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ABSTRACT 

Transmission Control Protocol (TCP) performance degrades in broadband 

geostationary satellite networks due to long propagation delays and high bit error rates. In 

this thesis, we propose TCP with algorithm modifications for adaptive delay and loss 

response (TCP-ADaLR) to improve TCP performance. TCP-ADaLR incorporates 

delayed acknowledgement mechanism recommended for Internet hosts. We evaluate and 

compare the performance of TCP-ADaLR, TCP SACK, and TCP NewReno, with and 

without delayed acknowledgements. In the ideal channel case, TCP-ADaLR exhibits the 

lowest user-perceived latency for FTP and HTTP applications. In the presence of 

congestion, TCP-ADaLR shows comparable performance to TCP SACK and TCP 

NewReno. In the presence of error losses, TCP-ADaLR exhibits improvements up to 

61% and 76% in throughput and utilization, respectively. In the presence of both 

congestion and error losses, TCP-ADaLR exhibits goodput and throughput improvements 

up to 43%. TCP-ADaLR exhibits better fairness and friendliness than TCP NewReno and 

maintains TCP end-to-end semantics. 

Keywords: Transmission control protocol (TCP); delayed acknowledgement; high bit 

error rate; GEO satellite networks; performance evaluation 
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CHAPTER 1: INTRODUCTION 

 Transmission control protocol (TCP) [1], [2] is a transport layer protocol that 

provides connection-oriented, in-order, window flow control, and reliable byte-stream 

delivery services for Internet application-level protocols such as remote login, telnet, 

hyper-text transfer protocol (HTTP), and file transfer protocol (FTP) [3]. Internet 

protocol (IP) [4] is a network layer protocol that provides addressing, routing, and 

internetworking functions for its packets known as datagrams. The TCP/IP suite specifies 

rules of communication between Internet hosts. TCP carries up to 90% of Internet traffic 

[5]–[7]. The Internet has witnessed an increasing demand for new high-speed multimedia 

and data applications over wireless networks such as satellite networks, wireless local 

area networks (WLANs), and cellular networks [8]. TCP was originally designed for 

wired networks characterized by negligible random bit error rates (BERs) and, hence, 

packet losses indicate congestion. TCP was enhanced by the congestion control 

algorithms [9], [10], in order to address packet losses caused by congestion, thus enabling 

TCP to perform well in wired networks. 

 Broadband geostationary earth orbit (GEO) satellite networks transmit and 

receive data using frequencies relayed by GEO satellites. They provide global Internet 

access to areas with limited or no terrestrial cable infrastructure available. Through high-

bandwidth GEO satellite links, broadband GEO satellite networks offer data rates of the 

order of 1 Mb/s or higher. 
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1.1 Motivation 

The next generation Internet needs to be pervasive, seamless, and ubiquitous [11]. 

High bandwidth GEO satellite links will play an important role by providing broadband 

Internet access and high-speed backbone network connectivity between remote networks 

through easily scalable architecture and multicast capabilities [12]. When providing the 

same continuous coverage, GEO satellite links are more attractive than non-GEO 

(NGEO) links because they have lower development risks compared to large number of 

satellite constellations required by NGEO satellites [13]. 

TCP increases its transmission rate when a sender receives acknowledgements 

(ACKs) of transmitted segments. Internet hosts are recommended to enable the delayed 

ACK option [14] in order to maximally utilize available network bandwidth by reducing 

the number of ACKs sent to a sender by a receiver. The delayed ACK option allows a 

TCP receiver to send an ACK for every two consecutive full-size packet received from a 

TCP sender. A full-size packet is equivalent to the sender maximum segment size 

(SMSS) packet. Many current TCP implementations in Internet hosts enable the delayed 

ACK option [15]. 

GEO satellite links are characterized by high bit error rate (BER), long 

propagation delay, and bandwidth asymmetry (different uplink and downlink 

bandwidths). TCP performs poorly in heterogeneous networks with GEO satellite links 

because of their characteristics. TCP misinterprets packet losses as an indication of 

congestion and reduces the transmission rate, thus leading to TCP throughput 

degradation. In the absence of error losses, long propagation delays result in large round 

trip times (RTTs) that coupled with limited TCP window size lead to poor utilization of 
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the available bandwidth of satellite links. Hence, TCP performance in broadband 

networks employing GEO satellite links needs improvements that will not violate the 

end-to-end semantics of TCP. These improvements will support TCP connections with 

delayed ACK and not violate the end-to-end semantics of TCP or negatively affect TCP 

connections without delayed ACK. It has been shown [16] that with the delayed ACK 

option enabled, TCP NewReno [17] and TCP selective ACK (SACK) [18] suffer higher 

throughput degradation when compared to older variants such as TCP Reno [9] and TCP 

Tahoe [2]. 

1.2 Contribution 

In this thesis, we propose TCP with adaptive delay and loss response (TCP-

ADaLR) algorithm for improving the end-to-end performance of TCP in broadband GEO 

satellite networks. TCP-ADaLR introduces division of congestion window cwnd 

increment phase into sub-phases in order to enable transmission of additional segments 

for better satellite link utilization in the absence of losses. It also adjusts transmission rate 

more adaptively in the presence of losses. It is designed for the case when the TCP 

delayed ACK option is enabled and does not affect TCP performance when the delayed 

ACK option is disabled. 

We implement TCP-ADaLR algorithm as an extension to TCP SACK [18] in the 

OPNET network simulator [19]. The proposed algorithm is also applicable to TCP 

NewReno [17]. The TCP-ADaLR algorithm requires only sender-side modifications and, 

thus, maintains the end-to-end semantics of TCP. It is also is designed for the case when 

the TCP delayed ACK option is enabled. The proposed algorithm: 
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1. Improves performance in the absence of losses (ideal lossless GEO satellite 
link) 

2. Has comparable performance to TCP SACK or TCP NewReno in the presence 
losses due to congestion 

3. Improves performance in the presence of losses due to high BER only and 
both high BER and congestion 

4. Has comparable or better TCP fairness than common TCP implementations 
(TCP SACK and TCP NewReno) 

5. Exhibits TCP friendliness for connections using TCP SACK and/or TCP 
NewReno 

We evaluate the performance of the TCP-ADaLR algorithm in the absence of 

congestion and error losses and in the presence of only congestion losses, only error 

losses, and both error losses and congestion losses for various bit error rates (BERs). We 

simulate TCP-ADaLR for FTP file download applications in order to evaluate its 

performance for bulk transfers. We also evaluate the performance of TCP-ADaLR for 

short-lived HTTP web transfers. More than 50% of Internet servers employ TCP SACK 

while the majority of others use TCP NewReno [20]. Hence, we present the performance 

comparison of TCP-ADaLR, TCP SACK, and TCP NewReno for both FTP file 

download and HTTP web transfer applications. We also evaluate the effect of the 

proposed algorithm modifications on TCP connections with the delayed ACK option 

disabled. We investigate the scalability of TCP-ADaLR with increased terrestrial 

propagation delays and increased GEO satellite link capacities. We also study the effect 

of varying file sizes (FTP file download application) on the TCP-ADaLR algorithm. 

Fairness of TCP-ADaLR in the presence of competing connections with short and long 

propagation delays is also considered. We also examine the friendliness of TCP-ADaLR 

with TCP NewReno in the absence of losses. 
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1.3 Thesis outline 

This thesis is organized as follows. An overview of TCP, its congestion control 

algorithms, and options are given in Chapter 2. In Chapter 3, we present an overview of 

satellite networks, types of satellites, and GEO satellite link characteristics. A review of 

the impact of GEO satellite link characteristics and previous work on the performance of 

TCP in GEO satellite networks is presented in Chapter 4. In Chapter 5, we describe the 

TCP-ADaLR algorithm and its mechanisms for improving the end-to-end performance of 

TCP in broadband GEO satellite networks. The design and implementation details of the 

TCP-ADaLR algorithm in the OPNET network simulator is presented in Chapter 6. 

Simulation scenarios and results of the performance evaluation and comparison of TCP-

ADaLR, TCP SACK, and TCP NewReno are presented in Chapter 7. We present 

conclusions and possible areas of future research work in Chapter 8. 
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CHAPTER 2: TRANSMISSION CONTROL PROTOCOL 

TCP is an end-to-end connection-oriented Open Systems Interconnection (OSI) 

transport layer protocol [3], [21]. It provides reliable byte-stream delivery services 

independent of the underlying network architecture. TCP provides point-to-point full-

duplex data transfer [22]. Hence, there is always a sender and a receiver for a TCP 

connection and data flow may be unidirectional or bidirectional. TCP employs 

mechanisms for connection management, flow control, and congestion control. TCP 

variants include TCP Tahoe [2], TCP Reno [9], and TCP NewReno [17]. In this Chapter, 

we present an overview of TCP and describe the congestion control algorithms, round-

trip time (RTT) estimation, and the delayed acknowledgement (ACK) option. 

2.1 TCP connection establishment and termination 

Before TCP packet data units (segments) can be transmitted, a TCP connection is 

established between a sender and a receiver by a three-way handshake. The receiver 

(client) sends a SYN segment that specifies the TCP destination port number of the 

sender (server). TCP port numbers are located in the TCP segment header and they 

identify client and server applications at both ends of a connection. The sequence 

number, acknowledgement (ACK) number, receiver window size, header length, and 

TCP flags are also located in the TCP segment header.  The TCP segment header fields, 

shown in Figure 2.1, hold information agreed upon by both sender and receiver for 

synchronisation and connection establishment. The length of a TCP segment header 

depends on the TCP options included. The sender acknowledges the client’s request with 
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another SYN segment that must be acknowledged by the receiver to complete the 

connection establishment. The three-way handshake process is shown in Figure 2.2. 

0 31

bits

104 16 24

source port destination  port

sequence number

acknowledgment number

hlen reserved flag bits receiver window size

checksum urgent pointer

options padding

data

 
Figure 2.1. TCP header segment. The TCP header length (hlen) is 20 bytes if there are no TCP 
options selected. 

SYN, inital seqno = x

ACK of SYN, seqno = y

ACK = x+1

Send SYN segment
Receive SYN segment
Send ACK of SYN segment

Receive ACK of SYN segment
Send  ACK segment

Client Server

Receive ACK segment

ACK = y+1

t1
t2

t3

t4

t5

t6

seqno: sequence number
t: time  

Figure 2.2. TCP three-way handshake. The dashed lines represent exchanged TCP segments. The 
initial sequence numbers are carried in the SYN segments. Time increases from the top to the bottom 
of the figure. 

After data transfer is completed, a TCP connection is terminated. A full-duplex 

TCP connection requires four segments for termination. Either the sender or the receiver 

may initiate the termination process by sending a FIN segment. The receiving end 
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responds with an ACK of the FIN segment. The TCP full duplex connection is closed 

when both sender and receiver have sent and acknowledged the receipt of a FIN segment, 

as shown in Figure 2.3. 

FIN, seqno = x

ACK of FIN, ACK = x+1

Send FIN segment
Receive FIN segment

Receive ACK of FIN segment

Client Server

Receive ACK segment

ACK = y+1

t1
t2

t3

t4

t6

seqno: sequence number
t: time

Send ACK of FIN segment

Send FIN segmentt5

t7

t8

FIN, seqno = y,

ACK = x+1

Receive FIN + ACK segment

Send ACK of FIN segment

 

Figure 2.3. TCP connection termination initiated by the client. The dashed lines represent TCP 
segments exchanged. The initial sequence numbers are carried in the SYN segments. Time increases 
from the top to the bottom of the figure. 

