK
enabled in the scenarios with both congestion and error losses for
the simulated HTTP web page download application................................108

 xix

GLOSSARY

ABW Available bandwidth

ACK Acknowledgement

AIMD Additive increase multiplicative decrease

ARQ Automatic repeat request

ATM Asynchronous Transfer Mode

BDP Bandwidth delay product

BER Bit error rate

BSS Broadcast satellite service

BWE Bandwidth estimate

CWND Congestion window

ECN Explicit congestion notification

ELN Explicit loss notification

FEC Forward error correction

FIN Finish

FSM Finite state machine

FSS Fixed satellite service

FTP File transfer protocol

ICMP Internet control message protocol

IP Internet protocol

IPSEC Internet protocol security

ISL Inter-satellite link

IW Initial window

MSS Mobile satellite service

GEO Geostationary earth orbit

GPS Global positioning system

HTTP Hyper-text transfer protocol

LEO Low earth orbit

 xx

LoS Line of sight

MEO Medium earth orbit

MTU Maximum transmission unit

NACK Negative acknowledgement

NGEO Non-geostationary earth orbit

OSI Open System Interconnection

PAWS Protect against wraparound sequence numbers

PEP Performance enhancing proxy

PER Packet error rate

PPP Point-to-point

RLOGIN Remote login

RTO Retransmission timeout

RTPD Round trip propagation delay

RTT Round trip time

RTTVAR Round trip time variation

RWND Receiver’s advertised window

SACK Selective acknowledgement

SEQNO Sequence number

SMSS Sender maximum segment size

SNACK Selective negative acknowledgement

SCPS-TP Space Communications Protocol Standards-Transport Protocol

SRTT Smoothed round trip time

SSTHRESH Slow start threshold

STD State transition diagram

TCP Transmission control protocol

UDP User datagram protocol

WAN Wide area network

WLAN Wireless local area network

WWW World Wide Web

 1

CHAPTER 1: INTRODUCTION

 Transmission control protocol (TCP) [1], [2] is a transport layer protocol that

provides connection-oriented, in-order, window flow control, and reliable byte-stream

delivery services for Internet application-level protocols such as remote login, telnet,

hyper-text transfer protocol (HTTP), and file transfer protocol (FTP) [3]. Internet

protocol (IP) [4] is a network layer protocol that provides addressing, routing, and

internetworking functions for its packets known as datagrams. The TCP/IP suite specifies

rules of communication between Internet hosts. TCP carries up to 90% of Internet traffic

[5]–[7]. The Internet has witnessed an increasing demand for new high-speed multimedia

and data applications over wireless networks such as satellite networks, wireless local

area networks (WLANs), and cellular networks [8]. TCP was originally designed for

wired networks characterized by negligible random bit error rates (BERs) and, hence,

packet losses indicate congestion. TCP was enhanced by the congestion control

algorithms [9], [10], in order to address packet losses caused by congestion, thus enabling

TCP to perform well in wired networks.

 Broadband geostationary earth orbit (GEO) satellite networks transmit and

receive data using frequencies relayed by GEO satellites. They provide global Internet

access to areas with limited or no terrestrial cable infrastructure available. Through high-

bandwidth GEO satellite links, broadband GEO satellite networks offer data rates of the

order of 1 Mb/s or higher.

 2

1.1 Motivation

The next generation Internet needs to be pervasive, seamless, and ubiquitous [11].

High bandwidth GEO satellite links will play an important role by providing broadband

Internet access and high-speed backbone network connectivity between remote networks

through easily scalable architecture and multicast capabilities [12]. When providing the

same continuous coverage, GEO satellite links are more attractive than non-GEO

(NGEO) links because they have lower development risks compared to large number of

satellite constellations required by NGEO satellites [13].

TCP increases its transmission rate when a sender receives acknowledgements

(ACKs) of transmitted segments. Internet hosts are recommended to enable the delayed

ACK option [14] in order to maximally utilize available network bandwidth by reducing

the number of ACKs sent to a sender by a receiver. The delayed ACK option allows a

TCP receiver to send an ACK for every two consecutive full-size packet received from a

TCP sender. A full-size packet is equivalent to the sender maximum segment size

(SMSS) packet. Many current TCP implementations in Internet hosts enable the delayed

ACK option [15].

GEO satellite links are characterized by high bit error rate (BER), long

propagation delay, and bandwidth asymmetry (different uplink and downlink

bandwidths). TCP performs poorly in heterogeneous networks with GEO satellite links

because of their characteristics. TCP misinterprets packet losses as an indication of

congestion and reduces the transmission rate, thus leading to TCP throughput

degradation. In the absence of error losses, long propagation delays result in large round

trip times (RTTs) that coupled with limited TCP window size lead to poor utilization of

 3

the available bandwidth of satellite links. Hence, TCP performance in broadband

networks employing GEO satellite links needs improvements that will not violate the

end-to-end semantics of TCP. These improvements will support TCP connections with

delayed ACK and not violate the end-to-end semantics of TCP or negatively affect TCP

connections without delayed ACK. It has been shown [16] that with the delayed ACK

option enabled, TCP NewReno [17] and TCP selective ACK (SACK) [18] suffer higher

throughput degradation when compared to older variants such as TCP Reno [9] and TCP

Tahoe [2].

1.2 Contribution

In this thesis, we propose TCP with adaptive delay and loss response (TCP-

ADaLR) algorithm for improving the end-to-end performance of TCP in broadband GEO

satellite networks. TCP-ADaLR introduces division of congestion window cwnd

increment phase into sub-phases in order to enable transmission of additional segments

for better satellite link utilization in the absence of losses. It also adjusts transmission rate

more adaptively in the presence of losses. It is designed for the case when the TCP

delayed ACK option is enabled and does not affect TCP performance when the delayed

ACK option is disabled.

We implement TCP-ADaLR algorithm as an extension to TCP SACK [18] in the

OPNET network simulator [19]. The proposed algorithm is also applicable to TCP

NewReno [17]. The TCP-ADaLR algorithm requires only sender-side modifications and,

thus, maintains the end-to-end semantics of TCP. It is also is designed for the case when

the TCP delayed ACK option is enabled. The proposed algorithm:

 4

1. Improves performance in the absence of losses (ideal lossless GEO satellite
link)

2. Has comparable performance to TCP SACK or TCP NewReno in the presence
losses due to congestion

3. Improves performance in the presence of losses due to high BER only and
both high BER and congestion

4. Has comparable or better TCP fairness than common TCP implementations
(TCP SACK and TCP NewReno)

5. Exhibits TCP friendliness for connections using TCP SACK and/or TCP
NewReno

We evaluate the performance of the TCP-ADaLR algorithm in the absence of

congestion and error losses and in the presence of only congestion losses, only error

losses, and both error losses and congestion losses for various bit error rates (BERs). We

simulate TCP-ADaLR for FTP file download applications in order to evaluate its

performance for bulk transfers. We also evaluate the performance of TCP-ADaLR for

short-lived HTTP web transfers. More than 50% of Internet servers employ TCP SACK

while the majority of others use TCP NewReno [20]. Hence, we present the performance

comparison of TCP-ADaLR, TCP SACK, and TCP NewReno for both FTP file

download and HTTP web transfer applications. We also evaluate the effect of the

proposed algorithm modifications on TCP connections with the delayed ACK option

disabled. We investigate the scalability of TCP-ADaLR with increased terrestrial

propagation delays and increased GEO satellite link capacities. We also study the effect

of varying file sizes (FTP file download application) on the TCP-ADaLR algorithm.

Fairness of TCP-ADaLR in the presence of competing connections with short and long

propagation delays is also considered. We also examine the friendliness of TCP-ADaLR

with TCP NewReno in the absence of losses.

 5

1.3 Thesis outline

This thesis is organized as follows. An overview of TCP, its congestion control

algorithms, and options are given in Chapter 2. In Chapter 3, we present an overview of

satellite networks, types of satellites, and GEO satellite link characteristics. A review of

the impact of GEO satellite link characteristics and previous work on the performance of

TCP in GEO satellite networks is presented in Chapter 4. In Chapter 5, we describe the

TCP-ADaLR algorithm and its mechanisms for improving the end-to-end performance of

TCP in broadband GEO satellite networks. The design and implementation details of the

TCP-ADaLR algorithm in the OPNET network simulator is presented in Chapter 6.

Simulation scenarios and results of the performance evaluation and comparison of TCP-

ADaLR, TCP SACK, and TCP NewReno are presented in Chapter 7. We present

conclusions and possible areas of future research work in Chapter 8.

 6

CHAPTER 2: TRANSMISSION CONTROL PROTOCOL

TCP is an end-to-end connection-oriented Open Systems Interconnection (OSI)

transport layer protocol [3], [21]. It provides reliable byte-stream delivery services

independent of the underlying network architecture. TCP provides point-to-point full-

duplex data transfer [22]. Hence, there is always a sender and a receiver for a TCP

connection and data flow may be unidirectional or bidirectional. TCP employs

mechanisms for connection management, flow control, and congestion control. TCP

variants include TCP Tahoe [2], TCP Reno [9], and TCP NewReno [17]. In this Chapter,

we present an overview of TCP and describe the congestion control algorithms, round-

trip time (RTT) estimation, and the delayed acknowledgement (ACK) option.

2.1 TCP connection establishment and termination

Before TCP packet data units (segments) can be transmitted, a TCP connection is

established between a sender and a receiver by a three-way handshake. The receiver

(client) sends a SYN segment that specifies the TCP destination port number of the

sender (server). TCP port numbers are located in the TCP segment header and they

identify client and server applications at both ends of a connection. The sequence

number, acknowledgement (ACK) number, receiver window size, header length, and

TCP flags are also located in the TCP segment header. The TCP segment header fields,

shown in Figure 2.1, hold information agreed upon by both sender and receiver for

synchronisation and connection establishment. The length of a TCP segment header

depends on the TCP options included. The sender acknowledges the client’s request with

 7

another SYN segment that must be acknowledged by the receiver to complete the

connection establishment. The three-way handshake process is shown in Figure 2.2.

0 31

bits

104 16 24

source port destination port

sequence number

acknowledgment number

hlen reserved flag bits receiver window size

checksum urgent pointer

options padding

data

Figure 2.1. TCP header segment. The TCP header length (hlen) is 20 bytes if there are no TCP
options selected.

SYN, inital seqno = x

ACK of SYN, seqno = y

ACK = x+1

Send SYN segment
Receive SYN segment
Send ACK of SYN segment

Receive ACK of SYN segment
Send ACK segment

Client Server

Receive ACK segment

ACK = y+1

t1
t2

t3

t4

t5

t6

seqno: sequence number
t: time

Figure 2.2. TCP three-way handshake. The dashed lines represent exchanged TCP segments. The
initial sequence numbers are carried in the SYN segments. Time increases from the top to the bottom
of the figure.

After data transfer is completed, a TCP connection is terminated. A full-duplex

TCP connection requires four segments for termination. Either the sender or the receiver

may initiate the termination process by sending a FIN segment. The receiving end

 8

responds with an ACK of the FIN segment. The TCP full duplex connection is closed

when both sender and receiver have sent and acknowledged the receipt of a FIN segment,

as shown in Figure 2.3.

FIN, seqno = x

ACK of FIN, ACK = x+1

Send FIN segment
Receive FIN segment

Receive ACK of FIN segment

Client Server

Receive ACK segment

ACK = y+1

t1
t2

t3

t4

t6

seqno: sequence number
t: time

Send ACK of FIN segment

Send FIN segmentt5

t7

t8

FIN, seqno = y,

ACK = x+1

Receive FIN + ACK segment

Send ACK of FIN segment

Figure 2.3. TCP connection termination initiated by the client. The dashed lines represent TCP
segments exchanged. The initial sequence numbers are carried in the SYN segments. Time increases
from the top to the bottom of the figure.

2.2 TCP flow control

After a connection is established, TCP utilizes flow control to manage the amount

and rate of data transmitted between a sender and receiver. TCP flow control is based on

the sliding window mechanism. At the start of transmission, a TCP sender has an initial

window (IW) that specifies the number of segments (window) that a TCP sender may

transmit without receiving an ACK from a receiver [9]. When a TCP sender receives

ACKs of transmitted segments, it slides (increases) the window size based on the number

of segments or bytes acknowledged and the window size advertised by a receiver.

 9

2.3 TCP congestion control algorithms

TCP employs four congestion control algorithms [10]: slow start, congestion

avoidance, fast retransmit, and fast recovery, as shown in Figure 2.4. The congestion

control algorithms are based on additive increase multiplicative decrease (AIMD) [23]

algorithms. The congestion control algorithms employ two TCP state variables, the

congestion window size cwnd and the receiver’s advertised window rwnd, to control the

amount of data transmitted through the network. The cwnd is the maximum number of

bytes the sender may send before receiving an ACK, while the rwnd is the maximum

number of bytes the receiver may receive. The minimum of the two determines the

amount of data transmitted through the network. The slow start threshold ssthresh

determines the exit from the slow start phase and the onset of the congestion avoidance

phase. The initial high value of ssthresh is adjusted when congestion occurs in a network

[9].

2.3.1 Slow start

After the three-way handshake is completed, a TCP sender probes the network

gradually during the slow start phase to determine its capacity. The initial value of the

cwnd is equal to the initial window (IW) set to [24]

 IW = min (4 × SMSS, max (2 × SMSS, 4380 bytes)). (2.1)

The sender increments the cwnd exponentially during the slow start phase for each ACK

received that acknowledges new data:

cwnd += SMSS. (2.2)

A TCP sender remains in the slow start phase until the cwnd exceeds ssthresh.

 10

cwnd 2 x ssthresh

cwnd = cwnd + SMSS

cwnd
ssthresh1

cwnd
ssthresh1

ssthresh1

ssthresh2

ssthresh = max (flightsize, 2 x SMSS)

cwnd = ssthresh + 3 x SMSS

SS CA CA SSRTO

Time

RTO: retransmission time-out
SMSS: sender maximum segment size
flightsize: total outstanding data in the network

SS: slow start
CA: congestion avoidance
FR: fast retransmit and fast recovery

FR

Figure 2.4. TCP congestion control algorithms. The congestion control algorithms and the
mechanism used to indicate congestion determined the size of the congestion window.

2.3.2 Congestion avoidance

During the congestion avoidance phase, a TCP sender probes the network more

slowly than in the slow start phase. The sender increments the cwnd linearly by one

SMSS per RTT:

cwnd += SMSS × SMSS / cwnd. (2.3)

Congestion avoidance ends when congestion is detected (segment loss occurs) by the

receipt of three duplicate ACKs or the expiration of the sender’s retransmission time-out

(RTO) timer.

 11

2.3.3 Fast retransmit

A TCP sender enters the fast retransmit phase when a segment loss is detected by

three duplicate ACKs. TCP assigns a unique sequence number seqno to each transmitted

segment. When a segment loss occurs, TCP issues a duplicate ACK for any out-of-order

segment received. Fast retransmit uses the arrival of three duplicate ACKs as an

indication of segment loss. TCP retransmits the lost segments without waiting for the

RTO timer to expire and sets the ssthresh value to half the current cwnd. TCP Tahoe

implements slow start, congestion avoidance, and fast retransmit algorithms.

2.3.4 Fast recovery

In the fast recovery phase, a TCP sender adjusts the cwnd for all segments

buffered by a TCP receiver:

cwnd = ssthresh + 3 × SMSS. (2.4)

For each additional duplicate ACK received, the cwnd is incremented by one SMSS to

reflect a segment that has been transmitted. The new values of cwnd and rwnd may allow

transmission of a new segment. When the next ACK of a newly transmitted segment

arrives, the sender deflates the cwnd to ssthresh and resumes the congestion avoidance

phase. TCP Reno implements slow start, congestion avoidance, fast retransmit, and the

standard fast recovery algorithm. TCP NewReno implements a modification to the TCP

Reno fast recovery algorithm to address the issue of partial ACKs. When loss is detected,

ACKs that acknowledge only certain (but not all) outstanding segments are known as

partial ACKs. In the TCP Reno implementation, TCP exits the fast recovery and resumes

congestion avoidance when a partial ACK is received by a TCP sender. The TCP

NewReno modification allows a TCP sender to remain in fast recovery even when a

 12

partial ACK is received by retransmitting one lost segment per RTT until all lost

segments from a single transmission window have been retransmitted. A TCP sender

deflates the cwnd by the amount of data acknowledged and adds one SMSS to the cwnd

for each partial ACK received during the fast recovery phase. TCP resumes congestion

avoidance only after all lost segments have been retransmitted.

2.4 Retransmission time-out

When the network cannot trigger a threshold of three duplicate ACKs (cwnd < 4),

expiration of the RTO timer is used as an indication of segment loss. Hence, TCP

employs the RTO timer in order to avoid unnecessary delay before retransmitting a

segment in the absence of an ACK. A TCP sender transmits a segment, sets the RTO

timer, and expects an ACK of the transmitted segment. If the ACK is not received and the

RTO timer expires, TCP retransmits the unacknowledged segment and resets the RTO

timer. The value of ssthresh is set to

ssthresh = max (flightsize / 2, 2 × SMSS), (2.5)

where flightsize is the amount of unacknowledged data in the network. A TCP sender

then reduces the cwnd to the SMSS and reverts to the slow start phase. If the calculated

value of RTO is too large, lost segments are not retransmitted quickly. If the calculated

RTO is too small, the RTO timer expires prematurely resulting in unnecessary

retransmissions. In both cases, network bandwidth is wasted.

A TCP sender maintains two variables used to compute the RTO value: smoothed

RTT (srtt) (the moving average of RTT) and RTT variation (rttvar). The value of RTT is

 13

estimated from RTT samples (sampleRTT) in data segments that are not retransmitted

using the Karn’s algorithm [25]. The values of srtt and rttvar are computed as

rttvar = (1 – β) × rttvar + β × | sampleRTT – srtt | (2.6)

srtt = (1 – α) × srtt + α × sampleRTT. (2.7)

Recommended parameter values α = 0.125 and β = 0.25 enable a TCP sender to respond

rapidly to changes in the RTT and to estimate the RTO accurately [10], [14]. The value of

srtt (2.6) is its value before the update (2.7). Hence, these values are calculated in the

given order (2.6) and (2.7) [26]. RTO is then computed as

RTO = srtt + max (G, 4 × rttvar), (2.8)

where G is clock (timer) granularity in seconds [26]. The RTO mechanism employs the

exponential backoff algorithm where retransmission interval is doubled after each

retransmission. The maximum RTO may not exceed 64 s.