2.2 TCP flow control 

After a connection is established, TCP utilizes flow control to manage the amount 

and rate of data transmitted between a sender and receiver. TCP flow control is based on 

the sliding window mechanism. At the start of transmission, a TCP sender has an initial 

window (IW) that specifies the number of segments (window) that a TCP sender may 

transmit without receiving an ACK from a receiver [9]. When a TCP sender receives 

ACKs of transmitted segments, it slides (increases) the window size based on the number 

of segments or bytes acknowledged and the window size advertised by a receiver. 
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2.3 TCP congestion control algorithms 

TCP employs four congestion control algorithms [10]: slow start, congestion 

avoidance, fast retransmit, and fast recovery, as shown in Figure 2.4. The congestion 

control algorithms are based on additive increase multiplicative decrease (AIMD) [23] 

algorithms. The congestion control algorithms employ two TCP state variables, the 

congestion window size cwnd and the receiver’s advertised window rwnd, to control the 

amount of data transmitted through the network. The cwnd is the maximum number of 

bytes the sender may send before receiving an ACK, while the rwnd is the maximum 

number of bytes the receiver may receive. The minimum of the two determines the 

amount of data transmitted through the network. The slow start threshold ssthresh 

determines the exit from the slow start phase and the onset of the congestion avoidance 

phase. The initial high value of ssthresh is adjusted when congestion occurs in a network 

[9]. 

2.3.1 Slow start 

After the three-way handshake is completed, a TCP sender probes the network 

gradually during the slow start phase to determine its capacity. The initial value of the 

cwnd is equal to the initial window (IW) set to [24] 

          IW = min (4 × SMSS, max (2 × SMSS, 4380 bytes)).                            (2.1) 

The sender increments the cwnd exponentially during the slow start phase for each ACK 

received that acknowledges new data: 

cwnd += SMSS.                                                                  (2.2) 

A TCP sender remains in the slow start phase until the cwnd exceeds ssthresh. 
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cwnd      2 x ssthresh

cwnd = cwnd + SMSS

cwnd  
ssthresh1

cwnd  
ssthresh1

ssthresh1

ssthresh2

ssthresh = max (flightsize, 2 x SMSS)

cwnd = ssthresh + 3 x SMSS

SS CA CA SSRTO

Time

RTO: retransmission time-out
SMSS: sender maximum segment size
flightsize: total outstanding data in the network

SS: slow start
CA: congestion avoidance
FR: fast retransmit and fast recovery 

FR

 
Figure 2.4. TCP congestion control algorithms. The congestion control algorithms and the 
mechanism used to indicate congestion determined the size of the congestion window. 

2.3.2 Congestion avoidance 

During the congestion avoidance phase, a TCP sender probes the network more 

slowly than in the slow start phase. The sender increments the cwnd linearly by one 

SMSS per RTT: 

cwnd += SMSS × SMSS / cwnd.                                                            (2.3) 

Congestion avoidance ends when congestion is detected (segment loss occurs) by the 

receipt of three duplicate ACKs or the expiration of the sender’s retransmission time-out 

(RTO) timer. 
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2.3.3 Fast retransmit 

A TCP sender enters the fast retransmit phase when a segment loss is detected by 

three duplicate ACKs. TCP assigns a unique sequence number seqno to each transmitted 

segment. When a segment loss occurs, TCP issues a duplicate ACK for any out-of-order 

segment received. Fast retransmit uses the arrival of three duplicate ACKs as an 

indication of segment loss. TCP retransmits the lost segments without waiting for the 

RTO timer to expire and sets the ssthresh value to half the current cwnd. TCP Tahoe 

implements slow start, congestion avoidance, and fast retransmit algorithms. 

2.3.4 Fast recovery 

In the fast recovery phase, a TCP sender adjusts the cwnd for all segments 

buffered by a TCP receiver: 

cwnd = ssthresh + 3 × SMSS.                                                      (2.4) 

For each additional duplicate ACK received, the cwnd is incremented by one SMSS to 

reflect a segment that has been transmitted. The new values of cwnd and rwnd may allow 

transmission of a new segment. When the next ACK of a newly transmitted segment 

arrives, the sender deflates the cwnd to ssthresh and resumes the congestion avoidance 

phase. TCP Reno implements slow start, congestion avoidance, fast retransmit, and the 

standard fast recovery algorithm. TCP NewReno implements a modification to the TCP 

Reno fast recovery algorithm to address the issue of partial ACKs. When loss is detected, 

ACKs that acknowledge only certain (but not all) outstanding segments are known as 

partial ACKs. In the TCP Reno implementation, TCP exits the fast recovery and resumes 

congestion avoidance when a partial ACK is received by a TCP sender. The TCP 

NewReno modification allows a TCP sender to remain in fast recovery even when a 
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partial ACK is received by retransmitting one lost segment per RTT until all lost 

segments from a single transmission window have been retransmitted. A TCP sender 

deflates the cwnd by the amount of data acknowledged and adds one SMSS to the cwnd 

for each partial ACK received during the fast recovery phase. TCP resumes congestion 

avoidance only after all lost segments have been retransmitted. 

2.4 Retransmission time-out 

When the network cannot trigger a threshold of three duplicate ACKs (cwnd < 4), 

expiration of the RTO timer is used as an indication of segment loss. Hence, TCP 

employs the RTO timer in order to avoid unnecessary delay before retransmitting a 

segment in the absence of an ACK. A TCP sender transmits a segment, sets the RTO 

timer, and expects an ACK of the transmitted segment. If the ACK is not received and the 

RTO timer expires, TCP retransmits the unacknowledged segment and resets the RTO 

timer. The value of ssthresh is set to 

ssthresh = max (flightsize / 2, 2 × SMSS),                                        (2.5)  

where flightsize is the amount of unacknowledged data in the network. A TCP sender 

then reduces the cwnd to the SMSS and reverts to the slow start phase. If the calculated 

value of RTO is too large, lost segments are not retransmitted quickly. If the calculated 

RTO is too small, the RTO timer expires prematurely resulting in unnecessary 

retransmissions. In both cases, network bandwidth is wasted. 

A TCP sender maintains two variables used to compute the RTO value: smoothed 

RTT (srtt) (the moving average of RTT) and RTT variation (rttvar). The value of RTT is 
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estimated from RTT samples (sampleRTT) in data segments that are not retransmitted 

using the Karn’s algorithm [25]. The values of srtt and rttvar are computed as 

rttvar = (1 – β) × rttvar + β × | sampleRTT – srtt |                               (2.6) 

srtt = (1 – α) × srtt + α × sampleRTT.                                        (2.7) 

Recommended parameter values α = 0.125 and β = 0.25 enable a TCP sender to respond 

rapidly to changes in the RTT and to estimate the RTO accurately [10], [14]. The value of 

srtt (2.6) is its value before the update (2.7). Hence, these values are calculated in the 

given order (2.6) and (2.7) [26]. RTO is then computed as 

RTO = srtt + max (G, 4 × rttvar),                                           (2.8) 

where G is clock (timer) granularity in seconds [26]. The RTO mechanism employs the 

exponential backoff algorithm where retransmission interval is doubled after each 

retransmission. The maximum RTO may not exceed 64 s. 

 The estimation of the RTT and RTO depends on the clock granularity [27]. Many 

current TCP implementations have coarse-grained TCP clocks that limit the timer 

granularity and, hence, affect the RTO estimation [27], [28]. However, the coarse timer 

granularity (500 ms) is employed as a low-pass filter to filter fluctuations in traffic [23], 

[29]. Hence, the resulting RTO estimation from the timer granularity prevents 

unnecessary retransmissions due to large spikes in RTT [28], [29]. Changing to finer 

timer granularity (100 ms or less) would reduce the impact of timer granularity on RTO 

estimation. It may, however, result in false retransmissions due to early RTO timer 

expiration when the RTT is large[15], [27]–[29]. 
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2.5 Delayed acknowledgement 

A TCP receiver may increase efficiency by not sending ACK for every data 

segment received [14]. This TCP option is known as delayed acknowledgement (ACK). 

By enabling the delayed ACK option, a TCP receiver increases network efficiency and 

maximizes bandwidth by acknowledging multiple segments and window updates with a 

single ACK. If a TCP receiver does not enable the delayed ACK option, separate ACKs 

are required to acknowledge data segments and to send window updates. If there is two-

way data transfer, a delayed ACK may also be sent together with the data segment (ACK 

piggybacks with data) [3]. Hence, the delayed ACK option reduces protocol processing 

overhead [30]. It has been recommended that Internet hosts “should” implement the 

delayed ACK option [9], [14]. 

In WLANs, delayed ACK has been shown to reduce the number of collisions of 

data packets with ACK packets and, thus, increasing TCP throughput [31]. In asymmetric 

satellite IP networks, delayed ACK may reduce the number of ACKs sent on a slow 

speed terrestrial return link and improve TCP performance [32]. In the absence of losses 

caused by BER, TCP exhibits identical throughput for cases with and without delayed 

ACK [16]. However, various TCP variants suffer throughput performance degradation 

when losses occur because of satellite link BERs. Delayed ACK is also a source of 

wasted capacity during the slow start phase [33]. 

Many Internet TCP receivers implement the delayed ACK option [15], [16]. The 

default interval period before sending an ACK is 200 ms [14]. However, a TCP receiver 

may wait up to 500 ms within the arrival of the last unacknowledged segment before the 

delayed ACK timer expires. Most TCP implementations use the default delay interval of 
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200 ms [14]. Although TCP uses ACKs to ensure window flow control and reliability, 

generating more ACKs than necessary is not a desirable characteristic in wireless 

networks [34]. Hence, a TCP receiver may enable the delayed ACK option to generate 

the optimal number of ACKs required for reliable delivery of data and improved TCP 

performance [34]. An optimal number of ACKs reduces the effects of excessively 

delaying an ACK. 
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CHAPTER 3: SATELLITE NETWORKS 

Satellite networks transmit and receive data using radio frequencies relayed by 

satellites. The frequency bands of operation are shown in Table 3.1. Satellites play an 

important role in providing global Internet services to areas where there is limited or no 

terrestrial communication infrastructure. They provide interconnectivity between 

geographically distant and heterogeneous networks. Satellites also provide Internet and 

communication services to aircrafts, ships, and individual users. Satellite services may be 

fixed, mobile, or broadcast, as shown in Table 3.1. Broadband satellite networks offer 

high data rates of 1 Mb/s and above [22] for multimedia and Internet applications through 

high bandwidth satellite links. In this Chapter, we briefly describe various types of 

satellites and satellite link characteristics that affect TCP performance in satellite 

networks. 

Table 3.1. Satellite frequency bands of operation. Shown are the different services specified for each 
band. The Q and V frequency bands are considered experimental and have not been employed for 
satellite services [35]. 

Band Frequency range (GHz) Service 

L 1.5 – 1.65 Mobile satellite service (MSS) 

S 2.4 – 2.8 MSS 

C 3.4 – 7.0 Fixed satellite service (FSS) 

X 7.9 – 9.0 MSS, military, space research 

Ku 10.7 – 15.0 FSS, broadcast satellite service (BSS) 

Ka 18.0 – 31.0 FSS 

Q 40.0 – 50.0 FSS 

V 60.0 – 80.0 FSS 
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3.1 Types of satellites 

Communication satellites may be classified by their orbit altitude to geostationary 

earth orbit (GEO), medium earth orbit (MEO), and low earth orbit (LEO), as shown in 

Figure 3.1. Orbit altitude classification determines power requirement, satellite lifetime, 

coverage, and antenna usage. 

LEO

GEO

MEO

 

Figure 3.1. Types of satellite according to orbit altitude. Shown is only one orbit for each altitude. 
Depending on the type of satellite, additional orbits and satellites are required to provide continuous 
coverage. 

3.1.1 Geostationary earth orbit satellite 

GEO satellites are circular in shape and lie in the plane of the equator. They orbit 

at an altitude of ~36,000 km above the earth surface with a period of ~24 hours (earth 

rotation period) [35] (The earth rotates once a day about the polar axis for 23 hours 56 

minutes 4 s and also completes 1/365.24 of the annual orbit of the sun). Hence, GEO 

satellites appear to be stationary to observers from the earth. A single GEO satellite has a 

large footprint (satellite signal coverage area of the earth surface) and provides coverage 

of an entire earth hemisphere except the polar regions [36]. Hence, receiving antennas 

positioned within the large footprint of the satellite require no tracking capabilities. 
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3.1.2 Non-geostationary earth orbit satellite 

Non-GEO (NGEO) satellites orbit at altitudes lower than 36,000 km. They have 

shorter rotation periods, and, hence, their relative position to the earth changes. A single 

NGEO satellite has a smaller footprint than the GEO satellite. Hence, a satellite network 

employing NGEO satellites requires a constellation (a number of similar satellites with 

similar function, designed to be in complementary orbits and under shared control [37]) 

to provide simultaneous continuous coverage over the earth surface. A MEO satellite 

orbits at altitude range 5,000 – 12,000 km [35]. It has ~100 ms one-way single hop 

propagation delay and 5 – 10 hours orbit rotation period. A LEO orbits at altitude range 

500 – 900 km [35]. It has ~50 ms one-way single hop propagation delay and 1.5 – 2 

hours orbit rotation period. 

3.2 Characteristics of GEO satellite links 

GEO satellite links have characteristics that differ from terrestrial links [38]. 

These characteristics contribute to the degradation of TCP performance in satellite links. 

3.2.1 Long propagation delay 

GEO satellite links have one-way long propagation delays (~250 ms) due to high 

satellite altitudes. The RTT of a satellite link is at least 500 ms depending on the satellite 

inclination. Long propagation delays of GEO satellite links prevent TCP connections 

from rapidly achieving high transmission rates. 
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3.2.2 Large bandwidth delay product 

The bandwidth delay product (BDP) defines the amount of data a protocol should 

have unacknowledged (in–flight) in order to fully utilize the available link capacity. For a 

satellite link, the BDP is the product of the satellite link capacity C and the RTT: 

BDP = RTT × C,                                                          (3.1) 

where C and RTT are measured in b/s and s, respectively. GEO satellite links have a 

large BDP due to long propagation delays and large bandwidth. 

3.2.3 High bit error rates 

Links employed for fixed satellite communication exhibit high bit error rates 

(BERs) ~10-6 compared to terrestrial wired links. The high BERs are caused by 

propagation losses, noise, and interference from other services sharing the same 

frequency band. The BERs may become as large as 10-3 or 10-2 because of extreme 

weather conditions [39]. Propagation loss components and their loss contribution in 

various satellite frequency bands for GEO satellite links are shown in Table 3.2 [35]. 

Losses occur in GEO satellite links due to high BERs. 

Table 3.2. Propagation mode losses in dB that affect GEO satellite links. Free space path loss is the 
dominating contributor. 

Propagation 
mode loss 

L band 
(1.6/1.5) GHz 

C band 
(6/4) GHz 

Ku band 
(14/12) GHz 

Ka band 
(30/20) GHz 

free space path 187 196 205 210 
atmospheric 0.1 0.2 0.3 0.5 

rain attenuation 0.1 0.5 2 6 
refraction 6 3 2 1 
diffraction 6 – 12    
ionospheric 3 – 6 1 – 3 < 1  
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3.2.4 Bandwidth asymmetry 

Transmission over a satellite link employs different frequencies for the uplink and 

downlink paths. The available bandwidth depends on the volume of incoming and 

outgoing traffic in the uplink and downlink, respectively. Hence, the satellite uplink and 

downlink capacities may differ [40]. Bandwidth asymmetry also occurs in hybrid 

terrestrial satellite networks that employ both a slow terrestrial link and a satellite link for 

outgoing traffic and incoming traffic, respectively. 
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CHAPTER 4: TCP PERFORMANCE IN SATELLITE 
NETWORKS 

The connection management, flow control, and congestion control features of 

TCP make it robust in terrestrial networks that use packet loss as an indication of 

congestion. TCP carries over 90% of Internet traffic [12] that represents a dominant 

portion of the entire telecommunication network traffic [7], [8]. Broadband GEO satellite 

networks allow users to access Internet based applications and services regardless of the 

users’ degree of mobility [41]. These networks support high data rates and multimedia 

services. Hence, TCP must be able to provide optimal performance in GEO satellite 

networks. In this Chapter, we discuss the issues of TCP in GEO satellite networks and 

present a survey of solutions that have been proposed to improve TCP performance. 

4.1 Impact of GEO satellite link characteristics on TCP performance 

4.1.1 Effect of long propagation delay on slow start and RTO mechanism 

In a GEO satellite network, the RTT of a TCP segment exceeds 500 ms when 

combined with the terrestrial network delays. During the slow start phase, TCP needs to 

receive an ACK of a sent segment in order to increase the cwnd. TCP is unable to reach 

the maximum achievable throughput during the slow start phase due to the long 

propagation delays of GEO satellite links. The time required to reach a transmission rate 

B b/s is given as 

Tslow start = RTT × (1 + log2 (B × RTT / l)),                                 (4.1) 
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where l is the average TCP segment length in bits [42]. The times spent in the slow start 

phase for various transmission rates and satellite types for an average TCP segment 

length of 1 kB (a common size) are shown in Table 4.1. 

Table 4.1. Duration of the slow start phase for various transmission rates for a GEO satellite link 
with RTT 500 ms. The higher the transmission rates, the longer the time spent in the slow start 
phase. 

Transmission rate (Mb/s) Tslow start (s) 

1 3.47 

1.5  3.76 

10  5.13 

45 6.21 

155 7.1 

For the complete download 200 kB file using a 5 Mb/s GEO satellite link, a 

throughput <500 kb/s is achieved. If a 5 Mb/s LEO satellite link is employed for the 

complete download of the same file size, 1 Mb/s throughput is obtained [43]. Hence, the 

available satellite capacity is under-utilized. 

4.1.2 Effect of large BDP on TCP window size 

Large BDP values imply that large amount of unacknowledged data in flight 

should be available for TCP to maximally utilize the available network capacity. The 

BDP of a GEO satellite link depends on the maximum allowable unacknowledged data 

(rwnd) [44]. As shown in the TCP header segment in Figure 2.1, the maximum rwnd 

value is limited to 16 bits (64 KB). For an rwnd value of 64 KB, a GEO satellite link with 

standard E1 rate (2,048 kb/s) and RTT value of 500 ms may achieve only ~1,048 kb/s 

and, hence, making the available capacity underutilized. 
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4.1.3 Effect of high BERs on TCP congestion control algorithms 

A major cause of the poor performance of TCP in heterogeneous networks 

characterized by high BERs is the assumption of segment loss as an indication of 

congestion. The congestion control algorithms respond to segment loss by deflating the 

cwnd, resulting in degraded throughput if losses are not due to congestion. 

4.1.4 Effect of bandwidth asymmetry on TCP congestion control algorithms 

A TCP sender increases its transmission rate based on the timely reception of 

ACKs of transmitted segments. A bandwidth-asymmetric satellite network is configured 

with high downlink (receiver to satellite) bandwidth and low uplink (satellite to receiver) 

bandwidth. Data segments are transmitted to the receiver through the downlink path and 

ACKs are forwarded to the sender through the uplink path. The low bandwidth uplink 

path may become easily congested leading to delay of ACKs, which causes a TCP sender 

to transmit data segments in bursts. Hence, bandwidth asymmetry in satellite networks 

results in traffic burstiness [45]. TCP throughput is also degraded when the delay or loss 

of ACKs in a low bandwidth uplink path results in the expiration of the RTO timer 

(misinterpreted as an indication of congestion). Hence, the data transmission rate is 

reduced accordingly. 

4.2 Survey of proposed solutions for improving TCP performance 

Solutions proposed for improving TCP performance in GEO satellite networks are 

classified as end-to-end, split-connection, link-layer, or non-TCP satellite-optimized 

protocols. 
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4.2.1 End-to-end TCP solutions 

End-to-end solutions usually require modifications only at the TCP sender and/or 

receiver. They may also require that intermediate routers support priority mechanisms. 

End-to-end solutions maintain the end-to-end semantics of TCP. Hence, they preserve 

security of transmitted information when network layer security is employed. They also 

prevent termination of TCP connections when an intermediate node suffers an 

irrecoverable loss. End-to-end solutions include extensions to standard TCP mechanism 

or TCP variants and non-TCP satellite optimized transport protocols. 

4.2.1.1 Extensions to standard TCP mechanisms 

The TCP time stamps option [38], [46] allows a TCP sender to place a timestamp 

in each transmitted TCP segment using the TCP echo option. The receiver then returns 

the timestamp in the appropriate field of the corresponding ACKs using the TCP echo 

reply option. TCP window scale option [38], [46] defines a scale factor that expands to 

32 bits the default 16-bit window size field in the TCP header. However, for an error-

prone satellite link, enabling this option increases the probability of segment loss per 

window. The TCP window scale option may also lead to TCP seqno wraparound problem 

[47]. This problem arises when the same 32-bit seqno is reused within a single TCP 

connection. Protect Against Wraparound Sequence (PAWS) numbers mechanism [46] 

employs the TCP echo and echo reply time stamps options to enable a sender 

differentiate between segments having the same seqno by examining their time stamps. 

The path maximum transmission unit (MTU) discovery [38], [48] technique is used to 

probe network for the maximum segment size that could be supported along the end-to-

end path without fragmentation. Path MTU increases the rate at which the cwnd opens. 
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However, delays up to multiple RTTs are incurred during the probing period [47]. Larger 

segment sizes are also more prone to loss and corruption. 

The option of increasing the initial window (IW) [19], [20] allows the initial cwnd 

value to be larger than one SMSS and less than 4 × SMSS, and, thus reducing the time 

needed to reach a transmission rate during slow start by up to 3 RTTs [45]. Modification 

to the ssthresh and packet spacing during slow start [49] enable a TCP sender to enter 

congestion avoidance phase and reduce the effect of bursty traffic thus, preventing buffer 

overflow that may lead to losses in GEO satellite links. The selective acknowledgement 

(SACK) [18] option was proposed to improve TCP performance in the presence of 

multiple losses in an RTT. The SACK option allows a receiver to indicate only segments 

that were received. Hence, the sender may explicitly retransmit only the lost segments 

thus, reducing the number of unnecessary retransmissions. 

4.2.1.2 TCP variants 

For new connections starting after an idle period, TCP fast start [50] employs 

cached values of the most recent past TCP connection state variables (cwnd, ssthresh, 

srtt, and rttvar). However, it requires sender-side modifications and packet prioritization 

mechanism at intermediate routers to drop low priority segments when congestion occurs. 

The IPv6 datagram allows additional fields to be included in extension headers for 

specific purposes. The extension headers are placed before the encapsulated TCP 

payload. Bandwidth aware TCP (BA-TCP) [51] is an end-to-end solution that employs 

the IPv6 extension headers with fields for round-trip propagation delay (RTPD) and 

available bandwidth (ABW) to relay explicit network conditions to a TCP receiver. 

However, BA-TCP requires IPv6 hosts to be present in the network. Sharing TCP 
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(STCP) [52] was proposed to mitigate the effect of long propagation delays by sharing 

TCP state information (ssthresh and cwnd) among sequential and concurrent TCP 

connections. However, STCP requires an additional data structure in order to store the 

shared information. 

TCP-Peach [53] and its variant TCP-Peach+ [54] introduce the sudden start and 

rapid recovery and the jump start and quick recovery algorithms based on the use of low 

priority segments (dummy and nil segments, respectively) to probe the network for 

available bandwidth. The cwnd is set based on the estimated available bandwidth. TCP-

Peach and TCP-Peach+ require packet prioritization mechanism at every intermediate 

router along the data transmission path. 

TCP Westwood (TCPW) [55] is an end-to-end sender side modification of TCP 

congestion control algorithms for estimating the available bandwidth in the computation 

of the cwnd. The value of the cwnd during congestion avoidance and after a packet loss is 

computed using the bandwidth estimate (BWE). Adaptive start (Astart) [56] is a satellite 

network modification to the slow start algorithm for adaptively resetting the ssthresh 

based on the BWE of TCPW. Astart prevents premature termination of the slow start 

phase and enable the cwnd to grow rapidly without incurring the risk of buffer overflow 

and multiple losses. It assumes that the rwnd is always large so that the sending rate 

depends only on the cwnd. TCP bulk repeat [57] improves TCPW performance in the 

presence of heavy losses due to link errors. 