 The estimation of the RTT and RTO depends on the clock granularity [27]. Many

current TCP implementations have coarse-grained TCP clocks that limit the timer

granularity and, hence, affect the RTO estimation [27], [28]. However, the coarse timer

granularity (500 ms) is employed as a low-pass filter to filter fluctuations in traffic [23],

[29]. Hence, the resulting RTO estimation from the timer granularity prevents

unnecessary retransmissions due to large spikes in RTT [28], [29]. Changing to finer

timer granularity (100 ms or less) would reduce the impact of timer granularity on RTO

estimation. It may, however, result in false retransmissions due to early RTO timer

expiration when the RTT is large[15], [27]–[29].

 14

2.5 Delayed acknowledgement

A TCP receiver may increase efficiency by not sending ACK for every data

segment received [14]. This TCP option is known as delayed acknowledgement (ACK).

By enabling the delayed ACK option, a TCP receiver increases network efficiency and

maximizes bandwidth by acknowledging multiple segments and window updates with a

single ACK. If a TCP receiver does not enable the delayed ACK option, separate ACKs

are required to acknowledge data segments and to send window updates. If there is two-

way data transfer, a delayed ACK may also be sent together with the data segment (ACK

piggybacks with data) [3]. Hence, the delayed ACK option reduces protocol processing

overhead [30]. It has been recommended that Internet hosts “should” implement the

delayed ACK option [9], [14].

In WLANs, delayed ACK has been shown to reduce the number of collisions of

data packets with ACK packets and, thus, increasing TCP throughput [31]. In asymmetric

satellite IP networks, delayed ACK may reduce the number of ACKs sent on a slow

speed terrestrial return link and improve TCP performance [32]. In the absence of losses

caused by BER, TCP exhibits identical throughput for cases with and without delayed

ACK [16]. However, various TCP variants suffer throughput performance degradation

when losses occur because of satellite link BERs. Delayed ACK is also a source of

wasted capacity during the slow start phase [33].

Many Internet TCP receivers implement the delayed ACK option [15], [16]. The

default interval period before sending an ACK is 200 ms [14]. However, a TCP receiver

may wait up to 500 ms within the arrival of the last unacknowledged segment before the

delayed ACK timer expires. Most TCP implementations use the default delay interval of

 15

200 ms [14]. Although TCP uses ACKs to ensure window flow control and reliability,

generating more ACKs than necessary is not a desirable characteristic in wireless

networks [34]. Hence, a TCP receiver may enable the delayed ACK option to generate

the optimal number of ACKs required for reliable delivery of data and improved TCP

performance [34]. An optimal number of ACKs reduces the effects of excessively

delaying an ACK.

 16

CHAPTER 3: SATELLITE NETWORKS

Satellite networks transmit and receive data using radio frequencies relayed by

satellites. The frequency bands of operation are shown in Table 3.1. Satellites play an

important role in providing global Internet services to areas where there is limited or no

terrestrial communication infrastructure. They provide interconnectivity between

geographically distant and heterogeneous networks. Satellites also provide Internet and

communication services to aircrafts, ships, and individual users. Satellite services may be

fixed, mobile, or broadcast, as shown in Table 3.1. Broadband satellite networks offer

high data rates of 1 Mb/s and above [22] for multimedia and Internet applications through

high bandwidth satellite links. In this Chapter, we briefly describe various types of

satellites and satellite link characteristics that affect TCP performance in satellite

networks.

Table 3.1. Satellite frequency bands of operation. Shown are the different services specified for each
band. The Q and V frequency bands are considered experimental and have not been employed for
satellite services [35].

Band Frequency range (GHz) Service

L 1.5 – 1.65 Mobile satellite service (MSS)

S 2.4 – 2.8 MSS

C 3.4 – 7.0 Fixed satellite service (FSS)

X 7.9 – 9.0 MSS, military, space research

Ku 10.7 – 15.0 FSS, broadcast satellite service (BSS)

Ka 18.0 – 31.0 FSS

Q 40.0 – 50.0 FSS

V 60.0 – 80.0 FSS

 17

3.1 Types of satellites

Communication satellites may be classified by their orbit altitude to geostationary

earth orbit (GEO), medium earth orbit (MEO), and low earth orbit (LEO), as shown in

Figure 3.1. Orbit altitude classification determines power requirement, satellite lifetime,

coverage, and antenna usage.

LEO

GEO

MEO

Figure 3.1. Types of satellite according to orbit altitude. Shown is only one orbit for each altitude.
Depending on the type of satellite, additional orbits and satellites are required to provide continuous
coverage.

3.1.1 Geostationary earth orbit satellite

GEO satellites are circular in shape and lie in the plane of the equator. They orbit

at an altitude of ~36,000 km above the earth surface with a period of ~24 hours (earth

rotation period) [35] (The earth rotates once a day about the polar axis for 23 hours 56

minutes 4 s and also completes 1/365.24 of the annual orbit of the sun). Hence, GEO

satellites appear to be stationary to observers from the earth. A single GEO satellite has a

large footprint (satellite signal coverage area of the earth surface) and provides coverage

of an entire earth hemisphere except the polar regions [36]. Hence, receiving antennas

positioned within the large footprint of the satellite require no tracking capabilities.

 18

3.1.2 Non-geostationary earth orbit satellite

Non-GEO (NGEO) satellites orbit at altitudes lower than 36,000 km. They have

shorter rotation periods, and, hence, their relative position to the earth changes. A single

NGEO satellite has a smaller footprint than the GEO satellite. Hence, a satellite network

employing NGEO satellites requires a constellation (a number of similar satellites with

similar function, designed to be in complementary orbits and under shared control [37])

to provide simultaneous continuous coverage over the earth surface. A MEO satellite

orbits at altitude range 5,000 – 12,000 km [35]. It has ~100 ms one-way single hop

propagation delay and 5 – 10 hours orbit rotation period. A LEO orbits at altitude range

500 – 900 km [35]. It has ~50 ms one-way single hop propagation delay and 1.5 – 2

hours orbit rotation period.

3.2 Characteristics of GEO satellite links

GEO satellite links have characteristics that differ from terrestrial links [38].

These characteristics contribute to the degradation of TCP performance in satellite links.

3.2.1 Long propagation delay

GEO satellite links have one-way long propagation delays (~250 ms) due to high

satellite altitudes. The RTT of a satellite link is at least 500 ms depending on the satellite

inclination. Long propagation delays of GEO satellite links prevent TCP connections

from rapidly achieving high transmission rates.

 19

3.2.2 Large bandwidth delay product

The bandwidth delay product (BDP) defines the amount of data a protocol should

have unacknowledged (in–flight) in order to fully utilize the available link capacity. For a

satellite link, the BDP is the product of the satellite link capacity C and the RTT:

BDP = RTT × C, (3.1)

where C and RTT are measured in b/s and s, respectively. GEO satellite links have a

large BDP due to long propagation delays and large bandwidth.

3.2.3 High bit error rates

Links employed for fixed satellite communication exhibit high bit error rates

(BERs) ~10-6 compared to terrestrial wired links. The high BERs are caused by

propagation losses, noise, and interference from other services sharing the same

frequency band. The BERs may become as large as 10-3 or 10-2 because of extreme

weather conditions [39]. Propagation loss components and their loss contribution in

various satellite frequency bands for GEO satellite links are shown in Table 3.2 [35].

Losses occur in GEO satellite links due to high BERs.

Table 3.2. Propagation mode losses in dB that affect GEO satellite links. Free space path loss is the
dominating contributor.

Propagation
mode loss

L band
(1.6/1.5) GHz

C band
(6/4) GHz

Ku band
(14/12) GHz

Ka band
(30/20) GHz

free space path 187 196 205 210
atmospheric 0.1 0.2 0.3 0.5

rain attenuation 0.1 0.5 2 6
refraction 6 3 2 1
diffraction 6 – 12
ionospheric 3 – 6 1 – 3 < 1

 20

3.2.4 Bandwidth asymmetry

Transmission over a satellite link employs different frequencies for the uplink and

downlink paths. The available bandwidth depends on the volume of incoming and

outgoing traffic in the uplink and downlink, respectively. Hence, the satellite uplink and

downlink capacities may differ [40]. Bandwidth asymmetry also occurs in hybrid

terrestrial satellite networks that employ both a slow terrestrial link and a satellite link for

outgoing traffic and incoming traffic, respectively.

 21

CHAPTER 4: TCP PERFORMANCE IN SATELLITE
NETWORKS

The connection management, flow control, and congestion control features of

TCP make it robust in terrestrial networks that use packet loss as an indication of

congestion. TCP carries over 90% of Internet traffic [12] that represents a dominant

portion of the entire telecommunication network traffic [7], [8]. Broadband GEO satellite

networks allow users to access Internet based applications and services regardless of the

users’ degree of mobility [41]. These networks support high data rates and multimedia

services. Hence, TCP must be able to provide optimal performance in GEO satellite

networks. In this Chapter, we discuss the issues of TCP in GEO satellite networks and

present a survey of solutions that have been proposed to improve TCP performance.

4.1 Impact of GEO satellite link characteristics on TCP performance

4.1.1 Effect of long propagation delay on slow start and RTO mechanism

In a GEO satellite network, the RTT of a TCP segment exceeds 500 ms when

combined with the terrestrial network delays. During the slow start phase, TCP needs to

receive an ACK of a sent segment in order to increase the cwnd. TCP is unable to reach

the maximum achievable throughput during the slow start phase due to the long

propagation delays of GEO satellite links. The time required to reach a transmission rate

B b/s is given as

Tslow start = RTT × (1 + log2 (B × RTT / l)), (4.1)

 22

where l is the average TCP segment length in bits [42]. The times spent in the slow start

phase for various transmission rates and satellite types for an average TCP segment

length of 1 kB (a common size) are shown in Table 4.1.

Table 4.1. Duration of the slow start phase for various transmission rates for a GEO satellite link
with RTT 500 ms. The higher the transmission rates, the longer the time spent in the slow start
phase.

Transmission rate (Mb/s) Tslow start (s)

1 3.47

1.5 3.76

10 5.13

45 6.21

155 7.1

For the complete download 200 kB file using a 5 Mb/s GEO satellite link, a

throughput <500 kb/s is achieved. If a 5 Mb/s LEO satellite link is employed for the

complete download of the same file size, 1 Mb/s throughput is obtained [43]. Hence, the

available satellite capacity is under-utilized.

4.1.2 Effect of large BDP on TCP window size

Large BDP values imply that large amount of unacknowledged data in flight

should be available for TCP to maximally utilize the available network capacity. The

BDP of a GEO satellite link depends on the maximum allowable unacknowledged data

(rwnd) [44]. As shown in the TCP header segment in Figure 2.1, the maximum rwnd

value is limited to 16 bits (64 KB). For an rwnd value of 64 KB, a GEO satellite link with

standard E1 rate (2,048 kb/s) and RTT value of 500 ms may achieve only ~1,048 kb/s

and, hence, making the available capacity underutilized.

 23

4.1.3 Effect of high BERs on TCP congestion control algorithms

A major cause of the poor performance of TCP in heterogeneous networks

characterized by high BERs is the assumption of segment loss as an indication of

congestion. The congestion control algorithms respond to segment loss by deflating the

cwnd, resulting in degraded throughput if losses are not due to congestion.

4.1.4 Effect of bandwidth asymmetry on TCP congestion control algorithms

A TCP sender increases its transmission rate based on the timely reception of

ACKs of transmitted segments. A bandwidth-asymmetric satellite network is configured

with high downlink (receiver to satellite) bandwidth and low uplink (satellite to receiver)

bandwidth. Data segments are transmitted to the receiver through the downlink path and

ACKs are forwarded to the sender through the uplink path. The low bandwidth uplink

path may become easily congested leading to delay of ACKs, which causes a TCP sender

to transmit data segments in bursts. Hence, bandwidth asymmetry in satellite networks

results in traffic burstiness [45]. TCP throughput is also degraded when the delay or loss

of ACKs in a low bandwidth uplink path results in the expiration of the RTO timer

(misinterpreted as an indication of congestion). Hence, the data transmission rate is

reduced accordingly.

4.2 Survey of proposed solutions for improving TCP performance

Solutions proposed for improving TCP performance in GEO satellite networks are

classified as end-to-end, split-connection, link-layer, or non-TCP satellite-optimized

protocols.

 24

4.2.1 End-to-end TCP solutions

End-to-end solutions usually require modifications only at the TCP sender and/or

receiver. They may also require that intermediate routers support priority mechanisms.

End-to-end solutions maintain the end-to-end semantics of TCP. Hence, they preserve

security of transmitted information when network layer security is employed. They also

prevent termination of TCP connections when an intermediate node suffers an

irrecoverable loss. End-to-end solutions include extensions to standard TCP mechanism

or TCP variants and non-TCP satellite optimized transport protocols.

4.2.1.1 Extensions to standard TCP mechanisms

The TCP time stamps option [38], [46] allows a TCP sender to place a timestamp

in each transmitted TCP segment using the TCP echo option. The receiver then returns

the timestamp in the appropriate field of the corresponding ACKs using the TCP echo

reply option. TCP window scale option [38], [46] defines a scale factor that expands to

32 bits the default 16-bit window size field in the TCP header. However, for an error-

prone satellite link, enabling this option increases the probability of segment loss per

window. The TCP window scale option may also lead to TCP seqno wraparound problem

[47]. This problem arises when the same 32-bit seqno is reused within a single TCP

connection. Protect Against Wraparound Sequence (PAWS) numbers mechanism [46]

employs the TCP echo and echo reply time stamps options to enable a sender

differentiate between segments having the same seqno by examining their time stamps.

The path maximum transmission unit (MTU) discovery [38], [48] technique is used to

probe network for the maximum segment size that could be supported along the end-to-

end path without fragmentation. Path MTU increases the rate at which the cwnd opens.

 25

However, delays up to multiple RTTs are incurred during the probing period [47]. Larger

segment sizes are also more prone to loss and corruption.

The option of increasing the initial window (IW) [19], [20] allows the initial cwnd

value to be larger than one SMSS and less than 4 × SMSS, and, thus reducing the time

needed to reach a transmission rate during slow start by up to 3 RTTs [45]. Modification

to the ssthresh and packet spacing during slow start [49] enable a TCP sender to enter

congestion avoidance phase and reduce the effect of bursty traffic thus, preventing buffer

overflow that may lead to losses in GEO satellite links. The selective acknowledgement

(SACK) [18] option was proposed to improve TCP performance in the presence of

multiple losses in an RTT. The SACK option allows a receiver to indicate only segments

that were received. Hence, the sender may explicitly retransmit only the lost segments

thus, reducing the number of unnecessary retransmissions.

4.2.1.2 TCP variants

For new connections starting after an idle period, TCP fast start [50] employs

cached values of the most recent past TCP connection state variables (cwnd, ssthresh,

srtt, and rttvar). However, it requires sender-side modifications and packet prioritization

mechanism at intermediate routers to drop low priority segments when congestion occurs.

The IPv6 datagram allows additional fields to be included in extension headers for

specific purposes. The extension headers are placed before the encapsulated TCP

payload. Bandwidth aware TCP (BA-TCP) [51] is an end-to-end solution that employs

the IPv6 extension headers with fields for round-trip propagation delay (RTPD) and

available bandwidth (ABW) to relay explicit network conditions to a TCP receiver.

However, BA-TCP requires IPv6 hosts to be present in the network. Sharing TCP

 26

(STCP) [52] was proposed to mitigate the effect of long propagation delays by sharing

TCP state information (ssthresh and cwnd) among sequential and concurrent TCP

connections. However, STCP requires an additional data structure in order to store the

shared information.

TCP-Peach [53] and its variant TCP-Peach+ [54] introduce the sudden start and

rapid recovery and the jump start and quick recovery algorithms based on the use of low

priority segments (dummy and nil segments, respectively) to probe the network for

available bandwidth. The cwnd is set based on the estimated available bandwidth. TCP-

Peach and TCP-Peach+ require packet prioritization mechanism at every intermediate

router along the data transmission path.

TCP Westwood (TCPW) [55] is an end-to-end sender side modification of TCP

congestion control algorithms for estimating the available bandwidth in the computation

of the cwnd. The value of the cwnd during congestion avoidance and after a packet loss is

computed using the bandwidth estimate (BWE). Adaptive start (Astart) [56] is a satellite

network modification to the slow start algorithm for adaptively resetting the ssthresh

based on the BWE of TCPW. Astart prevents premature termination of the slow start

phase and enable the cwnd to grow rapidly without incurring the risk of buffer overflow

and multiple losses. It assumes that the rwnd is always large so that the sending rate

depends only on the cwnd. TCP bulk repeat [57] improves TCPW performance in the

presence of heavy losses due to link errors.

HighSpeed TCP [58] and Scalable TCP [59] are variants proposed for large BDP

networks such as Gigabit Ethernet WANs. HighSpeed TCP adaptively increases or

decreases the cwnd is as a function of the current cwnd when an ACK is received or when

 27

a segment is lost, respectively. Scalable TCP adjusts the cwnd by a factor α = 0.01 upon

receipt of an ACK and by a factor β = 0.125 when segment loss is detected. Both

HighSpeed TCP and Scalable TCP require sender-side modifications. However, the

parameters used in adjusting the cwnd are not optimized for GEO satellite networks [60].

TCP-Swift [61] replaces the slow start and fast recovery algorithms with speedy

start and speedy recovery algorithms. The speedy start algorithm enables the cwnd to

open rapidly within two RTTs while the speedy recovery algorithm sends outstanding

segments instead of dummy segments (used in TCP-Peach) to probe the network for

available bandwidth. TCP priority-based congestion control strategy (TCP PBS) [62]

introduces accelerative start and expeditious recovery algorithms. The accelerative start is

similar to the speedy start but sets the IW to min (4 × SMSS, max (2 × SMSS, 4380

bytes)) [24] instead of one SMSS. The expeditious recovery employs explicit error

notification (EEN) to distinguish congestion losses from error losses. Both TCP-Swift

and TCP PBS require priority mechanisms at all intermediate routers in the data

transmission path.

TCP-Star [63] implements the following three new mechanisms: congestion

window setting (CWS), lift window control (LWC), and acknowledgment error

notification (AEN). The CWS is employed to determine the cause of losses in order to

adjust the cwnd accordingly. The LWC increments the cwnd during slow start and

congestion avoidance phases based on available bandwidth estimation mechanism of

TCP-Jersey [64]. The AEN prevents unnecessary retransmission of segments caused by

ACK losses or delays. TCP Hybla [65] employs a time-scale modification algorithm to

increment cwnd independent of RTTs during the slow start and congestion avoidance

 28

phases. However, it assumes that the transmission rate does not depend on the rwnd. The

TCP Hybla algorithm employs the SACK and timestamp options to recover multiple

losses and prevent delays in RTO timer update, respectively. TCP New Vegas [66] is a

variant of TCP Vegas [67] proposed for GEO satellite networks. It employs packet

pacing and rapid window convergence to improve the performance of TCP during slow

start. TCP New Vegas also implements packet pairing to reduce the negative impact of

delayed ACK [16] on networks with large RTTs.