HighSpeed TCP [58] and Scalable TCP [59] are variants proposed for large BDP 

networks such as Gigabit Ethernet WANs. HighSpeed TCP adaptively increases or 

decreases the cwnd is as a function of the current cwnd when an ACK is received or when 
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a segment is lost, respectively. Scalable TCP adjusts the cwnd by a factor α = 0.01 upon 

receipt of an ACK and by a factor β = 0.125 when segment loss is detected. Both 

HighSpeed TCP and Scalable TCP require sender-side modifications. However, the 

parameters used in adjusting the cwnd are not optimized for GEO satellite networks [60]. 

TCP-Swift [61] replaces the slow start and fast recovery algorithms with speedy 

start and speedy recovery algorithms. The speedy start algorithm enables the cwnd to 

open rapidly within two RTTs while the speedy recovery algorithm sends outstanding 

segments instead of dummy segments (used in TCP-Peach) to probe the network for 

available bandwidth. TCP priority-based congestion control strategy (TCP PBS) [62] 

introduces accelerative start and expeditious recovery algorithms. The accelerative start is 

similar to the speedy start but sets the IW to min (4 × SMSS, max (2 × SMSS, 4380 

bytes)) [24] instead of one SMSS. The expeditious recovery employs explicit error 

notification (EEN) to distinguish congestion losses from error losses. Both TCP-Swift 

and TCP PBS require priority mechanisms at all intermediate routers in the data 

transmission path. 

TCP-Star [63] implements the following three new mechanisms: congestion 

window setting (CWS), lift window control (LWC), and acknowledgment error 

notification (AEN). The CWS is employed to determine the cause of losses in order to 

adjust the cwnd accordingly. The LWC increments the cwnd during slow start and 

congestion avoidance phases based on available bandwidth estimation mechanism of 

TCP-Jersey [64]. The AEN prevents unnecessary retransmission of segments caused by 

ACK losses or delays. TCP Hybla [65] employs a time-scale modification algorithm to 

increment cwnd independent of RTTs during the slow start and congestion avoidance 
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phases. However, it assumes that the transmission rate does not depend on the rwnd. The 

TCP Hybla algorithm employs the SACK and timestamp options to recover multiple 

losses and prevent delays in RTO timer update, respectively. TCP New Vegas [66] is a 

variant of TCP Vegas [67] proposed for GEO satellite networks. It employs packet 

pacing and rapid window convergence to improve the performance of TCP during slow 

start. TCP New Vegas also implements packet pairing to reduce the negative impact of 

delayed ACK [16] on networks with large RTTs. 

4.2.2 Split TCP solutions 

In hybrid terrestrial satellite IP networks, split connections shield the satellite link 

characteristics from the terrestrial segment. Satellite-optimized transport protocols are 

utilized in the satellite segment. The TCP connections are split at intermediate nodes such 

as gateways [68]. The main disadvantage of split connection is the violation of the end-

to-end semantics of TCP. TCP splitting, TCP spoofing, and web caching are common 

methods of split TCP solutions. 

4.2.2.1 TCP splitting 

In TCP splitting, the TCP connection between end-hosts is divided into two or 

more sections with each section representing a complete TCP connection [69]. TCP 

segments transmitted from one section to another require buffering at satellite gateways 

or intermediate nodes. Aeronautical transport control protocol (AeroTCP) [39] employs 

TCP splitting. Performance enhancing proxies (PEPs) [70] are examples of intermediate 

nodes at which TCP connections are split. SaTPEP [71], PEPsal [72], and Secure PEP 

(SPEP) [73] are examples of PEPs that propose the use of satellite optimized protocols in 
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the satellite section while the TCP variants such as TCP Reno or TCP NewReno may be 

used for the terrestrial wired section. SPEP requires an intermediate node to add and 

remove the SPEP header before data and ACK segments are forwarded to the destination 

and source, respectively. A preferential suppression (PS) scheme [74] with a PEP that 

employs TCP spoofing is proposed to increase efficiency and achieve fairness in resource 

sharing between satellite and terrestrial TCP connections. 

4.2.2.2 TCP spoofing 

TCP spoofing requires an intermediate host, usually a satellite gateway, to 

prematurely acknowledge TCP segments received from the terrestrial wired section. 

Unlike TCP splitting, a satellite-optimized TCP is not employed on the satellite section 

[70]. The intermediate host buffers all transmitted segments, suppresses the ACKs from a 

TCP receiver, and does not forward them to the sender. When a segment loss is detected, 

the intermediate host retransmits the lost TCP segment. Performance evaluation of TCP 

spoofing [75] indicates that TCP spoofing improves TCP throughput at a TCP sender for 

large file transfers. TCP spoofing is shown in Figure 4.1. 

terrestrial wired section

actual ACK suppressed
at satellite gateway

actual ACK
spoofing ACK

TCP data segment

satellite gatewayTCP sender TCP receiver

satellite section  
Figure 4.1. TCP spoofing. The spoofing ACK reaches a TCP sender quickly to reduce the estimated 
RTT at the sender and the actual ACK is suppressed at the satellite gateway. 
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4.2.2.3 Web caching 

In a satellite IP network, web caches are employed to fill requests from remote 

web servers in the Internet. Most commonly requested information is stored locally in the 

web cache. When a request is subsequently received from a user, the locally cached 

information is sent to the user. Hence, the connection is effectively split at the web cache 

thereby reducing traffic to remote Internet web servers and also reducing user-perceived 

response time [68], [69]. Web caches require per-connection buffers for every active 

connection and large processing overhead to establish and release connections in order to 

accommodate a large number of users. 

4.2.3 Link layer solutions 

In order to improve TCP performance in the presence of high BERs, link layer 

solutions are proposed to provide reliability at the link layer. These are broadly classified 

as TCP-aware and TCP-unaware [76]. TCP-aware link layer solutions modify the TCP 

header information and are incompatible with applications that require IP security 

(IPSEC). TCP-unaware solutions employ forward error correction (FEC) and automatic 

repeat request (ARQ) techniques to detect and retransmit lost or corrupted packets at the 

link layer. 

An example of a TCP-aware link layer solution is presented in [77]. Snoop 

protocol [78] is an example of a TCP-aware link layer protocol evaluated for GEO 

satellite link [79]. The snoop protocol is implemented at intermediate nodes such as 

gateways. It performs local retransmissions of unacknowledged segments stored in 

buffers at the gateways. The snoop protocol requires modifications at intermediates nodes 

as well as large buffers to store unacknowledged segments. 
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An example of a TCP-unaware link layer solution is presented in [80]. TCP 

packet control [81] is a link layer solution that addresses variable and sudden long 

propagation delays that a packet may experience in satellite networks. It requires 

modifications at intermediate routers in the network. 

4.2.4 Non-TCP satellite-optimized transport protocols 

The characteristics exhibited by satellite communication links have led to 

proposals of other transport layer protocols. These protocols may employ standard TCP 

or reliable non-TCP mechanisms to address congestion losses and additional extensions 

to address segment losses attributed to satellite link characteristics. The transport layer 

protocols may be employed in satellite sections of split TCP connections. 

The Space Communications Protocol Standards-Transport Protocol (SCPS-TP) 

[82] employs extensions and enhancements to TCP such as selective negative ACK 

(SNACK) and explicit Internet control message protocol (ICMP) messages for 

corruption-induced losses and link outages. It also employs timestamps and modified 

delayed ACK options to compute ACK delays based on the estimated RTT. SCPS-TP 

with the TCP Vegas option for slow start improves throughput and is less sensitive to link 

delays than TCP [83]. Simulation results show that SCPS-TP has better performance in 

noisy asymmetric satellite networks than TCP [84]. 

Satellite transport protocol (STP) [85] is based on an Asynchronous Transfer 

Mode (ATM) link layer protocol known as service specific connection orientated 

protocol (SSCOP) [86]. STP does rely on timeout mechanisms. It employs an automatic 

repeat request (ARQ) mechanism that uses SNACK for retransmission. The ACK polling 
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cycle of STP is used for probing and early error detection [87] and, thus, it performs well 

in determining the cause of losses. The rate control scheme (RCS) [88] employs low 

priority dummy packets to probe the network for available resources and requires all 

routers to support priority schemes for discarding these packets when congestion occurs. 

Explicit control protocol (XCP) [89] and its enhanced variant P-XCP [90] employ 

explicit feedback to determine network conditions and decouple utilization and fairness 

control. Simulation results show that an XCP PEP is able to utilize available bandwidth 

faster than TCP variants such as TCP Reno or TCP NewReno [91]. However, 

modifications are required at the sender, all intermediate routers, and the receiver. Stream 

Control Transmission Protocol (SCTP) [92], [93] employs the TCP congestion control 

algorithms, satellite extensions as defined in [38], [46], and other unique features such as 

multistreaming and multihoming. 
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CHAPTER 5:TCP WITH ADAPTIVE DELAY AND LOSS 
RESPONSE 

5.1 Overview 

In this thesis, we propose TCP with adaptive delay and loss response (TCP-

ADaLR) algorithm for heterogeneous networks employing GEO satellite links [94]. It is 

designed to improve TCP performance in the presence of long propagation delays, high 

BERs, and delayed ACK. We implement TCP-ADaLR algorithm as an extension to TCP 

SACK. It may also be applied to TCP NewReno. Both TCP SACK and TCP NewReno 

are common Internet TCP implementations [20]. 

TCP-ADaLR algorithm maintains the TCP end-to-end semantics. It requires 

modifications only at the sender. TCP-ADaLR employs an initial window (IW) of 2 × 

SMSS. The TCP-ADaLR algorithm modifications include a scaling component ρ and 

mechanisms for adaptive window (cwnd and rwnd) increase and loss recovery. The 

scaling component ρ depends on measurements taken from sample RTT segments 

(sampleRTT). A TCP sender computes RTO values continuously from the sampleRTT 

collected using the Karn’s algorithm [25] that ensures that the sampleRTT is measured 

from a segment that is not retransmitted. We normalize the sampleRTT by 1 s (a common 

value of the minimum RTO in TCP implementations with a coarse grained timer [26]). 

The scaling component is calculated as 

ρ = (sampleRTT s/1 s) × 60.                                                     (5.1) 
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Hence, the scaling component depends on a variable that reflects the recent network 

condition (sampleRTT). The value of 60 is the minimum recommended value for the 

maximum RTO rto_max [26] normalized by 1 s. The rto_max is the upper limit on the 

retransmission interval that a TCP sender will wait before retransmission. The lower 

bound of ρ is set to 1 to ensure that TCP employs the standard algorithm for connections 

with extremely short RTTs. Conversely, we set an upper bound of ρ to be 60 to ensure 

that the value of ρ is not too large. The scaling component ρ mitigates the negative effect 

of the long propagation delays on achieving high transmission rates rapidly, as described 

in Sections 4.1.1 and 4.1.2. The default exponential TCP cwnd increments are increased 

by the scaling component ρ. Hence, with the reception of each ACK, the cwnd is 

increased to a larger value than the TCP default thereby allowing transmission of 

additional segments. 

5.2 The proposed TCP-ADaLR algorithm 

5.2.1 Adaptive cwnd increase mechanism 

After the three-way handshake is completed, we divide the slow start phase into 

four sub-phases based on current cwnd and the flightsize (total outstanding 

unacknowledged data in the network). We select four sub-phases based on the ratio of the 

initial value of the ssthresh (64KB) and a large value (16KB) of the IW employed by 

TCP implementations. The flightsize is used to ensure that a TCP sender maintains 

default exponential TCP cwnd increments when the number of unacknowledged bytes in 

the network exceeds fractions of the rwnd during the four slow start sub-phases. In each 

sub-phase, the increment in cwnd depends on the value of ρ and the presence or absence 

of losses during transmission. To determine if losses have occurred, we initialize 
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snd_recover (the sequence number denoting the end of fast recovery for TCP NewReno) 

to zero at the beginning of the connection. If the value of snd_recover is nonzero, it 

implies that at least one segment loss has occurred during transmission. The sub-phases 

are described in Algorithm 5.1. 

// snd_max = maximum send sequence number (the newest unacknowledged 
sequence number) 

// snd_una = sequence number of the first unacknowledged segment (the oldest 
unacknowledged sequence number.) 

// snd_recover = sequence number denoting the end of fast recovery (initialized to 
zero at the beginning of the connection) 

// acked_bytes = number of bytes acknowledged by an ACK 

flightsize = snd_max - snd_una; 

// slow start phase 

if (cwnd < ssthresh) 

    { 

    if ((cwnd ≤ ssthresh/4) && (flightsize < rwnd/4)) 
  set sub-phase = slow start sub-phase 1 

    if ((cwnd > ssthresh/4) && (cwnd ≤ ssthresh/2) && (flightsize < rwnd/4)) 
  set sub-phase = slow start sub-phase 2 

    if ((cwnd > ssthresh/4) && (flightsize ≥ rwnd/4) && (flightsize < rwnd/2)) 
  set sub-phase = slow start sub-phase 3 

    if ((cwnd > ssthresh/2) && (flightsize ≥ rwnd/4) && (flightsize < rwnd/2)) 
  set sub-phase = slow start sub-phase 4 

    } 
Algorithm 5.1. Pseudo-code that describes the four sub-phases of the TCP slow start phase 
introduced by the adaptive cwnd increase mechanism. 

In the default TCP implementation, the growth of the cwnd may not be 

exponential as desired when the delayed ACK option is enabled because the receiver may 

delay sending ACKs. It may send a single ACK for more than one data segment received. 

This delay exacerbates the long propagation delays of a GEO satellite link and the 
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number of acknowledged bytes may be larger than one SMSS. Hence, an increase of one 

SMSS will not compensate for the case when the number of bytes acknowledged is larger 

than one SMSS. We select a breakpoint value ρ = 15, corresponding to a sampleRTT of 

250 ms. This value was selected based on measurements from simulation of a FTP file 

download of a 50 MB file in an ideal (no congestion or satellite link error losses) satellite 

link using TCP SACK. The simulation results are shown in Table 5.1. The download 

response time begins to show significant increase after 250 ms. For values ρ ≥ 15, we 

increase the cwnd by integral multiples of the SMSS when no losses have occurred, 

which allows better utilization of the network bandwidth. 

Table 5.1. FTP download response time for 50 MB file used to determine the instance when 
propagation delay impacts the file download. 

RTT (ms) Download response time (s) 

25 251.9 

50 252.1 

100 252.5 

200 253.5 

250 272.7 

500 470.1 
 

The cwnd is incremented exponentially for ρ < 15, as in default TCP slow start 

phase. For ρ ≥ 15, we increase the cwnd by (√ρ/4) × SMSS when no losses have 

occurred. A delayed ACK of two outstanding segments will cause the transmission of 4 

back-to-back segments that may result in micro-burstiness [95]. The value (√ρ/4) is 

selected to accommodate the non-linear increase of the download response times shown 

in Table 5.1 and micro-burstiness that may occur with delayed ACK enabled. Note that 

(√ρ/4) × SMSS lies in the range (1 – 2) × SMSS. A value of up to 2 × SMSS prevents 
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large line-rate bursts at the beginning of the connection when the TCP sender is probing 

the network and is recommended to accommodate the delayed ACK option enabled [95]. 

Based on the maximum value of ρ (60), increments of (√ρ/4) × SMSS also maintain a 

modest bursts size < 10 segments with a low probability of losing a segment [96]. 

If losses occur or the conditions of the four sub-phases are not met, the cwnd is 

increased as in the default TCP slow start phase. During the congestion avoidance phase, 

the cwnd is incremented linearly immediately after fast recovery or when the flightsize is 

larger than rwnd/2. When the flightsize is less than rwnd/2, the cwnd is incremented by 

(√ρ/2) × SMSS. Since increments during congestion avoidance phase are linear and more 

conservative, we double the cwnd increment to (√ρ/2). Note that if the value of (√ρ/4) or 

(√ρ/2) is less than one, it is rounded up to one, thus, being incremented by one SMSS as 

in the default TCP. Alternating the cwnd increments between one SMSS and (√ρ/4) × 

SMSS in the slow start sub-phases enables the TCP sender to smoothen out its 

transmission rate while utilizing the available bandwidth better than in default TCP. With 

the adaptive increase mechanism, the TCP sender can achieve higher transmission rates 

faster during the slow start phase especially when the RTT is large as in the case of GEO 

satellite links. The cwnd is incremented in slow start and congestion avoidance as shown 

in Algorithm 5.2. 

// slow start phase 
if (cwnd < ssthresh) 
   { 
    // slow start sub-phase 1 
    if ((cwnd ≤ ssthresh/4) && (flightsize < rwnd/4)) 
       { 
        if ((snd_recover = = 0) && (ρ ≥ 15)) 
   increment cwnd by (√ρ/4) × SMSS 
        else 
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     increment cwnd exponentially as in TCP Reno 
       } 
     // slow start sub-phase 2 
    else if ((cwnd > ssthresh/4) && (cwnd ≤ ssthresh/2) && (flightsize < rwnd/4)) 
       { 
        if ((snd_recover = = 0) && (ρ ≥ 15)) 
     increment cwnd by (√ρ/4) × SMSS 
      else 
     increment cwnd exponentially as in TCP Reno 
       } 
    // slow start sub-phase 3 
    else if ((cwnd > ssthresh/4) && (flightsize ≥ rwnd/4) && (flightsize < rwnd/2)) 
       { 
        if ((snd_recover = = 0) && (ρ ≥ 15)) 
    increment cwnd by (√ρ/4) × SMSS 

        else 
     increment cwnd exponentially as in TCP Reno 
       } 
    // slow start sub-phase 4 
    else if ((cwnd > ssthresh/2) && (flightsize ≥ rwnd/4) && (flightsize < rwnd/2)) 
       { 
        if ((snd_recover = = 0) && (ρ ≥ 15)) 
    increment cwnd by (√ρ/4) × SMSS 

        else 
    increment cwnd exponentially as in TCP Reno 
       } 
   } 
else 
   // congestion avoidance phase 
   if (cwnd > ssthresh) 
   { 
    // fast recovery phase 

    if (((snd_una ≤ snd_recover) && (ρ ≥ 15) && (snd_recover != 0)) | | 
(flightsize      ≥ rwnd/2)) 

     increment cwnd by SMSS × SMSS / cwnd 

    // exiting the fast recovery phase 
    else if (((snd_una ≥ snd_recover) && (ρ ≥ 15) && (snd_recover != 0)) | | 

(flightsize < rwnd/2)) 
 increment cwnd by (√ρ/2) × SMSS × SMSS / cwnd 

    else 
     increment cwnd by SMSS × SMSS / cwnd 
   } 

Algorithm 5.2. Pseudo-code that describes the adaptive cwnd increase mechanism. This mechanism 
allows the cwnd to increase more rapidly than default TCP and transmit additional segments during 
the slow start and congestion avoidance phases. 
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5.2.2 Adaptive rwnd increase mechanism 

The TCP receiver-side limit imposed on the amount of transmitted data is defined 

by rwnd. The number of transmitted bytes is the minimum of either the cwnd or rwnd.  

The adaptive rwnd increase mechanism is implemented at the sender side. The rwnd 

increments depend on the value of ρ, flightsize, cwnd increment phase (slow start or 

congestion avoidance), and the presence or absence of losses. The adaptive rwnd increase 

mechanism compensates for the GEO satellite long propagation delays when no losses 

occur. It allows at least one additional segment to be transmitted when losses occur and a 

partial ACK is received. (A partial ACK acknowledges some of the lost segments in a 

window and allows the TCP sender to send the next unacknowledged segment while 

remaining in fast recovery phase.) The additional segment compensates for delayed ACK 

and allows the next two unacknowledged segments to be sent to recover from losses. This 

prevents serial retransmission timeouts from occurring if only one segment is recieved 

and the TCP receiver waits for the delayed ACK timer to expire before sending the ACK 

of the received segment. The adaptive rwnd increase mechanism modifies the rwnd, as 

shown in Algorithm 5.3. 

rtt_dev_gain = RTT deviation gain 

if (ρ ≥ 15) 
{ 

if (flightsize > rwnd) 
 { 
 do nothing 
 } 

// congestion avoidance phase 
else if (cwnd > ssthresh) 

{ 
 // no losses have occurred 

if (snd_recover = = 0) 
   set rwnd to rwnd + rtt_dev_gain × ρ × SMSS 
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// losses have occurred 
// fast recovery phase 
else if ((snd_una  ≤ snd_recover) && (snd_recover ! = 0)) 
    set rwnd to rwnd + SMSS 

else 
    do nothing 
} 

// slow start phase 
else if (cwnd < ssthresh) 

      { 
 // no losses have occurred 

if (snd_recover = = 0) 
   set rwnd to rwnd + rtt_dev_gain × ρ × SMSS 

// losses have occurred 
// fast recovery phase 
else if ((snd_una ≤ snd_recover) && (snd_recover ! = 0)) 
    set rwnd to rwnd + SMSS 

else 
    do nothing 
} 

      else 
do nothing 

} 
Algorithm 5.3. Pseudo-code that describes the rwnd modification introduced by the adaptive rwnd 
increase mechanism. 

5.2.3 Loss recovery mechanism 

TCP-ADaLR modifies the fast recovery phase to compensate for delayed ACK 

and ensure quicker recovery from losses. TCP-ADaLR also modifies the exponential 

backoff after the first expiration of the RTO timer to prevent its premature expiration 

when delayed ACK is enabled. During the fast recovery phase, the minimum value of 

cwnd is set to 2 × SMSS instead of 1 × SMSS when the number of acknowledged bytes is 

greater than the current value of cwnd. This prevents the cwnd from shrinking to zero. By 

adjusting the value of cwnd at least two back-to-back segments may be transmitted 

during the fast recovery to ensure that the TCP sender is able to receive ACKs faster 
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when the delayed ACK option is enabled. If an RTO occurs, we add 200 ms to the 

current time to prevent premature expiration of the RTO timer that may lead to false 

retransmissions when the delayed ACK option is enabled. We also limit the number of 

retransmissions from the retransmission buffer to three segments per retransmission to 

prevent spurious or unnecessary retransmissions. The algorithm for setting cwnd during 

fast recovery phase is shown in shown in Algorithm 5.4. 

 // fast recovery phase 
 if (snd_una > snd_recover) 
    { 
     if (cwnd ≤ acked_bytes) 
         set  cwnd  to 2 × SMSS 
    
     else  
         // deflate the congestion window by the number 
         // of acknowledged bytes and add two SMSS 
         set cwnd to cwnd - acked_bytes + (2  × SMSS) 
    } 
Algorithm 5.4. Pseudo-code that describes the loss recovery mechanism for setting the cwnd during 
the fast recovery phase. 
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CHAPTER 6: TCP-ADaLR IMPLEMENTATION IN THE 
OPNET MODELER NETWORK SIMULATOR 

TCP-ADaLR is implemented in the Optimized Network Engineering Tools 

(OPNET) modeler [19], an object-oriented discrete event simulator for network 

simulation, modelling, performance evaluation, and analysis. In this Chapter, we describe 

the OPNET modeler and the OPNET implementation of TCP-ADaLR [97]. 

6.1 OPNET Modeler 

OPNET modeler includes a library of standard network node models and Open 

Systems Interconnection (OSI) layer protocols’ models implemented in Proto-C that is 

based on C/C++ programming language. OPNET modelling environment consists of a 

three-level hierarchical domain editors and additional specialized editors for specifying 

characteristics of a modelled system’s behaviour at any of the three domain levels [98]. 