4.2.2 Split TCP solutions

In hybrid terrestrial satellite IP networks, split connections shield the satellite link

characteristics from the terrestrial segment. Satellite-optimized transport protocols are

utilized in the satellite segment. The TCP connections are split at intermediate nodes such

as gateways [68]. The main disadvantage of split connection is the violation of the end-

to-end semantics of TCP. TCP splitting, TCP spoofing, and web caching are common

methods of split TCP solutions.

4.2.2.1 TCP splitting

In TCP splitting, the TCP connection between end-hosts is divided into two or

more sections with each section representing a complete TCP connection [69]. TCP

segments transmitted from one section to another require buffering at satellite gateways

or intermediate nodes. Aeronautical transport control protocol (AeroTCP) [39] employs

TCP splitting. Performance enhancing proxies (PEPs) [70] are examples of intermediate

nodes at which TCP connections are split. SaTPEP [71], PEPsal [72], and Secure PEP

(SPEP) [73] are examples of PEPs that propose the use of satellite optimized protocols in

 29

the satellite section while the TCP variants such as TCP Reno or TCP NewReno may be

used for the terrestrial wired section. SPEP requires an intermediate node to add and

remove the SPEP header before data and ACK segments are forwarded to the destination

and source, respectively. A preferential suppression (PS) scheme [74] with a PEP that

employs TCP spoofing is proposed to increase efficiency and achieve fairness in resource

sharing between satellite and terrestrial TCP connections.

4.2.2.2 TCP spoofing

TCP spoofing requires an intermediate host, usually a satellite gateway, to

prematurely acknowledge TCP segments received from the terrestrial wired section.

Unlike TCP splitting, a satellite-optimized TCP is not employed on the satellite section

[70]. The intermediate host buffers all transmitted segments, suppresses the ACKs from a

TCP receiver, and does not forward them to the sender. When a segment loss is detected,

the intermediate host retransmits the lost TCP segment. Performance evaluation of TCP

spoofing [75] indicates that TCP spoofing improves TCP throughput at a TCP sender for

large file transfers. TCP spoofing is shown in Figure 4.1.

terrestrial wired section

actual ACK suppressed
at satellite gateway

actual ACK
spoofing ACK

TCP data segment

satellite gatewayTCP sender TCP receiver

satellite section
Figure 4.1. TCP spoofing. The spoofing ACK reaches a TCP sender quickly to reduce the estimated
RTT at the sender and the actual ACK is suppressed at the satellite gateway.

 30

4.2.2.3 Web caching

In a satellite IP network, web caches are employed to fill requests from remote

web servers in the Internet. Most commonly requested information is stored locally in the

web cache. When a request is subsequently received from a user, the locally cached

information is sent to the user. Hence, the connection is effectively split at the web cache

thereby reducing traffic to remote Internet web servers and also reducing user-perceived

response time [68], [69]. Web caches require per-connection buffers for every active

connection and large processing overhead to establish and release connections in order to

accommodate a large number of users.

4.2.3 Link layer solutions

In order to improve TCP performance in the presence of high BERs, link layer

solutions are proposed to provide reliability at the link layer. These are broadly classified

as TCP-aware and TCP-unaware [76]. TCP-aware link layer solutions modify the TCP

header information and are incompatible with applications that require IP security

(IPSEC). TCP-unaware solutions employ forward error correction (FEC) and automatic

repeat request (ARQ) techniques to detect and retransmit lost or corrupted packets at the

link layer.

An example of a TCP-aware link layer solution is presented in [77]. Snoop

protocol [78] is an example of a TCP-aware link layer protocol evaluated for GEO

satellite link [79]. The snoop protocol is implemented at intermediate nodes such as

gateways. It performs local retransmissions of unacknowledged segments stored in

buffers at the gateways. The snoop protocol requires modifications at intermediates nodes

as well as large buffers to store unacknowledged segments.

 31

An example of a TCP-unaware link layer solution is presented in [80]. TCP

packet control [81] is a link layer solution that addresses variable and sudden long

propagation delays that a packet may experience in satellite networks. It requires

modifications at intermediate routers in the network.

4.2.4 Non-TCP satellite-optimized transport protocols

The characteristics exhibited by satellite communication links have led to

proposals of other transport layer protocols. These protocols may employ standard TCP

or reliable non-TCP mechanisms to address congestion losses and additional extensions

to address segment losses attributed to satellite link characteristics. The transport layer

protocols may be employed in satellite sections of split TCP connections.

The Space Communications Protocol Standards-Transport Protocol (SCPS-TP)

[82] employs extensions and enhancements to TCP such as selective negative ACK

(SNACK) and explicit Internet control message protocol (ICMP) messages for

corruption-induced losses and link outages. It also employs timestamps and modified

delayed ACK options to compute ACK delays based on the estimated RTT. SCPS-TP

with the TCP Vegas option for slow start improves throughput and is less sensitive to link

delays than TCP [83]. Simulation results show that SCPS-TP has better performance in

noisy asymmetric satellite networks than TCP [84].

Satellite transport protocol (STP) [85] is based on an Asynchronous Transfer

Mode (ATM) link layer protocol known as service specific connection orientated

protocol (SSCOP) [86]. STP does rely on timeout mechanisms. It employs an automatic

repeat request (ARQ) mechanism that uses SNACK for retransmission. The ACK polling

 32

cycle of STP is used for probing and early error detection [87] and, thus, it performs well

in determining the cause of losses. The rate control scheme (RCS) [88] employs low

priority dummy packets to probe the network for available resources and requires all

routers to support priority schemes for discarding these packets when congestion occurs.

Explicit control protocol (XCP) [89] and its enhanced variant P-XCP [90] employ

explicit feedback to determine network conditions and decouple utilization and fairness

control. Simulation results show that an XCP PEP is able to utilize available bandwidth

faster than TCP variants such as TCP Reno or TCP NewReno [91]. However,

modifications are required at the sender, all intermediate routers, and the receiver. Stream

Control Transmission Protocol (SCTP) [92], [93] employs the TCP congestion control

algorithms, satellite extensions as defined in [38], [46], and other unique features such as

multistreaming and multihoming.

 33

CHAPTER 5:TCP WITH ADAPTIVE DELAY AND LOSS
RESPONSE

5.1 Overview

In this thesis, we propose TCP with adaptive delay and loss response (TCP-

ADaLR) algorithm for heterogeneous networks employing GEO satellite links [94]. It is

designed to improve TCP performance in the presence of long propagation delays, high

BERs, and delayed ACK. We implement TCP-ADaLR algorithm as an extension to TCP

SACK. It may also be applied to TCP NewReno. Both TCP SACK and TCP NewReno

are common Internet TCP implementations [20].

TCP-ADaLR algorithm maintains the TCP end-to-end semantics. It requires

modifications only at the sender. TCP-ADaLR employs an initial window (IW) of 2 ×

SMSS. The TCP-ADaLR algorithm modifications include a scaling component ρ and

mechanisms for adaptive window (cwnd and rwnd) increase and loss recovery. The

scaling component ρ depends on measurements taken from sample RTT segments

(sampleRTT). A TCP sender computes RTO values continuously from the sampleRTT

collected using the Karn’s algorithm [25] that ensures that the sampleRTT is measured

from a segment that is not retransmitted. We normalize the sampleRTT by 1 s (a common

value of the minimum RTO in TCP implementations with a coarse grained timer [26]).

The scaling component is calculated as

ρ = (sampleRTT s/1 s) × 60. (5.1)

 34

Hence, the scaling component depends on a variable that reflects the recent network

condition (sampleRTT). The value of 60 is the minimum recommended value for the

maximum RTO rto_max [26] normalized by 1 s. The rto_max is the upper limit on the

retransmission interval that a TCP sender will wait before retransmission. The lower

bound of ρ is set to 1 to ensure that TCP employs the standard algorithm for connections

with extremely short RTTs. Conversely, we set an upper bound of ρ to be 60 to ensure

that the value of ρ is not too large. The scaling component ρ mitigates the negative effect

of the long propagation delays on achieving high transmission rates rapidly, as described

in Sections 4.1.1 and 4.1.2. The default exponential TCP cwnd increments are increased

by the scaling component ρ. Hence, with the reception of each ACK, the cwnd is

increased to a larger value than the TCP default thereby allowing transmission of

additional segments.

5.2 The proposed TCP-ADaLR algorithm

5.2.1 Adaptive cwnd increase mechanism

After the three-way handshake is completed, we divide the slow start phase into

four sub-phases based on current cwnd and the flightsize (total outstanding

unacknowledged data in the network). We select four sub-phases based on the ratio of the

initial value of the ssthresh (64KB) and a large value (16KB) of the IW employed by

TCP implementations. The flightsize is used to ensure that a TCP sender maintains

default exponential TCP cwnd increments when the number of unacknowledged bytes in

the network exceeds fractions of the rwnd during the four slow start sub-phases. In each

sub-phase, the increment in cwnd depends on the value of ρ and the presence or absence

of losses during transmission. To determine if losses have occurred, we initialize

 35

snd_recover (the sequence number denoting the end of fast recovery for TCP NewReno)

to zero at the beginning of the connection. If the value of snd_recover is nonzero, it

implies that at least one segment loss has occurred during transmission. The sub-phases

are described in Algorithm 5.1.

// snd_max = maximum send sequence number (the newest unacknowledged
sequence number)

// snd_una = sequence number of the first unacknowledged segment (the oldest
unacknowledged sequence number.)

// snd_recover = sequence number denoting the end of fast recovery (initialized to
zero at the beginning of the connection)

// acked_bytes = number of bytes acknowledged by an ACK

flightsize = snd_max - snd_una;

// slow start phase

if (cwnd < ssthresh)

 {

 if ((cwnd ≤ ssthresh/4) && (flightsize < rwnd/4))
 set sub-phase = slow start sub-phase 1

 if ((cwnd > ssthresh/4) && (cwnd ≤ ssthresh/2) && (flightsize < rwnd/4))
 set sub-phase = slow start sub-phase 2

 if ((cwnd > ssthresh/4) && (flightsize ≥ rwnd/4) && (flightsize < rwnd/2))
 set sub-phase = slow start sub-phase 3

 if ((cwnd > ssthresh/2) && (flightsize ≥ rwnd/4) && (flightsize < rwnd/2))
 set sub-phase = slow start sub-phase 4

 }
Algorithm 5.1. Pseudo-code that describes the four sub-phases of the TCP slow start phase
introduced by the adaptive cwnd increase mechanism.

In the default TCP implementation, the growth of the cwnd may not be

exponential as desired when the delayed ACK option is enabled because the receiver may

delay sending ACKs. It may send a single ACK for more than one data segment received.

This delay exacerbates the long propagation delays of a GEO satellite link and the

 36

number of acknowledged bytes may be larger than one SMSS. Hence, an increase of one

SMSS will not compensate for the case when the number of bytes acknowledged is larger

than one SMSS. We select a breakpoint value ρ = 15, corresponding to a sampleRTT of

250 ms. This value was selected based on measurements from simulation of a FTP file

download of a 50 MB file in an ideal (no congestion or satellite link error losses) satellite

link using TCP SACK. The simulation results are shown in Table 5.1. The download

response time begins to show significant increase after 250 ms. For values ρ ≥ 15, we

increase the cwnd by integral multiples of the SMSS when no losses have occurred,

which allows better utilization of the network bandwidth.

Table 5.1. FTP download response time for 50 MB file used to determine the instance when
propagation delay impacts the file download.

RTT (ms) Download response time (s)

25 251.9

50 252.1

100 252.5

200 253.5

250 272.7

500 470.1

The cwnd is incremented exponentially for ρ < 15, as in default TCP slow start

phase. For ρ ≥ 15, we increase the cwnd by (√ρ/4) × SMSS when no losses have

occurred. A delayed ACK of two outstanding segments will cause the transmission of 4

back-to-back segments that may result in micro-burstiness [95]. The value (√ρ/4) is

selected to accommodate the non-linear increase of the download response times shown

in Table 5.1 and micro-burstiness that may occur with delayed ACK enabled. Note that

(√ρ/4) × SMSS lies in the range (1 – 2) × SMSS. A value of up to 2 × SMSS prevents

 37

large line-rate bursts at the beginning of the connection when the TCP sender is probing

the network and is recommended to accommodate the delayed ACK option enabled [95].

Based on the maximum value of ρ (60), increments of (√ρ/4) × SMSS also maintain a

modest bursts size < 10 segments with a low probability of losing a segment [96].

If losses occur or the conditions of the four sub-phases are not met, the cwnd is

increased as in the default TCP slow start phase. During the congestion avoidance phase,

the cwnd is incremented linearly immediately after fast recovery or when the flightsize is

larger than rwnd/2. When the flightsize is less than rwnd/2, the cwnd is incremented by

(√ρ/2) × SMSS. Since increments during congestion avoidance phase are linear and more

conservative, we double the cwnd increment to (√ρ/2). Note that if the value of (√ρ/4) or

(√ρ/2) is less than one, it is rounded up to one, thus, being incremented by one SMSS as

in the default TCP. Alternating the cwnd increments between one SMSS and (√ρ/4) ×

SMSS in the slow start sub-phases enables the TCP sender to smoothen out its

transmission rate while utilizing the available bandwidth better than in default TCP. With

the adaptive increase mechanism, the TCP sender can achieve higher transmission rates

faster during the slow start phase especially when the RTT is large as in the case of GEO

satellite links. The cwnd is incremented in slow start and congestion avoidance as shown

in Algorithm 5.2.

// slow start phase
if (cwnd < ssthresh)
 {
 // slow start sub-phase 1
 if ((cwnd ≤ ssthresh/4) && (flightsize < rwnd/4))
 {
 if ((snd_recover = = 0) && (ρ ≥ 15))
 increment cwnd by (√ρ/4) × SMSS
 else

 38

 increment cwnd exponentially as in TCP Reno
 }
 // slow start sub-phase 2
 else if ((cwnd > ssthresh/4) && (cwnd ≤ ssthresh/2) && (flightsize < rwnd/4))
 {
 if ((snd_recover = = 0) && (ρ ≥ 15))
 increment cwnd by (√ρ/4) × SMSS
 else
 increment cwnd exponentially as in TCP Reno
 }
 // slow start sub-phase 3
 else if ((cwnd > ssthresh/4) && (flightsize ≥ rwnd/4) && (flightsize < rwnd/2))
 {
 if ((snd_recover = = 0) && (ρ ≥ 15))
 increment cwnd by (√ρ/4) × SMSS

 else
 increment cwnd exponentially as in TCP Reno
 }
 // slow start sub-phase 4
 else if ((cwnd > ssthresh/2) && (flightsize ≥ rwnd/4) && (flightsize < rwnd/2))
 {
 if ((snd_recover = = 0) && (ρ ≥ 15))
 increment cwnd by (√ρ/4) × SMSS

 else
 increment cwnd exponentially as in TCP Reno
 }
 }
else
 // congestion avoidance phase
 if (cwnd > ssthresh)
 {
 // fast recovery phase

 if (((snd_una ≤ snd_recover) && (ρ ≥ 15) && (snd_recover != 0)) | |
(flightsize ≥ rwnd/2))

 increment cwnd by SMSS × SMSS / cwnd

 // exiting the fast recovery phase
 else if (((snd_una ≥ snd_recover) && (ρ ≥ 15) && (snd_recover != 0)) | |

(flightsize < rwnd/2))
 increment cwnd by (√ρ/2) × SMSS × SMSS / cwnd

 else
 increment cwnd by SMSS × SMSS / cwnd
 }

Algorithm 5.2. Pseudo-code that describes the adaptive cwnd increase mechanism. This mechanism
allows the cwnd to increase more rapidly than default TCP and transmit additional segments during
the slow start and congestion avoidance phases.

 39

5.2.2 Adaptive rwnd increase mechanism

The TCP receiver-side limit imposed on the amount of transmitted data is defined

by rwnd. The number of transmitted bytes is the minimum of either the cwnd or rwnd.

The adaptive rwnd increase mechanism is implemented at the sender side. The rwnd

increments depend on the value of ρ, flightsize, cwnd increment phase (slow start or

congestion avoidance), and the presence or absence of losses. The adaptive rwnd increase

mechanism compensates for the GEO satellite long propagation delays when no losses

occur. It allows at least one additional segment to be transmitted when losses occur and a

partial ACK is received. (A partial ACK acknowledges some of the lost segments in a

window and allows the TCP sender to send the next unacknowledged segment while

remaining in fast recovery phase.) The additional segment compensates for delayed ACK

and allows the next two unacknowledged segments to be sent to recover from losses. This

prevents serial retransmission timeouts from occurring if only one segment is recieved

and the TCP receiver waits for the delayed ACK timer to expire before sending the ACK

of the received segment. The adaptive rwnd increase mechanism modifies the rwnd, as

shown in Algorithm 5.3.

rtt_dev_gain = RTT deviation gain

if (ρ ≥ 15)
{

if (flightsize > rwnd)
 {
 do nothing
 }

// congestion avoidance phase
else if (cwnd > ssthresh)

{
 // no losses have occurred

if (snd_recover = = 0)
 set rwnd to rwnd + rtt_dev_gain × ρ × SMSS

 40

// losses have occurred
// fast recovery phase
else if ((snd_una ≤ snd_recover) && (snd_recover ! = 0))
 set rwnd to rwnd + SMSS

else
 do nothing
}

// slow start phase
else if (cwnd < ssthresh)

 {
 // no losses have occurred

if (snd_recover = = 0)
 set rwnd to rwnd + rtt_dev_gain × ρ × SMSS

// losses have occurred
// fast recovery phase
else if ((snd_una ≤ snd_recover) && (snd_recover ! = 0))
 set rwnd to rwnd + SMSS

else
 do nothing
}

 else
do nothing

}
Algorithm 5.3. Pseudo-code that describes the rwnd modification introduced by the adaptive rwnd
increase mechanism.

5.2.3 Loss recovery mechanism

TCP-ADaLR modifies the fast recovery phase to compensate for delayed ACK

and ensure quicker recovery from losses. TCP-ADaLR also modifies the exponential

backoff after the first expiration of the RTO timer to prevent its premature expiration

when delayed ACK is enabled. During the fast recovery phase, the minimum value of

cwnd is set to 2 × SMSS instead of 1 × SMSS when the number of acknowledged bytes is

greater than the current value of cwnd. This prevents the cwnd from shrinking to zero. By

adjusting the value of cwnd at least two back-to-back segments may be transmitted

during the fast recovery to ensure that the TCP sender is able to receive ACKs faster

 41

when the delayed ACK option is enabled. If an RTO occurs, we add 200 ms to the

current time to prevent premature expiration of the RTO timer that may lead to false

retransmissions when the delayed ACK option is enabled. We also limit the number of

retransmissions from the retransmission buffer to three segments per retransmission to

prevent spurious or unnecessary retransmissions. The algorithm for setting cwnd during

fast recovery phase is shown in shown in Algorithm 5.4.

 // fast recovery phase
 if (snd_una > snd_recover)
 {
 if (cwnd ≤ acked_bytes)
 set cwnd to 2 × SMSS

 else
 // deflate the congestion window by the number
 // of acknowledged bytes and add two SMSS
 set cwnd to cwnd - acked_bytes + (2 × SMSS)
 }
Algorithm 5.4. Pseudo-code that describes the loss recovery mechanism for setting the cwnd during
the fast recovery phase.

 42

CHAPTER 6: TCP-ADaLR IMPLEMENTATION IN THE
OPNET MODELER NETWORK SIMULATOR

TCP-ADaLR is implemented in the Optimized Network Engineering Tools

(OPNET) modeler [19], an object-oriented discrete event simulator for network

simulation, modelling, performance evaluation, and analysis. In this Chapter, we describe

the OPNET modeler and the OPNET implementation of TCP-ADaLR [97].

6.1 OPNET Modeler

OPNET modeler includes a library of standard network node models and Open

Systems Interconnection (OSI) layer protocols’ models implemented in Proto-C that is

based on C/C++ programming language. OPNET modelling environment consists of a

three-level hierarchical domain editors and additional specialized editors for specifying

characteristics of a modelled system’s behaviour at any of the three domain levels [98].

6.1.1 Project editor

A network model consists of communication nodes and links. The network

domain is the highest modelling level in OPNET. The project editor is a graphical

interface used in the network domain to define and edit the topology and architecture of a

network model within a geographical or logical context. In a geographical context,

physical positions of network nodes are specified using latitude/longitude of the world or

regional maps for comparison with real-world network deployment. In cases where real-

world comparison is not essential for modelling the network, network nodes may be

 43

specified using logical dimensions and/or xy coordinates. An OPNET network model

may consist of three basic objects: subnetworks, nodes, and links. OPNET supports three

types of subnetworks: fixed, mobile, and satellite.

6.1.2 Node editor

Network nodes may represent any type of network device such as workstations,

bridges, routers, or switches. A node model represents the architecture of a network

device and the connectivity between its functional elements (modules defined by

processes). The network editor is used to specify node parameters (attributes) for

applications, protocols, and physical resources that define the node behaviour. Nodes

may be fixed, mobile, or satellite. Fixed nodes remain at a specified location during

simulation. Mobile nodes may have predefined trajectories that specify the path of

motion during simulation. Satellite nodes may have predefined orbit attributes that

describe their motion during simulation.

6.1.3 Process editor

The functionalities of modules in a network node are defined using the process

editor in Proto-C language [98] and finite state machines (FSMs). Proto-C language

supports protocol and algorithm development with a combination of state transition

diagrams (STDs) and a library of high-level commands known as kernel procedures.

Processes are represented by FSMs. FSMs are represented by STDs. A process model

STD describes a set of states that a process may enter and conditions known as transitions

required to exit and enter into another state. Each state has an enter executive and an exit

executive. They are Proto-C code lines executed by a process when it enters or exits a

 44

state, respectively. Processes may be hierarchical with a parent process invoking a new

instance of a predefined process known as a child process. The OPNET editor modelling

hierarchy is shown in Figure 5.1.

project editor

process editor node editor

project editor

process editor node editor

Figure 6.1. Hierarchy of OPNET modelling domain editors. The project editor is used to define
network topology. The node and process editors are used to define node and process functions,
respectively.

 45

6.1.4 Specialized editors

Network model specification may require other specialized editors that are used to

define various data models that are referenced by the project, node, or process editors

during simulation. These specialized editors include link, antenna pattern, packet format,

modulation curve, filter, probe, interface control information (ICI), and probability

density function editors. An OPNET simulation scenario is a completely defined network

model including all specifications by required editors.

6.2 OPNET implementation of TCP-ADaLR

We implemented TCP-ADaLR in the OPNET simulation tool [19]. We modified

the TCP sender to implement TCP-ADaLR. The TCP sender is represented by the

OPNET Ethernet server advanced model shown in Fig. 6.2. We modified the TCP

process model associated with the server node model. The OPNET TCP process model

implements standard TCP features [2], [9], [17]. It also includes additional features such

as SACK [18], delayed ACK [14], explicit congestion notification (ECN) [28], and

timestamp options [38], [46]. These features are defined in the TCP attributes of the

OPNET Ethernet server advanced model.

The OPNET TCP implementation consists of a parent process tcp_manager_v3

and a child process tcp_conn_v3. The tcp_manager_v3 FSM, shown in Fig. 6.3,

communicates with the session layer and network (IP) layers. The tcp_conn_v3 process is

invoked by the tcp_manager_v3 process when a new TCP connection is established. A

separate tcp_conn_v3 process is invoked for each newly established TCP connection. The

tcp_conn_v3 process stores all individual TCP connection parameters in the transmission

control block (TCB) and shares them with the tcp_manager_v3 process. Connection

 46

parameters stored in the TCB include the connection ID, local (sender) TCP port number,

remote (receiver) TCP port number, local IP address, and remote IP address. We

modified the OPEN state to invoke the modified tcp_conn_v3 child process. The changes

were made in the tcp_manager_v3.pr.c file.

Figure 6.2. The OPNET Ethernet server advanced node model. The implementation of TCP-ADaLR
requires modifications to the process models in the highlighted TCP module.

 47

Figure 6.3. The tcp_manager_v3 process model. The dashed lines represent conditions to transition
from the state they originate from to the state they terminate. The solid lines represent transitions
without conditions between the states they connect.

Additional modifications were made to functions defined in the tcp_conn_v3 child

process model. We defined the scaling component ρ as a global variable of type double

accessible by all functions defined in the tcp_conn_v3 process. The srtt, rttvar, and RTO

values are computed based on the sampleRTT, estimated from the Karn’s algorithm [25],

using the tcp_rtt_measurements_update () function. We modified this function in order to

compute the scaling component ρ that depends on the value of sampleRTT (5.1).

 48

The tcp_cwnd_update () function is used to increment the cwnd during the slow

start and congestion avoidance phases. We modified this function to implement the

adaptive cwnd increase mechanism. The tcp_cwnd_update () function is also modified to

implement the TCP-ADaLR loss recovery mechanism used to set the cwnd during the

fast recovery phase.

The tcp_snd_total_data_size () and tcp_snd_data_size () functions are used to

compute the number and the size of data segments to be sent after each ACK is received

or when data segments are to be retransmitted. The number and size of data segments

transmitted is computed from the current cwnd value (obtained from the

tcp_cwnd_update () function) and the value of rwnd obtained from the receiver

advertised window field in the most recent ACK received. These two functions were

modified to implement the adaptive rwnd increase mechanism.

The tcp_timeout_retrans () function is used to retransmit segments when the RTO

timer expires after no ACK has been received. It was modified to compute subsequent

RTO timer expirations. We also modified the tcp_una_buf_process () function to avoid

possible retransmission of unnecessarily large number of segments after a single RTO

[17] by limiting the number of retransmissions to three segments when the function is

called. The changes were made to the tcp_conn_v3_pr.c file. The tcp_conn_v3 child

process model is shown in Figure 6.4.

 49

Figure 6.4. The tcp_conn_v3 process model. The implementation of TCP-ADaLR requires
modification to the function block of the process model.

 50

CHAPTER 7: PERFORMANCE EVALUATION

We evaluate the performance of TCP-ADaLR using the OPNET network

simulator in the absence and presence of errors and congestion. We discuss the error

model used to simulate the GEO satellite link. We also discuss the simulated network

topologies, simulation parameters, simulation scenarios, and performance metrics. We

then discuss the simulation results.

7.1 Error model

The GEO satellite link is modelled as an additive white Gaussian noise (AWGN)

memoryless (uncorrelated bit errors) channel. We select this model because the satellite

client is a fixed user that has a line-of-sight (LoS) to the GEO satellite [65]. The satellite

link exhibits random (uncorrelated) errors at various bit error rates (BERs) from 10-5 to

10-10 after forward error correction (FEC). Using the AWGN model, we calculate the

packet error rate (PER) as

PER = 1- (1-BER)N, (7.1)

where N is the number of bits in the packet. We use 1,500 bytes (N = 12,000 bits)

Ethernet packets. The error correction (ECC) threshold is the highest proportion of bit

errors in a packet accepted by a receiver and forwarded to its output stream. The ECC

threshold is equal to the PER when the BER is 10-10. We use 10-10, which is acceptable

for wired Ethernet links. Packets with errors exceeding the ECC threshold are discarded

by the receiver (lost). The ECC threshold is set to 1.2 × 10-6 as computed using (7.1).

 51

Various BERs and their corresponding PERs for Ethernet packet size are shown in Table

7.1. For satellite links, typical average BER ranges from 10-5 to 10-8 [99]. An ideal

satellite link is assumed to be error-free. The OPNET PPP workstation advanced model

(TCP receiver) was modified to define the ECC threshold for accepted packets, as shown

in Figure 7.1.

Table 7.1. Post-FEC BERs and corresponding PERs for the AWGN-modelled GEO satellite link
calculated using (7.1).

BER PER

10-9 1.2 × 10-5

10-8 1.2 × 10-4

10-7 1.2 × 10-3

10-6 1.2 × 10-2

10-5 1.2 × 10-1

Figure 7.1. The OPNET PPP workstation advanced node model. We modified the transmission
receiver (ip_rx_0_0) to set the error correction threshold for accepted packets.

 52

7.2 Network topology

We consider two network topologies to evaluate various performance metrics for

TCP-ADaLR. The network topology shown in Figure 7.2 is a typical hybrid terrestrial-

satellite network connecting a fixed client (receiver) to a gateway through a GEO satellite

in a bent-pipe configuration. The receiver has a line-of-sight (LoS) to the GEO satellite.

The gateway is connected to the terrestrial wired network. This network topology is used

to provide Internet service to home and corporate users. Demand for data and multimedia

applications for home and corporate users increased by 6.6% and 9% (2001–2004),

respectively, and is still increasing [8].

server gateway client

12
5 m

s 125 m
s

GEO satellite

10 ms

Figure 7.2. Network topology for direct to user hybrid terrestrial-satellite network. The shown link
propagation delays are one-way.

The shown link propagation delays are one-way and remain constant during

simulation, unless otherwise stated. The GEO satellite link between the client and the

gateway is bi-directional with data rate of 2,048 kb/s in the downlink direction (satellite

to client) and 256 kb/s in the uplink direction (client to satellite). This difference in the

downlink and uplink capacities captures bandwidth asymmetry, a common characteristic

of satellite link [20], [32]. Data transmission over satellite links employs downlink

 53

bandwidth of the order 10 times or more in magnitude than the uplink [40]. The downlink

and uplink paths have identical propagation delays. The terrestrial wired link between the

gateway and the server is a full duplex 10 Mb/s Ethernet link. In all simulations

scenarios, the Ethernet link is error-free.

7.3 Simulation scenarios and parameters

We employ the network topology shown in Figure 7.2 to evaluate performance of

TCP-ADaLR in various scenarios. We consider an ideal case with no losses and cases

with congestion losses only, with losses only due to satellite link errors, and, finally, with

losses due to both congestion and satellite link errors. For the scenarios with congestion

losses, we set finite buffer sizes of the gateway to 15 and 25 packets for FTP and HTTP

applications, respectively. We modify the IP attributes of the OPNET Ethernet4 slip8

gateway node model in order to set the buffer size for the FTP application, as shown in

Figure 7.3. In the scenarios with satellite link errors, we evaluate the performance of TCP

variants for the PERs shown in Table 7.1. TCP-ADaLR considers cases when delayed

ACK is enabled by the Internet hosts. We evaluate the performance of TCP-ADaLR

without delayed ACK to investigate possible negative effects if the delayed ACK option

is disabled.

We simulate both FTP and HTTP applications. The simulation parameters for the

FTP and HTTP [100] applications are shown in Tables 7.2 and 7.3, respectively. All TCP

variants use constant and identical parameters for the simulated Internet applications.

TCP parameters used for simulation are shown in Table 7.4. We use identical set of

parameters when the delayed ACK option is enabled, with the exception of the maximum

 54

ACK delay and maximum ACK segment that are set to recommended values of 0.2 s and

2, respectively [14].

Figure 7.3. The OPNET Ethernet4 slip8 gateway model attributes. Shown are the modified IP module
parameters employed to simulate congestion losses for the FTP application.

Table 7.2. FTP file download application parameters. The file inter-request time is large to ensure a
single file download is completed during each simulation.

Attribute Value

File inter-request time (s) 18,000

File inter-request time distribution constant

File size (MB) 50

File size distribution constant

Simulated time (hours) 5

 55

Table 7.3. Simulated HTTP webpage download parameters.

Attribute Value

HTTP specification HTTP 1.1

Page inter-arrival time (s) 30

Page inter-arrival time distribution constant

Main page object size (bytes) 10,710

Main page object size distribution constant

Number of embedded page objects 15

Embedded object size (bytes) 7,758
Embedded object size distribution constant

Simulated time (s) 1,000

Table 7.4. TCP parameters when the delayed ACK option is disabled (without delayed ACK). All
parameters except two remain unchanged when the delayed ACK option is enabled (i.e., with delayed
ACK).

TCP Parameters Value

Sender maximum segment size (SMSS) 1,460 bytes
Slow start initial count 2 SMSS
Receiver’s advertised window 65,535 bytes
Timer granularity 0.5 s
Persist time-out 1.0 s
Maximum ACK delay 0.0 s
Maximum ACK segment 1
Duplicate ACK threshold 3
Initial RTO 3.0 s
Minimum RTO 1.0 s
Maximum RTO 64.0 s
Retransmission threshold 6
RTT gain 0.125
RTT deviation coefficient 4
Deviation gain 0.25

 56

7.4 Performance metrics

In various simulation scenarios, we evaluate and compare the performance of

TCP-ADaLR, TCP SACK, and TCP NewReno, with and without delayed

acknowledgements. TCP SACK and TCP NewReno are common Internet TCP

implementations [20]. More than 50% of Internet servers employ TCP SACK [101],

[102] while majority of others use TCP NewReno [101]. Hence, we consider two TCP-

ADaLR variants: with SACK and with NewReno. (The TCP-ADaLR variants are named

TCP-ADaLR SACK and TCP-ADaLR NewReno.) We consider performance metrics for

the simulated Internet applications (FTP and HTTP), TCP, and the satellite link. The

performance metrics include response times for FTP and HTTP applications, TCP

goodput, TCP throughput, and satellite link throughput.

7.4.1 FTP download response time

The download response time is the time elapsed between sending an FTP request

to an FTP server and receiving the complete response packet. It includes the signalling

delay for the connection establishment and termination. The download response time is

an indicator of the user-perceived latency of the FTP file download.

7.4.2 HTTP page response time

 The page response time is the time elapsed between sending the HTTP request to

the HTTP server and receiving the complete response of the entire web page with all

contained embedded objects. The main page object and embedded objects are

downloaded using a single TCP connection with HTTP 1.1. The HTTP paging response

time is an indicator of the user-perceived latency of the web page retrieval.

 57

7.4.3 TCP goodput

 Goodput is the number of original bits (excluding retransmissions) correctly

received by the TCP receiver per unit time during the duration of the connection. The

received segment sequence number is also used as an indicator of goodput.

7.4.4 TCP throughput

 TCP throughput is the traffic transmitted by the TCP sender to the TCP receiver.

It is measured at the TCP receiver in terms of bytes as the average bytes per second

forwarded by the TCP sender and received by the TCP receiver.

7.4.5 Satellite link throughput

 Satellite link throughput, measured in b/s, is the average number of bits correctly

received by the satellite link (satellite to client direction) for the duration of the file

transfer.

7.4.6 Satellite link utilization

 Satellite link utilization is the percentage fraction of the available satellite link

capacity consumed by the data transmission. It is expressed as the ratio of the number of

bits correctly transmitted over the satellite link per unit time and the satellite link data

rate.

7.4.7 Calculation of percentage improvement

 To compare the performance of TCP-ADaLR SACK and TCP SACK, we

calculated the percentage improvement as

 58

100
SACKTCP

SACKTCPSACKADaLRTCP
×

−−

metric
metricmetric

. (7.2)

Similarly, the percentage improvement for TCP-ADaLR NewReno was calculated as

100
NewRenoTCP

NewRenoTCPNewRenoADaLRTCP
×

−−

metric
metricmetric

. (7.3)

Note that in simulation scenarios given in Sections 7.5.3 and 7.5.4, the largest

percentages appear in the regions where the graphs overlap.

7.5 Simulation results

7.5.1 Ideal channel with no congestion or error losses

We first evaluate the performance of TCP-ADaLR in ideal channel conditions

with no congestion or error losses. For the FTP application, we evaluate performance in

terms of the download response time, TCP goodput, TCP throughput, satellite link

throughput, and satellite link utilization. The performance of the HTTP application was

evaluated in terms of the HTTP page response time.

7.5.1.1 Performance of FTP application

The download response time for the FTP application is shown in Table 7.5. TCP-

ADaLR reduces the download response time of TCP SACK and TCP NewReno by ~23%

and ~28% for cases with and without delayed ACK, respectively. The adaptive window

(cwnd and rwnd) increase mechanisms enable TCP-ADaLR to transmit additional

segments when there are no losses. TCP-ADaLR without delayed ACK outperforms

TCP-ADaLR with delayed ACK by ~7%. The download response times for TCP SACK

and TCP NewReno for cases with and without delayed ACK are comparable with a

 59

difference of ~1%. Hence, TCP-ADaLR does not degrade performance of TCP

connections without delayed ACK and yields better performance.

Table 7.5. FTP download response times for scenarios with ideal lossless satellite channel. For the
case without delayed ACK, TCP-ADaLR shows ~28% shorter FTP download response times than
TCP SACK and TCP NewReno.

 Download response time (s)

Delayed ACK option Enabled Disabled

TCP-ADaLR SACK 360.6 333.4

TCP-ADaLR NewReno 360.6 333.4

TCP SACK 470.1 463.5

TCP NewReno 470.1 463.5

The received segment sequence number at the receiver is used as an indicator of

the goodput of the ideal channel. The TCP goodput for the FTP application is shown in

Figure 7.4. For cases with and without delayed ACK, TCP-ADaLR shows ~49% and

~50% higher goodput than TCP SACK and TCP NewReno, respectively. The TCP

throughput is shown in Figure 7.5. For cases with and without delayed ACK, TCP-

ADaLR exhibits ~53% and ~63% higher TCP throughput than TCP SACK and TCP

NewReno, respectively. TCP-ADaLR is able to open its cwnd faster with the adaptive

cwnd increase mechanism and, hence, transmit additional segments. When the cwnd

exceeds the rwnd and if the modified rwnd value permits, the adaptive rwnd increase

mechanism allows the TCP sender to transmit more segments than TCP SACK and TCP

NewReno.