6.1.1 Project editor 

A network model consists of communication nodes and links. The network 

domain is the highest modelling level in OPNET. The project editor is a graphical 

interface used in the network domain to define and edit the topology and architecture of a 

network model within a geographical or logical context. In a geographical context, 

physical positions of network nodes are specified using latitude/longitude of the world or 

regional maps for comparison with real-world network deployment. In cases where real-

world comparison is not essential for modelling the network, network nodes may be 
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specified using logical dimensions and/or xy coordinates. An OPNET network model 

may consist of three basic objects: subnetworks, nodes, and links. OPNET supports three 

types of subnetworks: fixed, mobile, and satellite. 

6.1.2 Node editor 

Network nodes may represent any type of network device such as workstations, 

bridges, routers, or switches. A node model represents the architecture of a network 

device and the connectivity between its functional elements (modules defined by 

processes). The network editor is used to specify node parameters (attributes) for 

applications, protocols, and physical resources that define the node behaviour. Nodes 

may be fixed, mobile, or satellite. Fixed nodes remain at a specified location during 

simulation. Mobile nodes may have predefined trajectories that specify the path of 

motion during simulation. Satellite nodes may have predefined orbit attributes that 

describe their motion during simulation. 

6.1.3 Process editor 

The functionalities of modules in a network node are defined using the process 

editor in Proto-C language [98] and finite state machines (FSMs). Proto-C language 

supports protocol and algorithm development with a combination of state transition 

diagrams (STDs) and a library of high-level commands known as kernel procedures. 

Processes are represented by FSMs. FSMs are represented by STDs. A process model 

STD describes a set of states that a process may enter and conditions known as transitions 

required to exit and enter into another state. Each state has an enter executive and an exit 

executive. They are Proto-C code lines executed by a process when it enters or exits a 
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state, respectively. Processes may be hierarchical with a parent process invoking a new 

instance of a predefined process known as a child process. The OPNET editor modelling 

hierarchy is shown in Figure 5.1. 

project editor

process editor node editor

project editor

process editor node editor  

Figure 6.1. Hierarchy of OPNET modelling domain editors. The project editor is used to define 
network topology. The node and process editors are used to define node and process functions, 
respectively. 
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6.1.4 Specialized editors 

Network model specification may require other specialized editors that are used to 

define various data models that are referenced by the project, node, or process editors 

during simulation. These specialized editors include link, antenna pattern, packet format, 

modulation curve, filter, probe, interface control information (ICI), and probability 

density function editors. An OPNET simulation scenario is a completely defined network 

model including all specifications by required editors. 

6.2 OPNET implementation of TCP-ADaLR 

We implemented TCP-ADaLR in the OPNET simulation tool [19]. We modified 

the TCP sender to implement TCP-ADaLR. The TCP sender is represented by the 

OPNET Ethernet server advanced model shown in Fig. 6.2. We modified the TCP 

process model associated with the server node model. The OPNET TCP process model 

implements standard TCP features [2], [9], [17]. It also includes additional features such 

as SACK [18], delayed ACK [14], explicit congestion notification (ECN) [28], and 

timestamp options [38], [46]. These features are defined in the TCP attributes of the 

OPNET Ethernet server advanced model. 

The OPNET TCP implementation consists of a parent process tcp_manager_v3 

and a child process tcp_conn_v3. The tcp_manager_v3 FSM, shown in Fig. 6.3, 

communicates with the session layer and network (IP) layers. The tcp_conn_v3 process is 

invoked by the tcp_manager_v3 process when a new TCP connection is established. A 

separate tcp_conn_v3 process is invoked for each newly established TCP connection. The 

tcp_conn_v3 process stores all individual TCP connection parameters in the transmission 

control block (TCB) and shares them with the tcp_manager_v3 process. Connection 
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parameters stored in the TCB include the connection ID, local (sender) TCP port number, 

remote (receiver) TCP port number, local IP address, and remote IP address. We 

modified the OPEN state to invoke the modified tcp_conn_v3 child process. The changes 

were made in the tcp_manager_v3.pr.c file. 

 

Figure 6.2. The OPNET Ethernet server advanced node model. The implementation of TCP-ADaLR 
requires modifications to the process models in the highlighted TCP module. 
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Figure 6.3. The tcp_manager_v3 process model. The dashed lines represent conditions to transition 
from the state they originate from to the state they terminate. The solid lines represent transitions 
without conditions between the states they connect. 

 
Additional modifications were made to functions defined in the tcp_conn_v3 child 

process model. We defined the scaling component ρ as a global variable of type double 

accessible by all functions defined in the tcp_conn_v3 process. The srtt, rttvar, and RTO 

values are computed based on the sampleRTT, estimated from the Karn’s algorithm [25], 

using the tcp_rtt_measurements_update () function. We modified this function in order to 

compute the scaling component ρ that depends on the value of sampleRTT (5.1). 
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The tcp_cwnd_update () function is used to increment the cwnd during the slow 

start and congestion avoidance phases. We modified this function to implement the 

adaptive cwnd increase mechanism. The tcp_cwnd_update () function is also modified to 

implement the TCP-ADaLR loss recovery mechanism used to set the cwnd during the 

fast recovery phase. 

The tcp_snd_total_data_size () and tcp_snd_data_size () functions are used to 

compute the number and the size of data segments to be sent after each ACK is received 

or when data segments are to be retransmitted. The number and size of data segments 

transmitted is computed from the current cwnd value (obtained from the 

tcp_cwnd_update () function) and the value of rwnd obtained from the receiver 

advertised window field in the most recent ACK received. These two functions were 

modified to implement the adaptive rwnd increase mechanism. 

The tcp_timeout_retrans () function is used to retransmit segments when the RTO 

timer expires after no ACK has been received. It was modified to compute subsequent 

RTO timer expirations. We also modified the tcp_una_buf_process () function to avoid 

possible retransmission of unnecessarily large number of segments after a single RTO 

[17] by limiting the number of retransmissions to three segments when the function is 

called. The changes were made to the tcp_conn_v3_pr.c file. The tcp_conn_v3 child 

process model is shown in Figure 6.4. 
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Figure 6.4. The tcp_conn_v3 process model. The implementation of TCP-ADaLR requires 
modification to the function block of the process model. 
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CHAPTER 7: PERFORMANCE EVALUATION 

We evaluate the performance of TCP-ADaLR using the OPNET network 

simulator in the absence and presence of errors and congestion. We discuss the error 

model used to simulate the GEO satellite link. We also discuss the simulated network 

topologies, simulation parameters, simulation scenarios, and performance metrics. We 

then discuss the simulation results. 

7.1 Error model 

The GEO satellite link is modelled as an additive white Gaussian noise (AWGN) 

memoryless (uncorrelated bit errors) channel. We select this model because the satellite 

client is a fixed user that has a line-of-sight (LoS) to the GEO satellite [65]. The satellite 

link exhibits random (uncorrelated) errors at various bit error rates (BERs) from 10-5 to 

10-10 after forward error correction (FEC). Using the AWGN model, we calculate the 

packet error rate (PER) as 

PER = 1- (1-BER)N,     (7.1) 

where N is the number of bits in the packet. We use 1,500 bytes (N = 12,000 bits) 

Ethernet packets. The error correction (ECC) threshold is the highest proportion of bit 

errors in a packet accepted by a receiver and forwarded to its output stream. The ECC 

threshold is equal to the PER when the BER is 10-10. We use 10-10, which is acceptable 

for wired Ethernet links. Packets with errors exceeding the ECC threshold are discarded 

by the receiver (lost). The ECC threshold is set to 1.2 × 10-6  as computed using (7.1). 
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Various BERs and their corresponding PERs for Ethernet packet size are shown in Table 

7.1. For satellite links, typical average BER ranges from 10-5 to 10-8 [99]. An ideal 

satellite link is assumed to be error-free. The OPNET PPP workstation advanced model 

(TCP receiver) was modified to define the ECC threshold for accepted packets, as shown 

in Figure 7.1. 

Table 7.1. Post-FEC BERs and corresponding PERs for the AWGN-modelled GEO satellite link 
calculated using (7.1). 

BER PER 

10-9 1.2 × 10-5 

10-8 1.2 × 10-4 

10-7 1.2 × 10-3 

10-6 1.2 × 10-2 

10-5 1.2 × 10-1 

 

 
Figure 7.1. The OPNET PPP workstation advanced node model. We modified the transmission 
receiver (ip_rx_0_0) to set the error correction threshold for accepted packets. 
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7.2 Network topology 

We consider two network topologies to evaluate various performance metrics for 

TCP-ADaLR. The network topology shown in Figure 7.2 is a typical hybrid terrestrial-

satellite network connecting a fixed client (receiver) to a gateway through a GEO satellite 

in a bent-pipe configuration. The receiver has a line-of-sight (LoS) to the GEO satellite. 

The gateway is connected to the terrestrial wired network. This network topology is used 

to provide Internet service to home and corporate users. Demand for data and multimedia 

applications for home and corporate users increased by 6.6% and 9% (2001–2004), 

respectively, and is still increasing [8]. 

server gateway client

12
5 m

s 125 m
s

GEO satellite

10 ms

 
Figure 7.2. Network topology for direct to user hybrid terrestrial-satellite network. The shown link 
propagation delays are one-way. 

The shown link propagation delays are one-way and remain constant during 

simulation, unless otherwise stated. The GEO satellite link between the client and the 

gateway is bi-directional with data rate of 2,048 kb/s in the downlink direction (satellite 

to client) and 256 kb/s in the uplink direction (client to satellite). This difference in the 

downlink and uplink capacities captures bandwidth asymmetry, a common characteristic 

of satellite link [20], [32]. Data transmission over satellite links employs downlink 
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bandwidth of the order 10 times or more in magnitude than the uplink [40]. The downlink 

and uplink paths have identical propagation delays. The terrestrial wired link between the 

gateway and the server is a full duplex 10 Mb/s Ethernet link. In all simulations 

scenarios, the Ethernet link is error-free. 

7.3 Simulation scenarios and parameters 

We employ the network topology shown in Figure 7.2 to evaluate performance of 

TCP-ADaLR in various scenarios. We consider an ideal case with no losses and cases 

with congestion losses only, with losses only due to satellite link errors, and, finally, with 

losses due to both congestion and satellite link errors. For the scenarios with congestion 

losses, we set finite buffer sizes of the gateway to 15 and 25 packets for FTP and HTTP 

applications, respectively. We modify the IP attributes of the OPNET Ethernet4 slip8 

gateway node model in order to set the buffer size for the FTP application, as shown in 

Figure 7.3. In the scenarios with satellite link errors, we evaluate the performance of TCP 

variants for the PERs shown in Table 7.1. TCP-ADaLR considers cases when delayed 

ACK is enabled by the Internet hosts. We evaluate the performance of TCP-ADaLR 

without delayed ACK to investigate possible negative effects if the delayed ACK option 

is disabled. 

We simulate both FTP and HTTP applications. The simulation parameters for the 

FTP and HTTP [100] applications are shown in Tables 7.2 and 7.3, respectively. All TCP 

variants use constant and identical parameters for the simulated Internet applications. 

TCP parameters used for simulation are shown in Table 7.4. We use identical set of 

parameters when the delayed ACK option is enabled, with the exception of the maximum 
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ACK delay and maximum ACK segment that are set to recommended values of 0.2 s and 

2, respectively [14]. 

 

Figure 7.3. The OPNET Ethernet4 slip8 gateway model attributes. Shown are the modified IP module 
parameters employed to simulate congestion losses for the FTP application. 

Table 7.2. FTP file download application parameters. The file inter-request time is large to ensure a 
single file download is completed during each simulation. 

Attribute Value 

File inter-request time (s) 18,000  

File inter-request time distribution constant 

File size (MB) 50 

File size distribution constant 

Simulated time (hours) 5 
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Table 7.3. Simulated HTTP webpage download parameters. 