 60

0 50 100 150 200 250 300
0

1

2

3

4

5

x 107

Simulation time (s)

R
ec

ei
ve

d
se

gm
en

t s
eq

ue
nc

e
nu

m
be

r

TCP-ADaLR without delayed ACK
TCP-ADaLR with delayed ACK
TCP SACK and TCP NewReno without delayed ACK
TCP SACK and TCP NewReno with delayed ACK

Figure 7.4. Goodput for scenarios with ideal lossless satellite channel. Received segment sequence
number is used as an indicator of goodput. TCP-ADaLR exhibits the highest goodput when the
delayed ACK option is disabled.

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

x 105

Simulation time (s)

Th
ro

ug
hp

ut
 (b

yt
es

/s
)

TCP-ADaLR without delayed ACK
TCP-ADaLR with delayed ACK
TCP SACK and TCP NewReno without delayed ACK
TCP SACK and TCP NewReno with delayed ACK

Figure 7.5. TCP throughput for scenarios with ideal lossless satellite channel. For cases without
delayed ACK, TCP-ADaLR throughput is ~63% higher than TCP NewReno and TCP SACK.

 61

The satellite link throughput is shown in Figure 7.6. TCP-ADaLR exhibits higher

satellite link throughput than TCP SACK or TCP NewReno. The higher TCP throughput

shown in Figure 7.5, leads to the higher satellite link throughput. The satellite link

utilization is shown in Figure 7.7. TCP-ADaLR exhibits better satellite link utilization

than TCP SACK and TCP NewReno. In the absence of losses, TCP-ADaLR transmits

additional segments more rapidly with the adaptive window (cwnd and rwnd) increase

mechanisms during the slow start and congestion avoidance phases. TCP-ADaLR

exhibits up to 56% higher satellite link utilization than TCP SACK and TCP NewReno

for the cases with delayed ACK. For the cases without delayed ACK, TCP-ADaLR

exhibits up to 68% higher satellite link utilization than TCP SACK and TCP NewReno.

0 50 100 150 200 250 300
0

0.4

0.8

1.2

1.6

2

x 106

Simulation time (s)

Th
ro

ug
hp

ut
 (b

/s
)

TCP-ADaLR without delayed ACK
TCP-ADaLR with delayed ACK
TCP SACK and TCP NewReno without delayed ACK
TCP SACK and TCP NewReno with delayed ACK

Figure 7.6. Satellite link throughput for scenarios with ideal lossless satellite link. For cases with and
without delayed ACK, TCP-ADaLR exhibits ~53% and ~66% higher satellite link throughput than
TCP SACK and TCP NewReno, respectively.

 62

0 50 100 150 200 250 300
0

20

40

60

80

100

Simulation time (s)

U
til

iz
at

io
n

(%
)

TCP-ADaLR without delayed ACK
TCP-ADaLR with delayed ACK
TCP SACK and TCP NewReno without delayed ACK
TCP SACK and TCP NewReno with delayed ACK

Figure 7.7. Satellite link utilization for scenarios with ideal lossless satellite channel. TCP-ADaLR
achieves 80% of the link capacity while TCP SACK and TCP NewReno attain only 50% when the
delayed ACK option is disabled.

7.5.1.1.1 Effect of increased propagation delay

We also evaluate the effect of increased propagation delay in the terrestrial

segment of the network. The Ethernet one-way link propagation delay was increased to

50 ms. TCP-ADaLR outperforms TCP SACK and TCP NewReno even with the

increased propagation delay because the cwnd increments in the slow start and congestion

avoidance phases depend on the scaling component ρ computed from the TCP

connection’s RTT. TCP-ADaLR exhibits shorter download response time than TCP

SACK and TCP NewReno, as shown in Table 7.6. Increasing propagation delay increases

the download response time for all TCP variants. TCP-ADaLR exhibits the highest TCP

goodput and TCP throughput shown in Figures 7.8 and 7.9, respectively. Similarly, the

satellite link throughput for TCP-ADaLR is the highest, as shown in Figure 7.10. TCP-

 63

ADaLR also exhibits the best link utilization, as shown in Figure 7.11. All TCP variants

exhibit lower link utilization because of the increased propagation delay. However, TCP-

ADaLR outperforms TCP SACK and TCP NewReno because the scaling component ρ

has the maximum value of 60, equivalent to an RTT of 1 s.

Table 7.6. FTP download response time for scenarios with ideal lossless satellite channel and
increased propagation delay. For cases with and without delayed ACK, TCP-ADaLR shows ~26%
and ~32% shorter download response time than TCP SACK and TCP NewReno, respectively.

 Download response time (s)

Delayed ACK option Enabled Disabled

TCP-ADaLR SACK 392.6 357.8

TCP-ADaLR NewReno 392.6 357.8

TCP SACK 533.5 526.3

TCP NewReno 533.5 526.3

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 107

Simulation time (s)

R
ec

ei
ve

d
se

gm
en

t s
eq

ue
nc

e
nu

m
be

r

TCP-ADaLR without delayed ACK
TCP-ADaLR with delayed ACK
TCP SACK and TCP NewReno without delayed ACK
TCP SACK and TCP NewReno with delayed ACK

Figure 7.8. Goodput for scenarios with ideal lossless satellite channel and increased propagation
delay. For cases with and without delayed ACK, TCP-ADaLR exhibits ~33% and ~50% higher
goodput than TCP SACK and TCP NewReno, respectively.

 64

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5
x 105

Simulation time (s)

Th
ro

ug
hp

ut
 (b

yt
es

/s
)

 TCP-ADaLR without delayed ACK
 TCP-ADaLR with delayed ACK
 TCP SACK and TCP NewReno without delayed ACK
 TCP SACK and TCP NewReno with delayed ACK

Figure 7.9. TCP throughput for scenarios with ideal lossless satellite channel and increased
propagation delay. For cases with and without delayed ACK, TCP-ADaLR exhibits ~71% and ~79%
higher TCP throughput than TCP SACK and TCP NewReno, respectively.

0 50 100 150 200 250 300
0

0.4

0.8

1.2

1.6

2

x 106

Simulation time (s)

Th
ro

ug
hp

ut
 (b

/s
)

TCP-ADaLR without delayed ACK
TCP-ADaLR with delayed ACK
TCP SACK and TCP NewReno without delayed ACK
TCP SACK and TCP NewReno with delayed ACK

Figure 7.10. Satellite link throughput for scenarios with ideal lossless satellite channel and increased
propagation delay. For cases with and without delayed ACK, TCP-ADaLR exhibits ~55% and ~63%
higher throughput than TCP SACK and TCP NewReno, respectively.

 65

0 50 100 150 200 250 300
0

20

40

60

80

100

Simulation time (s)

U
til

iz
at

io
n

(%
)

TCP-ADaLR without delayed ACK
TCP-ADaLR with delayed ACK
TCP SACK and TCP NewReno without delayed ACK
TCP SACK and TCP NewReno with delayed ACK

Figure 7.11. Satellite link utilization for scenarios with ideal lossless satellite channel and increased
propagation delay. TCP-ADaLR exhibits ~80% peak percentage link utilization when the delayed
ACK option is disabled.

7.5.1.1.2 Effect of increased satellite link data rate

We also evaluate the effect of increased satellite downlink and uplink data rates to

10 Mb/s and 1 Mb/s, respectively. TCP-ADaLR exhibits the best performance. TCP

SACK and TCP NewReno exhibit comparable performance of 462.3 s and 459.7 s for

both the 2 Mb/s link shown in Table 7.5 and 10Mb/s link shown in Table 7.7. TCP-

ADaLR better utilizes the higher data rate than TCP SACK and TCP NewReno. High

data rate is a characteristic of broadband GEO satellite networks. With increased satellite

link data rates (10 Mb/s downlink and 1 Mb/s uplink), TCP-ADaLR shows ~21% and

~29% shorter download response times than TCP SACK and TCP NewReno for cases

with and without delayed ACK, respectively. However, TCP SACK and TCP NewReno

show only ~1% shorter download response times for cases with and without delayed,

 66

respectively. Correspondingly, TCP-ADaLR shows higher TCP goodput, TCP

throughput, satellite link throughput, and satellite link utilization, as shown in Figures

7.12–7.15. With the higher satellite link data rates, ACKs arrive faster at the TCP sender

and, hence, TCP-ADaLR opens the cwnd and transmits additional segments faster.

Table 7.7. FTP download response time for scenarios with ideal lossless satellite channel and
increased satellite link data rates. For cases with and without delayed ACK, TCP-ADaLR shows up
to 38% and 48% shorter download response times than TCP SACK and TCP NewReno,
respectively.

 Download response time (s)

Delayed ACK option Enabled Disabled

TCP-ADaLR SACK 283.0 235.4
TCP-ADaLR NewReno 283.0 235.4
TCP SACK 462.3 459.7
TCP NewReno 462.3 459.7

0 50 100 150 200 250 300
0

1

2

3

4

5

6

x 107

Simulation time (s)

R
ec

ei
ve

d
se

gm
en

t s
eq

ue
nc

e
nu

m
be

r

TCP-ADaLR without delayed ACK
TCP-ADaLR with delayed ACK
TCP SACK and TCP NewReno without delayed ACK
TCP SACK and TCP NewReno with delayed ACK

Figure 7.12. Goodput for scenarios with ideal lossless satellite channel and increased satellite link
data rates. For cases with and without delayed ACK, TCP-ADaLR exhibits up to 66% and 138%
higher goodput than TCP SACK and TCP NewReno, respectively.

 67

0 50 100 150 200 250 300
0

1

2

3

4

5

x 105

Simulation time (s)

Th
ro

ug
hp

ut
 (b

yt
es

/s
)

TCP-ADaLR without delayed ACK
TCP-ADaLR with delayed ACK
TCP SACK and TCP NewReno without delayed ACK
TCP SACK and TCP NewReno with delayed ACK

Figure 7.13. TCP throughput for scenarios with ideal lossless satellite channel and increased satellite
link data rates. TCP-ADaLR exhibits increasing throughput until the file transfer is completed and
the throughput reduces to zero.

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5 x 106

Simulation time (s)

Th
ro

ug
hp

ut
 (b

/s
)

TCP-ADaLR without delayed ACK
TCP-ADaLR with delayed ACK
TCP SACK and TCP NewReno without delayed ACK
TCP SACK and TCP NewReno with delayed ACK

Figure 7.14. Satellite link throughput for scenarios with ideal lossless satellite channel and increased
satellite link data rates. For cases with and without delayed ACK, TCP-ADaLR exhibits up to 150%
and 250% higher satellite link throughput than TCP SACK and TCP NewReno, respectively.

 68

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

45

Simulation time (s)

U
til

iz
at

io
n

(%
)

TCP-ADaLR without delayed ACK
TCP-ADaLR with delayed ACK
TCP SACK and TCP NewReno without delayed ACK
TCP SACK and TCP NewReno with delayed ACK

Figure 7.15. Satellite link utilization for scenarios with ideal lossless satellite channel and increased
satellite link data rates. TCP-ADaLR exhibits higher utilization than TCP SACK and TCP
NewReno.

7.5.1.1.3 Effect of varying FTP application file size

For the FTP application, we investigate the effect on TCP-ADaLR performance

by varying file sizes as: 500 kB, 50 MB, 100 MB, 200 MB, 300 MB, 400 MB, and 500

MB. We evaluate the download response time, TCP throughput, satellite link throughput,

and satellite link utilization for TCP-ADaLR and TCP SACK (In a scenario with ideal

lossless satellite link, TCP SACK and TCP NewReno exhibit the identical performance.

Similarly, TCP-ADaLR variants exhibit identical performance). We consider only the

case when the delayed ACK option is enabled. The download response times for

evaluated file sizes are shown in Figure. 7.16. TCP-ADaLR shows 9%–38% shorter

download response times than TCP NewReno. As the file size increases, the download

response time increases for both TCP-ADaLR and TCP NewReno.

 69

0 100 200 300 400 5000

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

File size (MB)

D
ow

nl
oa

d
re

sp
on

se
 ti

m
e

(s
)

TCP-ADaLR
TCP SACK and TCP NewReno

Figure 7.16. As the file size increases, TCP-ADaLR shows shorter download response time than TCP
SACK and TCP NewReno.

TCP-ADaLR shows increasing TCP throughput, as shown in Figure 7.17. When

the RTT is large, TCP-ADaLR adapts its transmission rate using the scaling component,

which enables it to transmit more segments in each RTT with its adaptive cwnd increase

mechanism. The adaptive rwnd increase mechanism also allows additional segments to

be transmitted when the cwnd exceeds the rwnd and the flightsize does not exceed the

rwnd. However, the throughput of the TCP NewReno connection remains unchanged

when the file size is increased from 50 MB to 500 MB. When the file size is large, a

larger percentage of the file is downloaded during the congestion avoidance phase. The

congestion avoidance phase is more conservative with the linear cwnd increments. The

rwnd limits maximum amount of data that can be transmitted when the cwnd has

exceeded the rwnd. The long RTTs further prevent TCP throughput increase.

 70

0 100 200 300 400 5000.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4x 105

File size (MB)

Th
ro

ug
hp

ut
 (b

yt
e/

s)

TCP-ADaLR
TCP SACK and TCP NewReno

Figure 7.17. As the file size increases, TCP throughput of TCP-ADaLR increases 9%–75% compared
to TCP SACK and TCP NewReno.

The satellite link throughput and satellite link utilization are shown in Figures

7.18 and 7.19, respectively. As expected, the satellite link utilization is lowest for TCP-

ADaLR and TCP NewReno when the file size is 500 kB (the smallest file size). TCP-

ADaLR exhibits increasing satellite link throughput and utilization for all file sizes up to

400 MB. The increasing TCP throughput enables transmission of additional segments,

thus leading to the increased satellite link throughput and utilization, as shown in Figures

7.18 and 7.19. However, the satellite link throughput and utilization of the TCP

NewReno connection decrease very slightly when the file size is larger than to 50 MB

because of the slower transmission rate during congestion avoidance phase. TCP-ADaLR

NewReno shows 57%–90% higher satellite link throughput than TCP NewReno. Hence,

TCP-ADaLR exhibits performance scalability with increasing file sizes.

 71

0 100 200 300 400 5000

0.5

1

1.5

2

x 106

File size (MB)

Th
ro

ug
hp

ut
 (b

/s
)

TCP-ADaLR
TCP SACK and TCP NewReno

Figure 7.18. TCP-ADaLR exhibits up to 81% higher satellite link throughput than TCP SACK and
TCP NewReno.

0 100 200 300 400 5000

10

20

30

40

50

60

70

80

90

100

File size (MB)

U
til

iz
at

io
n

(%
)

TCP-ADaLR
TCP SACK and TCP NewReno

Figure 7.19. For all file sizes, TCP-ADaLR exhibits 57%–90% higher satellite link utilization than
TCP SACK and TCP NewReno.

 72

7.5.1.2 Performance of HTTP application

All TCP variants download identical number of web pages and embedded page

objects. We evaluated the page response time of the HTTP application specified in Table

7.3. The main page object and the 15 embedded objects are completely downloaded and

the complete web page is opened before the HTTP page response statistic is collected.

The HTTP page response time for a single webpage is shown in Table 7.8. TCP-ADaLR

shows ~10% and ~9% shorter page response times than TCP SACK and TCP NewReno

with and without delayed ACK, respectively. Hence, TCP-ADaLR shows performance

gains in the user-perceived latency of short-lived flows such as HTTP applications. The

adaptive cwnd and rwnd increase mechanisms enable TCP-ADaLR to open the cwnd

more rapidly and transmit additional segments after the IW of data segments (main page

object). Hence, the HTTP webpage embedded objects are downloaded more quickly

when TCP-ADaLR is employed. However, TCP SACK and TCP NewReno exhibit

longer download response times for both cases with and without delayed ACK.

Table 7.8. HTTP page response time for scenarios with ideal lossless satellite channel. For cases with
and without delayed ACK, TCP-ADaLR shows ~10% and ~9% shorter page response times than
TCP SACK and TCP NewReno.

 Page response time (s)

Delayed ACK option Enabled Disabled

TCP-ADaLR SACK 4.4 3.9

TCP-ADaLR NewReno 4.4 3.9

TCP SACK 4.9 4.3

TCP NewReno 4.9 4.3

 73

7.5.2 Error-free satellite channel with only congestion losses

We evaluate the performance of TCP-ADaLR in the presence of congestion losses

at a bottleneck gateway with a finite buffer size of 25 packets and 15 packets for the FTP

and HTTP applications, respectively. We employ lower number of segments for the

HTTP application because they are short-lived flows that occur in bursts.

7.5.2.1 Performance of FTP application

The download response time is comparable for all four TCP variants, as shown in

Table 7.9. TCP-ADaLR SACK variant show slightly lower download response times

than the other three TCP variants in the case with delayed ACK. For all TCP variants, the

download response times with delayed ACK are lower than in the case without delayed

ACK. The TCP goodput for cases with and without delayed ACK are shown in Figures

7.20 and 7.21, respectively. The TCP throughput, satellite link throughput, and satellite

link utilization are shown in Figures 7.22–7.27. The TCP-ADaLR variants perform

comparably to both TCP SACK and TCP NewReno because the adaptive cwnd and rwnd

increase mechanisms lead to cwnd increments void of large bursts that may lead to

performance degradation during congestion. Hence, TCP-ADaLR variants show no

significant performance degradation in the presence of congestion. After the transmission

rate is adjusted in response to congestion, the TCP ADaLR variants exhibit variations in

TCP throughput attributed to the cwnd increments of the adaptive cwnd increase

mechanism during the congestion avoidance phase, as shown in Figure 7. 22.

 74

Table 7.9. FTP download response time for scenarios with only congestion losses. For both cases with
and without delayed ACK, TCP-ADaLR variants exhibit download response times comparable to
TCP SACK and TCP NewReno.

 Page response time (s)

Delayed ACK option Enabled Disabled

TCP-ADaLR SACK 1212.7 1226.7

TCP-ADaLR NewReno 1228.0 1232.4

TCP SACK 1224.8 1226.7

TCP NewReno 1216.6 1226.7

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

x 107

Simulation time (s)

R
ec

ei
ve

d
se

gm
en

t s
eq

ue
nc

e
nu

m
be

r

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.20. Goodput for scenarios with only congestion losses and delayed ACK enabled. Received
segment sequence number is used as an indicator of goodput. The four TCP variants exhibit
comparable goodput.

 75

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

x 107

Simulation time (s)

R
ec

ei
ve

d
se

gm
en

t s
eq

ue
nc

e
nu

m
be

r

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.21. Goodput for scenarios with only congestion losses and delayed ACK disabled. The
received segment sequence number is used as an indicator of goodput. The four TCP variants exhibit
comparable goodput.

0 200 400 600 800 1000 1200
0

1

2

3

4

5

x 104

Simulation time (s)

Th
ro

ug
hp

ut
 (b

yt
es

/s
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.22. TCP throughput for scenarios with only congestion losses and delayed ACK enabled.
The four TCP variants exhibit TCP throughput degradation when congestion losses are detected.

 76

0 200 400 600 800 1000 1200
0

1

2

3

4

5

x 104

Simulation time (s)

Th
ro

ug
hp

ut
 (b

yt
es

/s
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.23. TCP throughput for scenarios with only congestion losses and delayed ACK disabled.
The TCP throughput is comparable for the four TCP variants.

0 200 400 600 800 1000 1200
0

1

2

3

4

5 x 105

Simulation time (s)

Th
ro

ug
hp

ut
 (b

/s
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.24. Satellite link throughput for scenarios with only congestion losses and delayed ACK
enabled. The link throughput reduces when congestion losses are detected and attains steady state
after transmission rate adjusted by the TCP congestion control algorithms in response to congestion.

 77

0 200 400 600 800 1000 1200
0

1

2

3

4

5 x 105

Simulation time (s)

Th
ro

ug
hp

ut
 (b

/s
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.25. Satellite link throughput for scenarios with only congestion losses and delayed ACK
disabled. Satellite link throughput is comparable for the four TCP variants.

0 200 400 600 800 1000 1200
0

5

10

15

20

Simulation time (s)

U
til

iz
at

io
n

(%
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.26. Satellite link utilization for scenarios with only congestion losses and delayed ACK
enabled Satellite link utilization decreases when congestion losses are detected.

 78

0 200 400 600 800 1000 1200
0

5

10

15

20

Simulation time (s)

U
til

iz
at

io
n

(%
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.27. Satellite link utilization for scenarios with only congestion losses and delayed ACK
disabled. Satellite link utilization is comparable for the four TCP variants.

7.5.2.2 Performance of HTTP application

We evaluate performance of the HTTP application in terms of the page response

time. The increased page response time indicates the impact of congestion losses

(compared to the ideal case) as shown in Table 7.10. TCP-ADaLR SACK shows the best

performance while TCP-ADaLR NewReno exhibits the second best performance in both

cases with and without delayed ACK. TCP-ADaLR variants exhibit shorter HTTP page

responses times than TCP SACK and TCP NewReno and, hence, show performance

gains. HTTP transfers occur in short bursts. When losses occur, the adaptive cwnd

increase mechanism enables the transmission of additional segments after fast recovery.

Hence, the HTTP transfers are completed faster than TCP SACK and TCP NewReno.

The adaptive rwnd mechanism allows at least two back-to-back segments to be

 79

transferred during the recovery process to compensate for delayed ACK. Hence, the main

page and embedded objects are downloaded in quick successions with the TCP-ADaLR

algorithm.

Table 7.10. HTTP page response time for scenarios with only congestion losses. For cases with and
without delayed ACK, TCP-ADaLR SACK exhibits 33% and 12% shorter page response times than
TCP SACK, respectively.

 Page response time (s)

Delayed ACK option Enabled Disabled

TCP-ADaLR SACK 11.0 10.3

TCP-ADaLR NewReno 11.0 11.1

TCP SACK 13.8 11.7

TCP NewReno 16.6 11.7

7.5.3 Satellite channel with only error losses

We evaluate the performance of TCP-ADaLR in the presence of losses due to

only satellite link errors for the various BER values shown in Table 7.1. (Typical average

post-FEC BER of satellite links is 10-5 to 10-8 [99].) For each BER value, we use different

random seed numbers and compute the average values using 95% confidence intervals.

7.5.3.1 Performance of FTP application

For the FTP application, we evaluate average values of the download response

time, TCP goodput, TCP throughput, satellite link throughput, and satellite link

utilization as a function of the BER values. The download response time for cases with

and without delayed ACK are shown in Figures 7.28 and 7.29, respectively. For all TCP

variants, the negative effect of losses due to satellite link errors is evident in the

increasing response times as the BER increases. For the simulated BER values, TCP-

ADaLR SACK shows 13%–37% and 6%–31% shorter download response time than TCP

 80

SACK with and without delayed ACK, respectively. TCP-ADaLR NewReno exhibits

5%–26% and 2%–26% shorter download response time than TCP NewReno with and

without delayed ACK, respectively. Performance gains increase at high BER values. The

TCP-ADaLR variants are robust against heavy losses resulting from high BER values.

The loss recovery mechanism enables quicker recovery from the losses due to satellite

link errors. The adaptive window increase mechanisms also enable faster transmission of

additional segments. TCP-ADaLR SACK and TCP-ADaLR NewReno show similar

performance at low BER values. However, at high BER values, TCP-ADaLR SACK

exhibits better performance than TCP-ADaLR NewReno. Hence, TCP-ADaLR offers

better performance improvement with the SACK option.

10-9 10-8 10-7 10-6 10-50

2000

4000

6000

8000

10000

12000

14000

BER

D
ow

nl
oa

d
re

sp
on

se
 ti

m
e

(s
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.28. FTP download response time for scenarios with only error losses and delayed ACK
enabled. TCP-ADaLR SACK exhibits up to 37% shorter download response time than TCP SACK.

 81

10-9 10-8 10-7 10-6 10-50

2000

4000

6000

8000

10000

12000

BER

D
ow

nl
oa

d
re

sp
on

se
 ti

m
e

(s
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.29. FTP download response time for scenarios with only error losses and delayed ACK
disabled. At BER value of 10-6, TCP-ADaLR SACK shows ~31% shorter download response time
than TCP SACK.

The TCP goodput and TCP throughput are shown in Figures 7.30–7.33. The TCP-

ADaLR SACK shows 16%–61% and 7%–46% higher throughput than TCP SACK with

and without delayed ACK, respectively. TCP-ADaLR NewReno exhibits 6%–36% and

2%–35% higher throughput than TCP NewReno with and without delayed ACK,

respectively. The adaptive cwnd increase mechanism causes additional segments to be

rapidly sent after losses have occurred. The adaptive rwnd increase and loss recovery

mechanisms allow at least two segments to be transmitted back-to-back when losses are

detected in order to compensate for delayed ACK. These mechanisms enable TCP-

ADaLR to recover more quickly than TCP SACK and TCP NewReno. For corresponding

BERs, TCP variants in scenarios with delayed ACK exhibit better performance than TCP

 82

variants in scenarios without delayed ACK. Correspondingly, the satellite link throughput

and utilization decrease with increasing BER, as shown in Figures 7.34–7.37.

For all TCP variants, the TCP goodput and TCP throughput degrade considerably

at BERs higher than 10-8 [103]. The long propagation delays prevent quick recovery from

losses and exacerbate the performance degradation. Hence, it is difficult to sustain the

higher throughputs at BER values lower than 10-8. When heavy losses occur and TCP

throughput degrades, fewer segments are transmitted due to several RTO timer

expirations in the absence of duplicate ACKs. When the delayed ACK option is enabled,

it exacerbates the inability of TCP to recover quickly from the losses. Hence, for the four

TCP variants, the satellite link utilization decreases. TCP-ADaLR SACK is the most

robust variant in the presence of heavy losses due to satellite link errors.

10-9 10-8 10-7 10-6 10-50

2

4

6

8

10

12

14x 105

BER

G
oo

dp
ut

 (b
/s

)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.30. Goodput for scenarios with only error losses and delayed ACK enabled. TCP-ADaLR
SACK exhibits up to 27% higher goodput than TCP SACK.

 83

10-9 10-8 10-7 10-6 10-50

2

4

6

8

10

12x 105

BER

G
oo

dp
ut

 (b
/s

)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.31. Goodput for scenarios with only error losses and delayed ACK disabled. TCP-ADaLR
SACK shows 7%–46% higher goodput than TCP SACK.

10-9 10-8 10-7 10-6 10-50

2

4

6

8

10

12

14

16x 104

BER

Th
ro

ug
hp

ut
 (b

yt
es

/s
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.32. TCP throughput for scenarios with only error losses and delayed ACK enabled. TCP-
ADaLR SACK and TCP-ADaLR NewReno exhibit higher TCP throughputs than TCP SACK and
TCP NewReno, respectively.

 84

10-9 10-8 10-7 10-6 10-50

5

10

15x 104

BER

Th
ro

ug
hp

ut
 (b

yt
es

/s
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.33. TCP throughput for scenarios with only error losses and delayed ACK disabled. For all
BER values, TCP-ADaLR SACK exhibits the highest throughput.

10-9 10-8 10-7 10-6 10-50

2

4

6

8

10

12

14x 105

BER

Th
ro

ug
hp

ut
 (b

/s
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.34. Satellite link throughput for scenarios with only error losses and delayed ACK enabled.
TCP-ADaLR SACK exhibits up to 73% higher satellite link throughput than TCP SACK.

 85

10-9 10-8 10-7 10-6 10-50

2

4

6

8

10

12

14x 105

BER

Th
ro

ug
hp

ut
 (b

/s
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.35. Satellite link throughput for scenarios with only error losses and delayed ACK disabled.
For all BER values, TCP-ADaLR SACK exhibits the highest satellite link throughput.

10-9 10-8 10-7 10-6 10-50

10

20

30

40

50

60

70

80

BER

U
til

iz
at

io
n

(%
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.36. Satellite link utilization for scenarios with only error losses and delayed ACK enabled.
TCP-ADaLR SACK and TCP-ADaLR NewReno exhibit comparable link utilization higher than
TCP SACK and TCP NewReno.

 86

10-9 10-8 10-7 10-6 10-50

10

20

30

40

50

60

70

80

BER

U
til

iz
at

io
n

(%
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.37. Satellite link utilization for scenarios with only error losses and delayed ACK disabled.
TCP-ADaLR variants exhibit up to 46% higher satellite link utilization than TCP SACK and TCP
NewReno.

7.5.3.2 Performance of HTTP application

The page response times for cases with and without delayed ACK are shown in

Figures 7.38 and 7.39, respectively. Both TCP-ADaLR variants exhibit similar page

response times and outperform both TCP SACK and TCP NewReno. When all

outstanding segments have been acknowledged, the adaptive cwnd increase mechanism

enables rapid transmission of segments after loss recovery. The adaptive rwnd increase

and loss recovery mechanisms enable TCP-ADaLR to recover more quickly from losses

than TCP SACK or TCP NewReno. For cases with and without delayed ACK, the

performance gains by TCP-ADaLR SACK and TCP-ADaLR NewReno are highest when

the BER is lower than 10-6. For cases with and without delayed ACK, TCP-ADaLR

variants exhibit 2%–12% and 7%–23% shorter page response time than TCP SACK and

 87

TCP NewReno, respectively. When the BER is lower than 10-6, the TCP variants without

delayed ACK exhibit better performance than with delayed ACK. At BER values higher

than 10-7, the four TCP variants show similar page response times for cases with and

without delayed ACK.

The four TCP variants suffer performance degradation at BERs higher than 10-7

because the increasing BER causes additional segment losses. Several lost TCP segments

may compose a complete web page and embedded objects. Hence, a webpage download

request may be completed in multiples of the usual response time, as indicated by the

higher values of page response times.

10-9 10-8 10-7 10-6 10-50

5

10

15

20

25

BER

P
ag

e
re

sp
on

se
 ti

m
e

(s
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.38. HTTP page response time for scenarios with only error losses and delayed ACK
enabled. TCP-ADaLR SACK and TCP-ADaLR NewReno show 2%–12% shorter page response
times than TCP SACK and TCP NewReno.

 88

10-9 10-8 10-7 10-6 10-50

5

10

15

20

25

BER

P
ag

e
re

sp
on

se
 ti

m
e

(s
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.39. HTTP page response time for scenarios with only error losses and delayed ACK
disabled. TCP-ADaLR SACK and TCP-ADaLR NewReno exhibit 7%–23% shorter page response
times than TCP SACK and TCP NewReno.

7.5.4 Satellite channel with both congestion and error losses

We evaluate the performance of TCP-ADaLR in the presence of both congestion

losses at the bottleneck gateway and losses due to satellite link errors. The bottleneck

gateway had finite buffer sizes for FTP and HTTP applications. We test various BER

values shown in Table 7.1. For each BER value, we use different random seed numbers

and compute the average values using 95% confidence intervals.

7.5.4.1 Performance of FTP application

In the presence of error and congestion losses, the two TCP-ADaLR variants

show comparable FTP download response time with TCP SACK and TCP NewReno

when the BER value is 10-7 and lower, as shown in Figures 7.40 and 7.41. The TCP

goodput, TCP throughput, satellite link throughput, and utilization are shown in Figures

 89

7.42–7.49. At lower BERs, TCP-ADaLR variants exhibit comparable performance to

TCP SACK and TCP NewReno because losses are mainly due to congestion. At higher

BERs, TCP-ADaLR variants exhibit better performance than TCP SACK and TCP

NewReno because satellite link errors are the more prevalent cause of losses. For the case

with delayed ACK at BER value of 10-6 and higher, TCP-ADaLR SACK exhibits up to

29% shorter download response time than TCP SACK. For the case without delayed

ACK, TCP-ADaLR NewReno exhibits shorter download response time than TCP

NewReno. At higher BERs, the adaptive cwnd increase mechanism enables quick

recovery from segment losses when all outstanding segments have been acknowledged.

The adaptive rwnd increase and loss recovery mechanisms enable TCP-ADaLR SACK to

recover more quickly from losses than either TCP SACK and TCP NewReno.

10-9 10-8 10-7 10-6 10-50

2000

4000

6000

8000

10000

12000

14000

BER

D
ow

nl
oa

d
re

sp
on

se
 ti

m
e

(s
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.40. FTP download response time for scenarios with both congestion and error losses and
delayed ACK enabled. When BER is higher than 10-7, TCP-ADaLR variants exhibit shorter
download response times than TCP SACK and TCP NewReno.

 90

10-9 10-8 10-7 10-6 10-50

2000

4000

6000

8000

10000

12000

BER

D
ow

nl
oa

d
re

sp
on

se
 ti

m
e

(s
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.41. FTP download response time for scenarios with both congestion and error losses and
delayed ACK disabled. TCP-ADaLR SACK exhibits 23%–28% shorter download response times
than TCP SACK.

10-9 10-8 10-7 10-6 10-50

0.5

1

1.5

2

2.5

3

3.5

x 105

BER

G
oo

dp
ut

 (b
/s

)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.42. Goodput for scenarios with both congestion and error losses and delayed ACK enabled.
TCP-ADaLR SACK exhibits 36%–43% higher goodput than TCP SACK and TCP NewReno at BER
higher than 10-7.

 91

10-9 10-8 10-7 10-6 10-50

0.5

1

1.5

2

2.5

3

3.5

x 105

BER

G
oo

dp
ut

 (b
/s

)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.43. Goodput for scenarios with both congestion and error losses and delayed ACK disabled.
TCP-ADaLR SACK shows 32% higher goodput than TCP SACK for BER values of 10-6 and 10-5,
respectively.

10-9 10-8 10-7 10-6 10-50

1

2

3

4

5x 104

BER

Th
ro

ug
hp

ut
 (b

yt
es

/s
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.44. TCP throughput for scenarios with both congestion and error losses and delayed ACK
enabled. For BER values higher than 10-7, TCP-ADaLR SACK and TCP-ADaLR NewReno exhibit
42%–43% and 10%–39% higher throughput than TCP SACK and TCP NewReno, respectively.

 92

10-9 10-8 10-7 10-6 10-50

1

2

3

4

5x 104

BER

Th
ro

ug
hp

ut
 (b

yt
es

/s
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.45. TCP throughput for scenarios with both congestion and error losses and delayed ACK
disabled. At BER values higher than 10-7, TCP-ADaLR SACK exhibits 32%–39% higher throughput
than TCP SACK.

10-9 10-8 10-7 10-6 10-50

0.5

1

1.5

2

2.5

3

3.5

4x 105

BER

Th
ro

ug
hp

ut
 (b

/s
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.46. Satellite link throughput for scenarios with both congestion and error losses and delayed
ACK disabled is comparable for all TCP variants at low BER values. TCP-ADaLR SACK shows
57%–86% higher satellite link throughput than TCP SACK with delayed ACK.

 93

10-9 10-8 10-7 10-6 10-50

0.5

1

1.5

2

2.5

3

3.5

4

x 105

BER

Th
ro

ug
hp

ut
 (b

/s
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.47. Satellite link throughput for scenarios with both congestion and error losses and delayed
ACK disabled. TCP-ADaLR SACK shows 51%–79% higher satellite link throughput than TCP
SACK.

10-9 10-8 10-7 10-6 10-56

8

10

12

14

16

18

20

BER

U
til

iz
at

io
n

(%
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.48. Satellite link utilization for scenarios with both congestion and error losses and delayed
ACK enabled. The satellite link utilization for the four TCP variants is severely reduced because of
the heavy losses caused by congestion and satellite link errors.

 94

10-9 10-8 10-7 10-6 10-56

8

10

12

14

16

18

20

BER

U
til

iz
at

io
n

(%
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.49. Satellite link utilization for scenarios with both congestion and error losses and delayed
ACK disabled. At BER greater than 10-7, TCP-ADaLR SACK exhibits the best performance.

7.5.4.2 Performance of HTTP application

We evaluate performance of the HTTP application in terms of the page response

time. The increased HTTP page response time indicates the effect of both congestion and

error losses, as shown in Figure 7.50 and 7.51.

TCP-ADaLR SACK shows the best performance in both cases with and without

delayed ACK. Hence, the SACK option improves the TCP-ADaLR algorithm

performance for the HTTP application. TCP-ADaLR SACK shows up to 32% and 26%

shorter page response times than TCP SACK for cases with and without delayed ACK,

respectively. The short and bursty nature of HTTP transfers ensures small number of

outstanding unacknowledged bytes. Hence, when losses occur, the adaptive cwnd

increase mechanism enables the HTTP web pages to open more quickly with TCP-

 95

ADaLR than with TCP SACK and TCP NewReno. The adaptive rwnd and loss recovery

mechanisms compensate for delayed ACK by allowing at least two segments to be

transferred back-to-back during the fast recovery phase. Hence, the HTTP transfers are

completed faster with the TCP-ADaLR. TCP-ADaLR NewReno outperforms TCP

NewReno when the delayed ACK option is disabled. However, TCP-ADaLR NewReno

performs worse than TCP NewReno when the delayed ACK option is enabled. This

performance reduction may be due to loss of several original and retransmitted segments

due to the initial high transmission rate of the TCP-ADaLR algorithm. In the absence of

losses at the start of transmission, TCP-ADaLR opens the cwnd faster than TCP SACK

and TCP NewReno, thus resulting in an initial high transmission rate. This is the only

scenario we observed where TCP-ADaLR NewReno performs worse than TCP

NewReno.