Attribute Value 

HTTP specification HTTP 1.1 

Page inter-arrival time (s) 30 

Page inter-arrival time distribution constant 

Main page object size (bytes) 10,710 

Main page object size distribution constant 

Number of embedded page objects 15 

Embedded object size (bytes) 7,758 
Embedded object size distribution constant 

Simulated time (s) 1,000 

Table 7.4. TCP parameters when the delayed ACK option is disabled (without delayed ACK). All 
parameters except two remain unchanged when the delayed ACK option is enabled (i.e., with delayed 
ACK). 

TCP Parameters Value 

Sender maximum segment size (SMSS) 1,460 bytes 
Slow start initial count 2 SMSS 
Receiver’s advertised window 65,535 bytes 
Timer granularity 0.5 s 
Persist time-out  1.0 s 
Maximum ACK delay 0.0 s 
Maximum ACK segment 1 
Duplicate ACK threshold 3 
Initial RTO 3.0 s 
Minimum RTO 1.0 s 
Maximum RTO 64.0 s 
Retransmission threshold  6 
RTT gain 0.125 
RTT deviation coefficient 4 
Deviation gain 0.25 
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7.4 Performance metrics 

In various simulation scenarios, we evaluate and compare the performance of 

TCP-ADaLR, TCP SACK, and TCP NewReno, with and without delayed 

acknowledgements. TCP SACK and TCP NewReno are common Internet TCP 

implementations [20]. More than 50% of Internet servers employ TCP SACK [101], 

[102] while majority of others use TCP NewReno [101]. Hence, we consider two TCP-

ADaLR variants: with SACK and with NewReno. (The TCP-ADaLR variants are named 

TCP-ADaLR SACK and TCP-ADaLR NewReno.) We consider performance metrics for 

the simulated Internet applications (FTP and HTTP), TCP, and the satellite link. The 

performance metrics include response times for FTP and HTTP applications, TCP 

goodput, TCP throughput, and satellite link throughput. 

7.4.1 FTP download response time 

The download response time is the time elapsed between sending an FTP request 

to an FTP server and receiving the complete response packet. It includes the signalling 

delay for the connection establishment and termination. The download response time is 

an indicator of the user-perceived latency of the FTP file download. 

7.4.2 HTTP page response time 

 The page response time is the time elapsed between sending the HTTP request to 

the HTTP server and receiving the complete response of the entire web page with all 

contained embedded objects. The main page object and embedded objects are 

downloaded using a single TCP connection with HTTP 1.1. The HTTP paging response 

time is an indicator of the user-perceived latency of the web page retrieval. 
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7.4.3 TCP goodput 

 Goodput is the number of original bits (excluding retransmissions) correctly 

received by the TCP receiver per unit time during the duration of the connection. The 

received segment sequence number is also used as an indicator of goodput. 

7.4.4 TCP throughput 

 TCP throughput is the traffic transmitted by the TCP sender to the TCP receiver. 

It is measured at the TCP receiver in terms of bytes as the average bytes per second 

forwarded by the TCP sender and received by the TCP receiver. 

7.4.5 Satellite link throughput 

 Satellite link throughput, measured in b/s, is the average number of bits correctly 

received by the satellite link (satellite to client direction) for the duration of the file 

transfer. 

7.4.6 Satellite link utilization 

 Satellite link utilization is the percentage fraction of the available satellite link 

capacity consumed by the data transmission. It is expressed as the ratio of the number of 

bits correctly transmitted over the satellite link per unit time and the satellite link data 

rate. 

7.4.7 Calculation of percentage improvement 

 To compare the performance of TCP-ADaLR SACK and TCP SACK, we 

calculated the percentage improvement as 
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100
SACKTCP

SACKTCPSACKADaLRTCP
×

−−

metric
metricmetric

.  (7.2) 

Similarly, the percentage improvement for TCP-ADaLR NewReno was calculated as 

100
NewRenoTCP

NewRenoTCPNewRenoADaLRTCP
×

−−

metric
metricmetric

. (7.3) 

Note that in simulation scenarios given in Sections 7.5.3 and 7.5.4, the largest 

percentages appear in the regions where the graphs overlap. 

7.5 Simulation results 

7.5.1 Ideal channel with no congestion or error losses 

We first evaluate the performance of TCP-ADaLR in ideal channel conditions 

with no congestion or error losses. For the FTP application, we evaluate performance in 

terms of the download response time, TCP goodput, TCP throughput, satellite link 

throughput, and satellite link utilization. The performance of the HTTP application was 

evaluated in terms of the HTTP page response time. 

7.5.1.1 Performance of FTP application 

The download response time for the FTP application is shown in Table 7.5. TCP-

ADaLR reduces the download response time of TCP SACK and TCP NewReno by ~23% 

and ~28% for cases with and without delayed ACK, respectively. The adaptive window 

(cwnd and rwnd) increase mechanisms enable TCP-ADaLR to transmit additional 

segments when there are no losses. TCP-ADaLR without delayed ACK outperforms 

TCP-ADaLR with delayed ACK by ~7%. The download response times for TCP SACK 

and TCP NewReno for cases with and without delayed ACK are comparable with a 
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difference of ~1%. Hence, TCP-ADaLR does not degrade performance of TCP 

connections without delayed ACK and yields better performance. 

Table 7.5. FTP download response times for scenarios with ideal lossless satellite channel. For the 
case without delayed ACK, TCP-ADaLR shows ~28% shorter FTP download response times than 
TCP SACK and TCP NewReno. 

 Download response time (s) 

Delayed ACK option Enabled Disabled 

TCP-ADaLR SACK 360.6 333.4 

TCP-ADaLR NewReno 360.6 333.4 

TCP SACK 470.1 463.5 

TCP NewReno 470.1 463.5 

The received segment sequence number at the receiver is used as an indicator of 

the goodput of the ideal channel. The TCP goodput for the FTP application is shown in 

Figure 7.4. For cases with and without delayed ACK, TCP-ADaLR shows ~49% and 

~50% higher goodput than TCP SACK and TCP NewReno, respectively. The TCP 

throughput is shown in Figure 7.5. For cases with and without delayed ACK, TCP-

ADaLR exhibits ~53% and ~63% higher TCP throughput than TCP SACK and TCP 

NewReno, respectively. TCP-ADaLR is able to open its cwnd faster with the adaptive 

cwnd increase mechanism and, hence, transmit additional segments. When the cwnd 

exceeds the rwnd and if the modified rwnd value permits, the adaptive rwnd increase 

mechanism allows the TCP sender to transmit more segments than TCP SACK and TCP 

NewReno. 
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Figure 7.4. Goodput for scenarios with ideal lossless satellite channel. Received segment sequence 
number is used as an indicator of goodput. TCP-ADaLR exhibits the highest goodput when the 
delayed ACK option is disabled. 
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Figure 7.5. TCP throughput for scenarios with ideal lossless satellite channel. For cases without 
delayed ACK, TCP-ADaLR throughput is ~63% higher than TCP NewReno and TCP SACK. 
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The satellite link throughput is shown in Figure 7.6. TCP-ADaLR exhibits higher 

satellite link throughput than TCP SACK or TCP NewReno. The higher TCP throughput 

shown in Figure 7.5, leads to the higher satellite link throughput. The satellite link 

utilization is shown in Figure 7.7. TCP-ADaLR exhibits better satellite link utilization 

than TCP SACK and TCP NewReno.  In the absence of losses, TCP-ADaLR transmits 

additional segments more rapidly with the adaptive window (cwnd and rwnd) increase 

mechanisms during the slow start and congestion avoidance phases. TCP-ADaLR 

exhibits up to 56% higher satellite link utilization than TCP SACK and TCP NewReno 

for the cases with delayed ACK. For the cases without delayed ACK, TCP-ADaLR 

exhibits up to 68% higher satellite link utilization than TCP SACK and TCP NewReno. 
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Figure 7.6. Satellite link throughput for scenarios with ideal lossless satellite link. For cases with and 
without delayed ACK, TCP-ADaLR exhibits ~53% and ~66% higher satellite link throughput than 
TCP SACK and TCP NewReno, respectively. 
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Figure 7.7. Satellite link utilization for scenarios with ideal lossless satellite channel. TCP-ADaLR 
achieves 80% of the link capacity while TCP SACK and TCP NewReno attain only 50% when the 
delayed ACK option is disabled. 

7.5.1.1.1 Effect of increased propagation delay 

We also evaluate the effect of increased propagation delay in the terrestrial 

segment of the network. The Ethernet one-way link propagation delay was increased to 

50 ms. TCP-ADaLR outperforms TCP SACK and TCP NewReno even with the 

increased propagation delay because the cwnd increments in the slow start and congestion 

avoidance phases depend on the scaling component ρ computed from the TCP 

connection’s RTT. TCP-ADaLR exhibits shorter download response time than TCP 

SACK and TCP NewReno, as shown in Table 7.6. Increasing propagation delay increases 

the download response time for all TCP variants. TCP-ADaLR exhibits the highest TCP 

goodput and TCP throughput shown in Figures 7.8 and 7.9, respectively. Similarly, the 

satellite link throughput for TCP-ADaLR is the highest, as shown in Figure 7.10. TCP-
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ADaLR also exhibits the best link utilization, as shown in Figure 7.11. All TCP variants 

exhibit lower link utilization because of the increased propagation delay. However, TCP-

ADaLR outperforms TCP SACK and TCP NewReno because the scaling component ρ 

has the maximum value of 60, equivalent to an RTT of 1 s. 

Table 7.6. FTP download response time for scenarios with ideal lossless satellite channel and 
increased propagation delay. For cases with and without delayed ACK, TCP-ADaLR shows ~26% 
and ~32% shorter download response time than TCP SACK and TCP NewReno, respectively. 

 Download response time (s) 

Delayed ACK option Enabled Disabled 

TCP-ADaLR SACK 392.6 357.8 

TCP-ADaLR NewReno 392.6 357.8 

TCP SACK 533.5 526.3 

TCP NewReno 533.5 526.3 
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Figure 7.8. Goodput for scenarios with ideal lossless satellite channel and increased propagation 
delay. For cases with and without delayed ACK, TCP-ADaLR exhibits ~33% and ~50% higher 
goodput than TCP SACK and TCP NewReno, respectively. 
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Figure 7.9. TCP throughput for scenarios with ideal lossless satellite channel and increased 
propagation delay. For cases with and without delayed ACK, TCP-ADaLR exhibits ~71% and ~79% 
higher TCP throughput than TCP SACK and TCP NewReno, respectively. 
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Figure 7.10. Satellite link throughput for scenarios with ideal lossless satellite channel and increased 
propagation delay. For cases with and without delayed ACK, TCP-ADaLR exhibits ~55% and ~63% 
higher throughput than TCP SACK and TCP NewReno, respectively. 



 

 65

0 50 100 150 200 250 300
0

20

40

60

80

100

Simulation time (s)

U
til

iz
at

io
n 

(%
)

TCP-ADaLR without delayed ACK
TCP-ADaLR with delayed ACK
TCP SACK and TCP NewReno without delayed ACK
TCP SACK and TCP NewReno with delayed ACK

 
Figure 7.11. Satellite link utilization for scenarios with ideal lossless satellite channel and increased 
propagation delay. TCP-ADaLR exhibits ~80% peak percentage link utilization when the delayed 
ACK option is disabled. 