10-9 10-8 10-7 10-6 10-56

8

10

12

14

16

18

20

22

24

26

BER

P
ag

e
re

sp
on

se
 ti

m
e

(s
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.50. HTTP page response time for scenarios with both congestion and error losses and
delayed ACK enabled. For most BER values, TCP-ADaLR SACK exhibits the best performance.

 96

10-9 10-8 10-7 10-6 10-512

14

16

18

20

22

24

BER

P
ag

e
re

sp
on

se
 ti

m
e

(s
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7.51. HTTP page response time for scenarios with both congestion and error losses and
delayed ACK disabled. TCP-ADaLR SACK and TCP-ADaLR NewReno exhibit comparable
performance and outperform both TCP SACK and TCP NewReno.

7.5.5 Fairness and friendliness

An important feature of TCP is its ability to ensure a fair division among multiple

competing connections. A TCP variant is fair if coexisting connections achieve equal

bandwidth allocation. Friendliness refers to coexisting TCP connections with distinct

TCP variants having a fair share of the available bandwidth. We employ the Jain’s metric

of fairness [23] defined as

∑
∑

=

=

×
= n

j j

n

j j

tn

t
Fairness

1
2

2
1

)(

)(
, (7.4)

where n is the number of competing connections and tj is the average throughput of the

jth connection. The Jain’s metric of fairness is used to evaluate both fairness and

 97

friendliness. The fairness/friendliness metric has a value between 1/n and 1, where 1/n

corresponds to unfair and 1 to fair (equal) bandwidth allocation for all n connections.

Max-min fairness [104] for multiple competing connections using the identical

protocols is defined as

max

min

j

j

t
t

Fairness = , (7.5)

where
minjt and

maxjt are the minimum and maximum throughputs, respectively. The max-

min fairness metric is also used to evaluate fairness.

 Common TCP variants such as TCP SACK and TCP NewReno are known to be

fair when the competing connections have similar RTTs [65]. However, if the competing

connections have different RTTs, the connections with shorter RTTs consume a larger

fraction of the available bottleneck bandwidth and starve connections with longer RTTs.

 TCP variants in deployed networks are expected to coexist and share bottleneck

links among connections of distinct RTTs. We evaluate the fairness and friendliness of

TCP-ADaLR NewReno in the absence of losses for an FTP application. (TCP-ADaLR

NewReno and TCP-ADaLR SACK exhibit identical performance in the absence of

losses. Similarly TCP NewReno and TCP SACK exhibit identical performance in the

absence of losses.) All TCP connections are configured with the delayed ACK option

enabled. We evaluate fairness and friendliness using the network model shown in Figure

7.52. All links, including the GEO satellite link, are bi-directional with 10 Mb/s data rate.

Shown are one-way propagation delays. A single client connects to a single server and

corresponding server-client pairs have the same subscript notation. We test six TCP

 98

connections with various RTTs using two fairness scenarios where TCP connections

employ TCP-ADaLR NewReno and TCP NewReno, respectively. We evaluate fairness

using (7.4) and (7.5). In the friendliness scenario, we test three TCP-ADaLR NewReno

and three TCP NewReno coexisting connections. We evaluate the friendliness of TCP-

ADaLR NewReno using (7.4).

server

server_1

server_2

server_3

server_4

server_5

Ethernet
switch

gateway gateway

Ethernet
switch

client

client_1

client_2

client_3

client_4

client_5

12
5 m

s

125 ms

200 ms

150 ms

50 ms

25 ms

12.5 ms

5 m
s

5 ms

5 ms

5 ms

5 m
s

5
m

s

5 m
s

5 ms
5 ms

bottleneck link

Figure 7.52. Network configuration for evaluating TCP fairness and TCP friendliness of TCP-
ADaLR NewReno.

7.5.5.1 TCP-ADaLR fairness

The average throughput of the six TCP-ADaLR NewReno and six TCP NewReno

connections are shown in Tables 7.11 and 7.12, respectively. The longest (500 ms) RTT

connection using TCP-ADaLR NewReno has average throughput 47% higher than the

corresponding TCP NewReno 500 ms RTT connection. Conversely, the average

throughput of the shortest RTT connection using TCP-ADaLR NewReno drops by 12%.

The fairness values are shown in Table 7.13. With both metrics of fairness, TCP-ADaLR

 99

NewReno reduces the penalty caused by long RTT connections and exhibits better

fairness than TCP NewReno.

Table 7.11. Average throughput achieved by six competing TCP-ADaLR NewReno connections, each
with distinct RTTs.

RTT (ms) Average throughput (bytes/s)

25 283,404.6

50 281,750.6

100 268,984.6

300 195,099.8

400 175,343.8

500 160,897.4

Table 7.12. Average throughput achieved by six competing TCP NewReno connections, each with
distinct RTTs.

RTT (ms) Average throughput (bytes/s)

25 322,418.0

50 300,629.1

100 263,129.2

300 158,601.5

400 129,560.8

500 109,239.5

Table 7.13. TCP fairness values of TCP-ADaLR NewReno and TCP NewReno using the Jain’s
metric of fairness and max-min fairness metric.

TCP Variant
∑

∑
=

=

×
= n

j j

n

j j

tn

t
Fairness

1
2

2
1

)(

)(
max

min

j

j

t
t

Fairness =

TCP-ADaLR NewReno 0.9510 0.5677

TCP NewReno 0.8650 0.3388

 100

 In the friendliness scenario, the average throughput of each competing connection

is shown in Table 7.14. The friendliness value (close to 1), shown in Table 7.15, confirms

that TCP-ADaLR NewReno is TCP-friendly. Hence, the three long RTT connections

have a fair share of the bottleneck link’s available bandwidth.

Table 7.14. Average throughput achieved by six competing TCP connections using distinct TCP
variants.

RTT (ms) TCP variant Average throughput (bytes/s)

25 TCP NewReno 253,202.9

50 TCP NewReno 231,009.8

100 TCP NewReno 206,831.7

300 TCP-ADaLR NewReno 211,369.5

400 TCP-ADaLR NewReno 188,513.4

500 TCP-ADaLR NewReno 177,309.9

Table 7.15. TCP friendliness of TCP-ADaLR NewReno and TCP NewReno competing connections.

TCP variant mix
∑

∑
=

=

×
= n

j j

n

j j

tn

t
Fairness

1
2

2
1

)(

)(
max

min

j

j

t
t

Fairness =

TCP-ADaLR NewReno
and TCP NewReno

0.9859 0.7000

 101

CHAPTER 8: CONCLUSIONS AND FUTURE WORK

 The importance of broadband GEO satellite networks in providing core high-

speed backbone and broadband access for the next generation Internet cannot be over

emphasized. TCP as the dominant transport protocol will continue to provide byte-stream

transport layer services for evolving Internet applications.

In this thesis, we proposed the TCP-ADaLR algorithm (TCP with adaptive delay

and loss response) to reduce the adverse impact of the long propagation delays and high

BERs on TCP performance in heterogeneous networks with GEO satellite links. In each

simulation scenario, we considered the case with the TCP delayed ACK option enabled

and the case with the TCP delayed ACK option disabled. The TCP-ADaLR algorithm

was implemented as an extension to TCP SACK. We also evaluated the algorithm

performance when implemented as an extension to TCP NewReno. We named the two

TCP-ADaLR variants TCP-ADaLR SACK and TCP-ADaLR NewReno. Simulation

results indicated that TCP-ADaLR improves the end-to-end performance of TCP for

HTTP and FTP applications in the absence of losses with delayed ACK enabled and with

delayed ACK disabled. The TCP-ADaLR algorithm reduced the response times for

downloading HTTP WebPages and FTP files. In the presence of only congestion losses,

both TCP-ADaLR SACK and TCP-ADaLR NewReno show comparable performance to

TCP SACK and TCP NewReno. In the presence of only error losses, TCP-ADaLR

SACK outperforms TCP SACK and TCP NewReno and improves the average TCP

throughput, TCP goodput, and satellite link utilization. TCP-ADaLR SACK also shows

 102

better performance than TCP SACK and TCP NewReno in the presence of both

congestion and error losses. Hence, TCP-ADaLR SACK exhibits the best performance in

all cases followed by TCP-ADaLR NewReno. In each simulation scenario, TCP-ADaLR

with delayed ACK disabled outperforms TCP-ADaLR with delayed ACK enabled.

Hence, TCP-ADaLR does not degrade performance of TCP connections with delayed

ACK disabled and yields better performance.

 Increasing the propagation delay of the terrestrial segment reduces the

performance of the four TCP variants. However, TCP-ADaLR exhibits better throughput

and goodput performance than TCP SACK and TCP NewReno. High data rate is an

important feature of broadband networks. With increased link data rate, TCP-ADaLR

shows higher satellite link throughput and better link utilization than TCP SACK and

TCP NewReno.

 The deployment of TCP-ADaLR in heterogeneous networks requires

modifications only at the TCP sender. These modifications place additional albeit

minimal processing and memory overheads at the TCP sender. The TCP-ADaLR

algorithm does not require modifications or introduction of packet prioritization

mechanisms at intermediate network nodes. No modifications are required at the TCP

receiver. TCP-ADaLR is fair to competing connections with different RTTs. It is also

friendly to TCP NewReno connections. Hence, it may be deployed in networks with

other TCP variants. Finally, TCP-ADaLR maintains the end-to-end semantics of TCP.

 An important area of future research is performance comparison of TCP-ADaLR

with TCP variants designed for satellite networks such as TCP Westwood, TCP Hybla,

TCP-Peach, TCP NewVegas, and TCP-Star, which are currently not available in OPNET.

 103

Furthermore, a mechanism to distinguish between congestion losses and error losses

could be introduced to the TCP-ADaLR algorithm to further improve its performance in

satellite networks. The performance of TCP-ADaLR algorithm may also be evaluated for

NGEO networks, which exhibit characteristics such as frequent handovers and varying

propagation delays.

 104

APPENDIX A: FEATURES OF OPNET SIMULATIONS

In this Appendix, we present details of the simulation and simulated times for the

four simulation scenarios.

In the OPNET discrete event simulator, simulation variables are defined in the

simulation set info menu, as shown in Figure A.1. The duration is the specified real-time

simulated (simulated time). The seed is the random seed number employed for the

simulation run. Multiple seed numbers may be defined with the multiple seed values

attribute. Four seed values were employed in the scenarios with various BER values. The

values per statistic is the collection interval between collecting consecutive result data.

Hence, for a duration = 18,000 s and values per statistic = 3,600, the interval between

collecting consecutive result data is 5 s. The update interval is the number of events that

are required before a simulation update is generated by the OPNET discrete event

simulator. A higher value of update interval implies a longer interval update period. The

update interval attribute can be set to a high value to reduce the number of updates

received during simulation and, and, thus reduce the simulation time. The OPNET default

is 500,000 events. However, we set this variable to 1, 000, 000 events for all simulations.

The simulation time is the actual real-time that elapses for the simulation to be

completed. A simulation may completed before the duration elapses as in the case when

simulated application (FTP or HTTP) download is completed.

 105

Figure A.1. The OPNET simulation set info menu for specifying simulator parameters. The common
attributes include duration, seed, values per statistic, update interval, and simulation kernel.

A.1. FTP file download application

For the FTP file download application, the simulated time for all simulation

scenarios was 5 hours (18,000 s). A single 50 MB file was downloaded in each scenario

unless otherwise stated. However, each simulation scenario exhibited different simulation

times for the four TCP variants, as shown in Tables A.1–A.5. The simulation time is

shorter than the simulated time (18,000 s) in all scenarios because the simulated

application (FTP file download) was completed before the simulated time (duration)

elapsed. The simulation time increased with file size, as shown in Table A.2, because a

larger file requires a higher number of events to take place before the file download is

completed.

Table A.1. Simulation times for the four TCP variants with delayed ACK enabled in the ideal lossless
satellite channel scenario for the simulated 50 MB FTP file download application.

TCP variant Simulated time (s) Simulation time (s)

TCP-ADaLR SACK 18,000 179

TCP-ADaLR NewReno 18,000 179

TCP SACK 18,000 184

TCP NewReno 18,000 184

 106

Table A.2. Simulation times (s) for TCP-ADaLR NewReno and TCP NewReno with delayed ACK
enabled for various file sizes in the ideal lossless satellite channel scenarios for evaluating the effect of
increasing file size.

File size (MB) TCP variant Simulated
time (s) 100 200 300 400 500

TCP-ADaLR NewReno 18,000 306 741 1,124 1,447

TCP NewReno 18,000 309 732 1,123 1,455

Table A.3. Simulation times for the four TCP variants with delayed ACK enabled in the scenarios
with only congestion losses for the simulated 50 MB FTP file download application.

TCP variant Simulated time (s) Simulation time (s)

TCP-ADaLR SACK 18,000 192

TCP-ADaLR NewReno 18,000 257

TCP SACK 18,000 195

TCP NewReno 18,000 187

Table A.4. Simulation times (s) for the four TCP variants with delayed ACK enabled in the scenarios
with only error losses for the simulated 50 MB FTP file download application.

Bite error rate TCP variant Simulated
time (s) 10-9 10-8 10-7 10-6 10-5

TCP-ADaLR SACK 18,000 189 190 190 197 243

TCP-ADaLR NewReno 18,000 183 183 190 201 243

TCP SACK 18,000 185 184 186 201 221

TCP NewReno 18,000 185 188 194 195 219

Table A.5. Simulation times for the four TCP variants with delayed ACK enabled in the scenarios
with both congestion and error losses for the simulated 50 MB FTP file download application.

Bite error rate TCP variant Simulated
time (s) 10-9 10-8 10-7 10-6 10-5

TCP-ADaLR SACK 18,000 189 183 189 203 244

TCP-ADaLR NewReno 18,000 189 183 187 201 244

TCP SACK 18,000 198 183 187 195 214

TCP NewReno 18,000 179 183 186 194 271

 107

A.2. HTTP web page download application

For the HTTP web page download application (Table 7.3), the simulated time for

all simulation scenarios was 600 s. Each simulation scenario exhibited comparable

simulation times for the four TCP variants, as shown in Tables A.6–A.9.

Table A.6. Simulation times for the four TCP variants with delayed ACK enabled in the ideal lossless
satellite channel scenarios for the simulated HTTP web page download application.

TCP variant Simulated time (s) Simulation time (s)

TCP-ADaLR SACK 600 13

TCP-ADaLR NewReno 600 13

TCP SACK 600 13

TCP NewReno 600 13

Table A.7. Simulation times for the four TCP variants with delayed ACK enabled in the scenarios
with only congestion losses for the simulated HTTP web page download application.

TCP variant Simulated time (s) Simulation time (s)

TCP-ADaLR SACK 600 14

TCP-ADaLR NewReno 600 15

TCP SACK 600 13

TCP NewReno 600 13

Table A.8. Simulation times (s) for the four TCP variants with delayed ACK enabled in the scenarios
with only error losses for the simulated HTTP web page download application.

Bite error rate TCP variant Simulated
time (s) 10-9 10-8 10-7 10-6 10-5

TCP- ADaLR SACK 600 14 14 13 14 13

TCP- ADaLR NewReno 600 12 14 13 13 13

TCP SACK 600 12 13 13 13 13

TCP NewReno 600 12 14 13 13 13

 108

Table A.9. Simulation times (s) for the four TCP variants with delayed ACK enabled in the scenarios
with both congestion and error losses for the simulated HTTP web page download application.

Bite error rate TCP variant Simulated
time (s) 10-9 10-8 10-7 10-6 10-5

TCP-ADaLR SACK 600 12 14 14 14 14

TCP-ADaLR NewReno 600 11 14 14 14 15

TCP SACK 600 12 14 13 13 14

TCP NewReno 600 12 14 13 14 13

 109

REFERENCE LIST

[1] V. Cerf and R. Kahn, “A protocol for packet network intercommunication,” IEEE
Trans. Commun., vol. 22, no. 5, pp. 637–648, May 1974.

[2] J. Postel, Ed., “Transmission Control Protocol,” RFC 793, Sept. 1981.

[3] W. Stevens, TCP Illustrated Volume 1: The Protocols. Reading, MA: Addison-
Wesley, 1994.

[4] J. Postel, Ed., “Internet Protocol,” RFC 791, Sept. 1981.

[5] M. Fomenkov, K. Keys, D. Moore, and K. Claffy, “Longitudinal study of Internet
traffic in 1998-2003,” in Proc. ACM Winter Int. Symp. Inf. and Commun.
Technol., Cancun, Mexico, Jan. 2004, pp. 1–6.

[6] C. Fraleigh et al., “Packet-level traffic measurements from the Sprint IP
backbone,” IEEE Netw., vol. 17, no. 6, pp. 6–16, Nov./Dec. 2003.

[7] C. Williamson, “Internet traffic measurement,” IEEE Internet Comput., vol. 5,
 no. 6, pp. 70–74, Nov./Dec. 2001.

[8] A. Jamalipour, M. Marchese, H. Cruickshank, J. Neal, and S. Verma, “Broadband
IP Networks via satellites-part II,” IEEE J. Select. Areas Commun., vol. 22, no. 3,
pp. 433–437, Apr. 2004.

[9] M. Allman, V. Paxson, and W. Stevens, “TCP congestion control,” RFC 2581,
Apr. 1999.

[10] V. Jacobson, “Congestion avoidance and control,” in Proc. ACM SIGCOMM
Symp. on Commun. Archit. and Protocols, Stanford, CA, Aug. 1988, pp. 314–329.

[11] T-L. Pham, G. Schneider, S. Goose, and A. Pizano, “Composite device computing
environment: a framework for situated interaction using small screen devices,”
Pers. and Ubiquitous Comput., vol. 5, no. 1, pp. 25–28, Feb. 2001.

[12] A. Jamalipour, M. Marchese, H. Cruickshank, J. Neal, and S. Verma, “Broadband
IP Networks via satellites-part I,” IEEE J. Select. Areas Commun., vol. 22, no. 2,
pp. 213–217, Feb. 2004.

[13] R. A. Peters and M. Farrell, “Comparison of LEO and GEO satellite systems to
provide broadband services,” in Proc. 21st AIAA Int. Commun. Satellite Syst.
Conf. and Exhibit, Yokohama, Japan, Apr. 2003, AIAA–2003–2246.

[14] R. Braden, “Requirements for Internet hosts–communication layers,” RFC 1122,
Oct. 1989.

[15] V. Paxson, “Automated packet trace analysis of TCP implementations,” in Proc.
ACM SIGCOMM Conf. on Appl., Technol., Archit., and Protocols for Comput.
Commun., Cannes, France, Sept. 1997, pp. 167–179.

 110

[16] T. Lang and D. Floreani, “The impact of delayed acknowledgements on TCP
performance over satellite links,” in Proc. ACM First Workshop on Wireless
Mobile Internet, Rome, Italy, July 2001, pp. 56–61.

[17] S. Floyd, T. Henderson, and A. Gurtov, “The NewReno modification to TCP’s
fast recovery algorithm,” RFC 3782, Apr. 2004.

[19] OPNET Modeler software [Online]. Available: http://www.opnet.com/products/
modeler/home.html.

[18] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanov, “TCP selective
acknowledgement options,” RFC 2018, Oct. 1996.

[20] A. Gurtov and S. Floyd, “Modeling wireless links for transport protocols,” ACM
SIGCOMM Comput. Commun. Rev., vol. 34, no. 2, pp. 85–96, Apr. 2004.

[21] D. E. Comer, Internetworking with TCP/IP: Principles, Protocols, and
Architecture. vol. 1. Upper Saddle River, NJ: Prentice Hall, 2000, pp. 209–218.

[22] A. Jamalipour, The Wireless Mobile Internet: Architectures, Protocols and
Services. West Sussex, England: John Wiley & Sons, 2003, pp. 326–329.

[23] D. Chiu and R. Jain, “Analysis of the increase/decrease algorithms for congestion
avoidance in computer networks,” J. of Comput. Netw. ISDN Syst., vol. 17, no. 1,
pp. 1–14, June 1989.

[24] M. Allman, S. Floyd, and C. Patridge, “Increasing TCP’s initial window,” RFC
2414, Sept. 1998.

[25] P. Karn and C. Partridge, “Improving round-trip time estimates in reliable
protocols,” in ACM Trans. Comput. Syst., vol. 9, no. 4, pp.364–373, Nov. 1991.

[26] V. Paxson and M. Allman, “Computing TCP’s retransmission timer,” RFC 2988,
Nov. 2000.

[27] M. Emmelmann, “Effects of advertised receive buffer size and timer granularity
on TCP performance over erroneous links in a LEO satellite network,” in Proc.
IEEE GLOBECOM, Taipei, Taiwan, Nov. 2002, pp. 2955–2958.

[28] S. Floyd, “TCP and explicit congestion notification,” ACM SIGCOMM Comput.
Commun. Rev., vol. 24, no. 5, pp. 10–23, Oct. 1994.

[29] M. Allman and V. Paxson, “On estimating end-to-end network path properties,”
in Proc. ACM SIGCOMM Conf. on Appl., Technol., Archit., and Protocols for
Comput. Commun., Cambridge, MA, Sept. 1999, pp. 263–274.

[30] D. D. Clark, “Window and acknowledgement strategy in TCP,” RFC 813, July
1982.

[31] C. Joo and S. Bahk, “Increasing TCP capacity in wireless multihop networks,” in
Web and Commun. Technol. and Internet-Related Social Issues–HSI, Lecture
Notes in Comput. Science. Springer, Berlin: vol. 3597, pp. 37–44, 2005.

[32] H. Balakrishnan, V. Padmanabhan, and Randy Katz, “The effects of asymmetry
on TCP performance,” in Proc. ACM Int. Conf. on Mobile Comput. and Netw.
(MobiCom) 2005, Budapest, Hungary, Sept. 1997, pp. 77–89.

 111

[33] M. Allman, Ed., “Ongoing TCP Research Related to Satellites,” RFC 2760, Feb.
2000.

[34] J. Chen, Y. Z. Lee, M. Gerla, and M. Y. Sanadidi, “TCP with delayed ack for
wireless networks,” in Proc. IEEE/CreateNet BROADNETS 2006, San Jose, CA,
USA, Oct. 2006.

[35] B. R. Elbert, Introduction to Satellite Communication, 2nd ed. Norwood, MA:
Artech House, 1999.

[36] B. R. Elbert, The Satellite Communications Applications Handbook, 2nd ed.
Norwood, MA: Artech House, 2004.

[37] L. Wood, “Satellite constellation networks,” chapter 2 in Internetworking and
Computing over Satellite Networks. Y. Zhang, Ed. Norwell, MA: Kluwer
Academic Publishers, 2003, pp. 13–34.

[38] M. Allman, D. Glover, and L. Sanchez, “Enhancing TCP over satellite links using
standard mechanisms,” RFC 2488, Jan. 1999.

[39] Y. Shang and M. Hadjitheodosiou, “TCP splitting protocol for broadband and
aeronautical satellite network,” in Proc. 23rd IEEE Digital Avionics Syst. Conf.,
Salt Lake City, UT, Oct.2004, vol. 2, pp. 11.C.3-1–11.C.3-9.

[40] T. R. Henderson and R. H. Katz, “Transport protocol for Internet-compatible
satellite networks,” IEEE J. Select. Areas Commun., vol. 17, no. 2, pp. 326–344,
Feb. 1999.

[41] A. Jamalipour, “Broad-band satellite networks – the global IT bridge,” in Proc.
IEEE, vol. 89, no. 1, pp. 88–104, Jan. 2001.

[42] C. Patridge and T. J. Shepard, “TCP/IP performance over satellite links,” IEEE
Netw., vol. 11, no. 5, pp. 44–49, Sept./Oct. 1997.

[43] S. Subramanian, S. Sivakumar, W. J. Phillips, and W. Robertson, “Investigating
TCP performance issues in satellite networks,” in Proc. Third IEEE Commun.
Netw. and Services Research Conf., Halifax, NS, Canada, May 2005, pp. 327–
332.

[44] J. Sing and B. Soh, “TCP performance over geostationary satellite links: problems
and solutions,” in Proc. 12th IEEE Int. Conf. on Netw., Guadeloupe, French
Caribbean, Nov. 2004, vol. 1, pp. 14–18.

[45] I. F. Akyildiz, G. Morabito, and S. Palazzo, “Research issues for transport
protocols in satellite IP networks,” IEEE Pers. Commun. Mag., vol. 8, no. 3, pp.
44–48, June 2001.

[46] V. Jacobson, R. Braden, and D. Borman, “TCP extensions for high performance,”
RFC 1323, May 1992.

[47] N. Ghani and S. Dixit, “TCP/IP enhancements for satellite networks,” IEEE
Commun. Mag., vol. 37, no. 7, pp. 64–72, July 1999.

[48] J. Mogul and S. Deering, “Path MTU discovery,” RFC 1191, Nov. 1990.

 112

[49] C. Barakat, N. Chaher, W. Dabbous, and E. Altman, “Improving TCP/IP over
geostationary satellite links,” in Proc. IEEE GLOBECOM, Rio de Janeiro, Brazil,
Dec. 1999, vol. 1b, pp. 781–785.

[50] V. Padmanabhan and R. Katz, “TCP fast start: a technique for speeding up web
transfers,” in Proc. IEEE GLOBECOM Internet Mini-Conf., Sydney, Australia,
Nov. 1998.

[51] M. Gerla, W. Weng, and R. L. Cigno, “BA-TCP: a bandwidth aware TCP for
satellite networks,” in Proc. Eighth IEEE Int. Conf. on Comput. Commun. and
Netw., Las Vegas, NV, Oct. 1999, pp. 204–207.

[52] J. Peng, P. Andreadis, C. Belisle, and M. Barbeau, “Improving TCP performance
over long delay satellite links,” OPNETWORK 2001, Washington, DC, Aug.
2001.

[53] I. F. Akyildiz, G. Morabito, and S. Palazzo, “TCP-Peach: a new congestion
control scheme for satellite IP networks,” IEEE/ACM Trans. Netw., vol. 9, no. 3,
pp. 307–321, June 2001.

[54] I. F. Akyildiz, X. Zhang, and J. Fang, “TCP-Peach+: enhancement of TCP-Peach
for satellite IP networks,” IEEE Commun. Lett., vol. 6, no. 7, pp. 303–305, July
2001.

[55] C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi, and R. Wang, “TCP
Westwood: end-to-end congestion control for wired/wireless networks,” Wireless
Netw., vol. 8, no. 5, pp. 467–479, Sept. 2002.

[56] R. Wang, G. Pau, K. Yamada, M. Y. Sanadidi, and M. Gerla, “TCP startup
performance in large bandwidth delay networks,” in Proc. IEEE INFOCOM
2004, Hong Kong, China, Mar. 2004, vol. 2, pp. 796–805.

[57] G. Yang, R. Wang, M. Gerla, and M. Y. Sanadidi, “TCP bulk repeat,” Comput.
Commun., vol. 28, no. 5, pp. 507–518, Mar. 2005.

[58] S. Floyd, “HighSpeed TCP for large congestion windows,” RFC 3649, Dec. 2003.

[59] T. Kelly, “Scalable TCP: improving performance in high speed wide area
networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 33, no. 2, pp. 83–91,
Apr. 2003.

[60] G. Giambene and D. Miorandi, “A simulation study of scalable TCP and
highSpeed TCP in geostationary satellite networks,” Telecommun. Syst., vol. 30,
no. 4, pp. 297–320, Dec. 2005.

[61] K-F. Leung and K. L. Yeung, “TCP-Swift: an end-to-end host enhancement
scheme for TCP over satellite IP networks,” in Proc. Ninth IEEE Int. Symp. on
Comput. and Commun., Alexandria, Egypt, July 2004, vol. 1, pp. 551–555.

[62] H. Xu and S. Wu, “A priority-based TCP congestion control strategy in satellite
IP networks,” in Proc. Int. Conf. on Commun., Circuits, and Syst., Hong Kong,
China, May 2005, pp. 402–406.

 113

[63] H. Obata, K. Ishida, S. Takeuchi, and S. Hanasaki, “TCP-STAR: TCP congestion
control method for satellite Internet” IEICE Trans. Commun., vol. E89-B, no. 6,
pp. 1766–1773, June 2006.

[64] K. Xu, Y. Tian, and N. Ansari, “TCP-Jersey for wireless IP communications,”
IEEE J. Select. Areas Commun., vol. 22, no. 4, pp. 747–756, May 2004.

[65] C. Caini and R. Firrincieli, “TCP Hybla: a TCP enhancement for heterogeneous
networks,” Int. J. Satellite Commun. Netw., vol. 22, no. 5, pp. 547–566, Sept.
2004.

[66] J. Sing and B. Soh, “TCP New Vegas: improving the performance of TCP Vegas
over high latency links,” in Proc. Fourth IEEE Int. Symp. on Netw. Comput. and
Appl., Cambridge, MA, July 2005, pp. 73–82.

[67] L. S. Brakmo and L. L. Peterson, “TCP Vegas: end to end congestion avoidance
on a global Internet,” IEEE J. Select. Areas Commun., vol. 13, no. 8, pp. 1465–
1480, Oct. 1995.

[68] T. R. Henderson and R. H. Katz, “TCP performance over satellite channels,”
University of California, Berkeley, CA, Tech. Rep. CSD-99-1083, Dec. 1999.

[69] Y. Zhang, D. Delucia, B. Ryu, and S. Dao, “Satellite communications in the
global Internet: issues, pitfalls, and potential,” in Proc. Seventh ISOC Int. Netw.
Conf., Kuala Lumpur, Malaysia, June 1997.

[70] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby, “Performance
enhancing proxies intended to mitigate link-related degradations,” RFC 3135,
June 2001.

[71] D. Velenis, D. Kalogeras, and B. Maglaris, “SaTPEP: a TCP performance
enhancing proxy for satellite link,” in Networking: Second Int. IFIP-TC6 Netw.
Conf., Lecture Notes in Comput. Science. Springer, Berlin, vol. 2345, pp. 1233–
1238, 2002.

[72] C. Caini, R. Firrincieli, and D. Lacamera, “PEPsal: a performance enhancing
proxy designed for TCP satellite connections,” in Proc. 63rd IEEE Veh. Technol.
Conf., Melbourne, Australia, Feb. 2006, vol. 6, pp. 2607–2611.

[73] G. Ciccarese, M. De Blas, L. Patrono, P. Marra, and G. Tomasicchio, “An IPSec-
aware TCP PEP for integrated mobile satellite networks,” in Proc. 15th IEEE Int.
Symp. on Pers., Indoor, and Mobile Radio Commun. (PIMRC) 2004, Barcelona,
Spain, Sept. 2004, vol. 4, pp. 2362–2366.

[74] U. Lee and S. F. Midkiff, “Quality of service for TCP over satellite links in
congested networks,” in Proc. IEEE Wireless Commun. and Netw. Conf. (WCNC)
2005, New Orleans, LA, USA, Mar. 2005, vol. 3, pp. 1515–1520.

[75] J. Ishac and M. Allman, “On the performance of TCP spoofing in satellite
networks,” in Proc. IEEE MILCOM, Monterey, CA, Oct. 2001, vol. 1, pp. 700–
704.

 114

[76] E. A. Faulkner, A. P. Worthen, J. B. Schodorf, and J. D. Choi, “Interactions
between TCP and link layer protocols on mobile satellite links,” in Proc. IEEE
MILCOM, Monterey, CA, Nov. 2004, vol. 1, pp. 535–541.

[77] E. Amir, H. Balakrishnan, S. Seshan, and R. H. Katz, “Efficient TCP over
networks with wireless links,” in Proc. IEEE Fifth Workshop on Hot Topics in
Operating Syst. (HotOS-V) 1995, Orcas Island, WA, May 1995, pp. 35–40.

[78] H. Balakrishnan, S. Seshan, and R. H. Katz, “Improving reliable transport and
handoff performance in cellular wireless networks,” Wireless Netw., vol. 1, no. 4,
pp. 469–481, Dec. 1995.

[79] J. Sing and B. Soh, “On the use of snoop with geostationary satellite links,” in
Proc. Third IEEE Int. Conf. on Inf. Technol. and Appl. (ICITA) 2005, Sydney,
Australia, July 2005, vol. 2, pp. 689–694.

[80] J. S. Stadler, “A link layer protocol for efficient transmission of TCP/IP via
satellite,” in Proc. IEEE MILCOM, Monterey, CA, Nov. 1997, vol. 2, pp. 723–
727.

[81] W. G. Zeng and Lj. Trajković, “TCP packet control for wireless networks,” in
Proc. IEEE Int. Conf. on Wireless and Mobile Comput., Netw., and Commun.
(WiMob) 2005, Montreal, QC, Canada, Aug. 2005, vol. 2, pp. 196–203.

[82] R. C. Durst, G. J. Miller, and E. J. Travis, “TCP extensions for space
communications,” Wireless Netw., vol. 3, no. 5, pp. 389–403, Oct. 1997.

[83] R. Wang, V Bandekodige, and M. Banerjee, “An experimental evaluation of link
delay impact on throughput performance of TCP and SCPS-TP in space
communications,” in Proc. 60th IEEE Veh. Technol. Conf., Los Angeles, CA,
Sept. 2004, vol. 6, pp. 4061–4065.

[84] R. H. Wang and S. Horan, “Performance evaluation of TCP and its extensions
over lossy links in a small satellite environment,” in Proc. IEEE Int. Conf. on
Commun., Seoul, Korea, May 2005, vol. 3, pp. 1478–1482.

[85] T. R. Henderson and R. H. Katz, “Transport protocols for Internet-compatible
satellite networks,” IEEE J. Select. Areas Commun., vol. 17, no. 2, pp. 326–344,
Feb. 1999.

[86] B-ISDN Signalling ATM Adaptation Layer–Service Specific Connection Oriented
Protocol, ITU-T Recommendation Q.2110, 1994.

[87] M. E. Elaasar, M Barbeau, E. Kranakis, and Z. Li, “Satellite transport protocol
handling bit corruption, handoff and limited connectivity,” IEEE Trans. Aerosp.
and Electron. Syst., vol. 41, no. 2, pp. 489–502, Apr. 2005.

[88] I. F. Akyildiz, O. B. Akan, and G. Morabito, “A rate control scheme for adaptive
real-time applications in IP networks with lossy links and long RTTs,”
IEEE/ACM Trans. Netw., vol. 13, no. 3, pp. 554–567, June. 2005.

[89] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high bandwidth-
delay product networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 32, no.
4, pp. 89–102, Oct. 2002.

 115

[90] K. Zhou, K. L. Yeung, and V. O. K. Li, “P-XCP: a transport layer protocol for
satellite IP networks,” in Proc. IEEE GLOBECOM, Dallas, TX, Dec. 2004, vol. 5,
pp. 2707–2711.

[91] A. Kapoor, A. Falk, T. Faber, and Y. Pryadkin, “Achieving faster access to
satellite link bandwidth,” in Proc. IEEE INFOCOM 2005, Miami, FL, USA, Mar.
2005, vol. 4, pp. 2870–2875.

[92] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I.
Rytina, M. Kalla, L. Zhang, and V. Paxson, “Stream Control Transmission
Protocol,” RFC 2960, Oct. 2000.

[93] S. Fu and M. Atiquzzan, “SCTP: state of the art in research, products, and
technical challenges,” IEEE Commun. Mag., vol. 42, no. 4, pp. 64–76, Apr. 2004.

[94] M. Omueti and Lj. Trajković, “TCP with adaptive delay and loss response for
heterogeneous networks,” to be presented at Third Int. Wireless Internet Conf.
(WICON) 2007, Austin, TX, Oct. 2007.

[95] M. Allman, “TCP congestion control with appropriate byte counting (ABC),”
RFC 3465, Feb. 2003.

[96] E. Blanton and M. Allman, “On the impact of bursting on TCP performance,” in
Passive and Active Measurement (PAM) 2005, Lecture Notes in Comput. Science.
Springer, Berlin: vol. 3431, pp. 1–12, Mar. 2005.

[97] M. Omueti and Lj. Trajković, “OPNET model of TCP with adaptive delay and
loss response for broadband GEO satellite networks,” to be presented at
OPNETWORK 2007, Washington, DC, Aug. 2007.

[98] OPNET product documentation, V.11.0.A., OPNET Technologies Inc., Bethesda,
MD, 2004.

[99] J. Zhu, S. Roy, and J. H. Kim, “Performance modelling of TCP enhancements in
terrestrial-satellite hybrid networks,” IEEE/ACM Trans. Netw., vol. 14, no. 4, pp.
753–766, Aug. 2006.

[100] 3GPP/TSG-C.R1002, “1xEV-DV evaluation methodology (v14),” June 2003.

[101] A. Medina, M. Allman, and S. Floyd, “Measuring the evolution of transport
protocols in the Internet,” ACM SIGCOMM Comput. Commun. Rev., vol. 35, no.
2, pp. 37–52, Apr. 2005.

[102] F. Vacirca, F. Ricciato, and R. Pilz, “Large-scale RTT measurements from an
operational UMTS/GPRS network,” in Proc. First Int. Wireless Internet Conf.
(WICON) 2005, Budapest, Hungary, July 2005, pp. 190–197.

[103] Y. Chotikapong, H. Cruickshank, and Z. Sun, “Evaluation of TCP and Internet
traffic via low earth orbit satellites,” IEEE Pers. Commun. Mag., vol. 8, no. 3, pp.
28–34, June 2001.

[104] D. P. Bertsekas and R. G. Gallager, Data Networks, 2nd ed., Englewood Cliffs,
NJ: Prentice Hall, 1992.