7.5.1.1.2 Effect of increased satellite link data rate 

We also evaluate the effect of increased satellite downlink and uplink data rates to 

10 Mb/s and 1 Mb/s, respectively. TCP-ADaLR exhibits the best performance. TCP 

SACK and TCP NewReno exhibit comparable performance of 462.3 s and 459.7 s for 

both the 2 Mb/s link shown in Table 7.5 and 10Mb/s link shown in Table 7.7. TCP-

ADaLR better utilizes the higher data rate than TCP SACK and TCP NewReno. High 

data rate is a characteristic of broadband GEO satellite networks. With increased satellite 

link data rates (10 Mb/s downlink and 1 Mb/s uplink), TCP-ADaLR shows ~21% and 

~29% shorter download response times than TCP SACK and TCP NewReno for cases 

with and without delayed ACK, respectively. However, TCP SACK and TCP NewReno 

show only ~1% shorter download response times for cases with and without delayed, 
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respectively. Correspondingly, TCP-ADaLR shows higher TCP goodput, TCP 

throughput, satellite link throughput, and satellite link utilization, as shown in Figures 

7.12–7.15. With the higher satellite link data rates, ACKs arrive faster at the TCP sender 

and, hence, TCP-ADaLR opens the cwnd and transmits additional segments faster. 

Table 7.7. FTP download response time for scenarios with ideal lossless satellite channel and 
increased satellite link data rates. For cases with and without delayed ACK, TCP-ADaLR shows up 
to 38% and 48% shorter download response times than TCP SACK and TCP NewReno, 
respectively. 

 Download response time (s) 

Delayed ACK option Enabled Disabled 

TCP-ADaLR SACK 283.0 235.4 
TCP-ADaLR NewReno 283.0 235.4 
TCP SACK 462.3 459.7 
TCP NewReno 462.3 459.7 
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Figure 7.12. Goodput for scenarios with ideal lossless satellite channel and increased satellite link 
data rates. For cases with and without delayed ACK, TCP-ADaLR exhibits up to 66% and 138% 
higher goodput than TCP SACK and TCP NewReno, respectively. 
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Figure 7.13. TCP throughput for scenarios with ideal lossless satellite channel and increased satellite 
link data rates. TCP-ADaLR exhibits increasing throughput until the file transfer is completed and 
the throughput reduces to zero. 
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Figure 7.14. Satellite link throughput for scenarios with ideal lossless satellite channel and increased 
satellite link data rates. For cases with and without delayed ACK, TCP-ADaLR exhibits up to 150% 
and 250% higher satellite link throughput than TCP SACK and TCP NewReno, respectively. 
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Figure 7.15. Satellite link utilization for scenarios with ideal lossless satellite channel and increased 
satellite link data rates. TCP-ADaLR exhibits higher utilization than TCP SACK and TCP 
NewReno. 

7.5.1.1.3 Effect of varying FTP application file size 

For the FTP application, we investigate the effect on TCP-ADaLR performance 

by varying file sizes as: 500 kB, 50 MB, 100 MB, 200 MB, 300 MB, 400 MB, and 500 

MB. We evaluate the download response time, TCP throughput, satellite link throughput, 

and satellite link utilization for TCP-ADaLR and TCP SACK (In a scenario with ideal 

lossless satellite link, TCP SACK and TCP NewReno exhibit the identical performance. 

Similarly, TCP-ADaLR variants exhibit identical performance). We consider only the 

case when the delayed ACK option is enabled. The download response times for 

evaluated file sizes are shown in Figure. 7.16. TCP-ADaLR shows 9%–38% shorter 

download response times than TCP NewReno. As the file size increases, the download 

response time increases for both TCP-ADaLR and TCP NewReno. 
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Figure 7.16. As the file size increases, TCP-ADaLR shows shorter download response time than TCP 
SACK and TCP NewReno. 

TCP-ADaLR shows increasing TCP throughput, as shown in Figure 7.17. When 

the RTT is large, TCP-ADaLR adapts its transmission rate using the scaling component, 

which enables it to transmit more segments in each RTT with its adaptive cwnd increase 

mechanism. The adaptive rwnd increase mechanism also allows additional segments to 

be transmitted when the cwnd exceeds the rwnd and the flightsize does not exceed the 

rwnd. However, the throughput of the TCP NewReno connection remains unchanged 

when the file size is increased from 50 MB to 500 MB. When the file size is large, a 

larger percentage of the file is downloaded during the congestion avoidance phase. The 

congestion avoidance phase is more conservative with the linear cwnd increments. The 

rwnd limits maximum amount of data that can be transmitted when the cwnd has 

exceeded the rwnd. The long RTTs further prevent TCP throughput increase. 
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Figure 7.17. As the file size increases, TCP throughput of TCP-ADaLR increases 9%–75% compared 
to TCP SACK and TCP NewReno. 

The satellite link throughput and satellite link utilization are shown in Figures 

7.18 and 7.19, respectively. As expected, the satellite link utilization is lowest for TCP-

ADaLR and TCP NewReno when the file size is 500 kB (the smallest file size). TCP-

ADaLR exhibits increasing satellite link throughput and utilization for all file sizes up to 

400 MB. The increasing TCP throughput enables transmission of additional segments, 

thus leading to the increased satellite link throughput and utilization, as shown in Figures 

7.18 and 7.19. However, the satellite link throughput and utilization of the TCP 

NewReno connection decrease very slightly when the file size is larger than to 50 MB 

because of the slower transmission rate during congestion avoidance phase. TCP-ADaLR 

NewReno shows 57%–90% higher satellite link throughput than TCP NewReno. Hence, 

TCP-ADaLR exhibits performance scalability with increasing file sizes. 
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Figure 7.18. TCP-ADaLR exhibits up to 81% higher satellite link throughput than TCP SACK and 
TCP NewReno. 
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Figure 7.19. For all file sizes, TCP-ADaLR exhibits 57%–90% higher satellite link utilization than 
TCP SACK and TCP NewReno. 
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7.5.1.2 Performance of HTTP application 

All TCP variants download identical number of web pages and embedded page 

objects. We evaluated the page response time of the HTTP application specified in Table 

7.3. The main page object and the 15 embedded objects are completely downloaded and 

the complete web page is opened before the HTTP page response statistic is collected. 

The HTTP page response time for a single webpage is shown in Table 7.8. TCP-ADaLR 

shows ~10% and ~9% shorter page response times than TCP SACK and TCP NewReno 

with and without delayed ACK, respectively. Hence, TCP-ADaLR shows performance 

gains in the user-perceived latency of short-lived flows such as HTTP applications. The 

adaptive cwnd and rwnd increase mechanisms enable TCP-ADaLR to open the cwnd 

more rapidly and transmit additional segments after the IW of data segments (main page 

object). Hence, the HTTP webpage embedded objects are downloaded more quickly 

when TCP-ADaLR is employed. However, TCP SACK and TCP NewReno exhibit 

longer download response times for both cases with and without delayed ACK. 

Table 7.8. HTTP page response time for scenarios with ideal lossless satellite channel. For cases with 
and without delayed ACK, TCP-ADaLR shows ~10% and ~9% shorter page response times than 
TCP SACK and TCP NewReno. 

 Page response time (s) 

Delayed ACK option Enabled Disabled 

TCP-ADaLR SACK 4.4 3.9 

TCP-ADaLR NewReno 4.4 3.9 

TCP SACK 4.9 4.3 

TCP NewReno 4.9 4.3 



 

 73

7.5.2 Error-free satellite channel with only congestion losses 

We evaluate the performance of TCP-ADaLR in the presence of congestion losses 

at a bottleneck gateway with a finite buffer size of 25 packets and 15 packets for the FTP 

and HTTP applications, respectively. We employ lower number of segments for the 

HTTP application because they are short-lived flows that occur in bursts. 

7.5.2.1 Performance of FTP application 

The download response time is comparable for all four TCP variants, as shown in 

Table 7.9. TCP-ADaLR SACK variant show slightly lower download response times 

than the other three TCP variants in the case with delayed ACK. For all TCP variants, the 

download response times with delayed ACK are lower than in the case without delayed 

ACK. The TCP goodput for cases with and without delayed ACK are shown in Figures 

7.20 and 7.21, respectively. The TCP throughput, satellite link throughput, and satellite 

link utilization are shown in Figures 7.22–7.27. The TCP-ADaLR variants perform 

comparably to both TCP SACK and TCP NewReno because the adaptive cwnd and rwnd 

increase mechanisms lead to cwnd increments void of large bursts that may lead to 

performance degradation during congestion. Hence, TCP-ADaLR variants show no 

significant performance degradation in the presence of congestion. After the transmission 

rate is adjusted in response to congestion, the TCP ADaLR variants exhibit variations in 

TCP throughput attributed to the cwnd increments of the adaptive cwnd increase 

mechanism during the congestion avoidance phase, as shown in Figure 7. 22. 
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Table 7.9. FTP download response time for scenarios with only congestion losses. For both cases with 
and without delayed ACK, TCP-ADaLR variants exhibit download response times comparable to 
TCP SACK and TCP NewReno. 

 Page response time (s) 

Delayed ACK option Enabled Disabled 

TCP-ADaLR SACK 1212.7 1226.7 

TCP-ADaLR NewReno 1228.0 1232.4 

TCP SACK 1224.8 1226.7 

TCP NewReno 1216.6 1226.7 
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Figure 7.20. Goodput for scenarios with only congestion losses and delayed ACK enabled. Received 
segment sequence number is used as an indicator of goodput. The four TCP variants exhibit 
comparable goodput. 
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Figure 7.21. Goodput for scenarios with only congestion losses and delayed ACK disabled. The 
received segment sequence number is used as an indicator of goodput. The four TCP variants exhibit 
comparable goodput. 
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Figure 7.22. TCP throughput for scenarios with only congestion losses and delayed ACK enabled. 
The four TCP variants exhibit TCP throughput degradation when congestion losses are detected. 
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Figure 7.23. TCP throughput for scenarios with only congestion losses and delayed ACK disabled. 
The TCP throughput is comparable for the four TCP variants. 
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Figure 7.24. Satellite link throughput for scenarios with only congestion losses and delayed ACK 
enabled. The link throughput reduces when congestion losses are detected and attains steady state 
after transmission rate adjusted by the TCP congestion control algorithms in response to congestion. 
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Figure 7.25. Satellite link throughput for scenarios with only congestion losses and delayed ACK 
disabled. Satellite link throughput is comparable for the four TCP variants. 
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Figure 7.26. Satellite link utilization for scenarios with only congestion losses and delayed ACK 
enabled Satellite link utilization decreases when congestion losses are detected. 
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Figure 7.27. Satellite link utilization for scenarios with only congestion losses and delayed ACK 
disabled. Satellite link utilization is comparable for the four TCP variants. 

7.5.2.2 Performance of HTTP application 

We evaluate performance of the HTTP application in terms of the page response 

time. The increased page response time indicates the impact of congestion losses 

(compared to the ideal case) as shown in Table 7.10. TCP-ADaLR SACK shows the best 

performance while TCP-ADaLR NewReno exhibits the second best performance in both 

cases with and without delayed ACK. TCP-ADaLR variants exhibit shorter HTTP page 

responses times than TCP SACK and TCP NewReno and, hence, show performance 

gains. HTTP transfers occur in short bursts. When losses occur, the adaptive cwnd 

increase mechanism enables the transmission of additional segments after fast recovery. 

Hence, the HTTP transfers are completed faster than TCP SACK and TCP NewReno. 

The adaptive rwnd mechanism allows at least two back-to-back segments to be 
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transferred during the recovery process to compensate for delayed ACK. Hence, the main 

page and embedded objects are downloaded in quick successions with the TCP-ADaLR 

algorithm. 

Table 7.10. HTTP page response time for scenarios with only congestion losses. For cases with and 
without delayed ACK, TCP-ADaLR SACK exhibits 33% and 12% shorter page response times than 
TCP SACK, respectively. 

 Page response time (s) 

Delayed ACK option Enabled Disabled 

TCP-ADaLR SACK 11.0 10.3 

TCP-ADaLR NewReno 11.0 11.1 

TCP SACK 13.8 11.7 

TCP NewReno 16.6 11.7 

7.5.3 Satellite channel with only error losses 

We evaluate the performance of TCP-ADaLR in the presence of losses due to 

only satellite link errors for the various BER values shown in Table 7.1. (Typical average 

post-FEC BER of satellite links is 10-5 to 10-8 [99].) For each BER value, we use different 

random seed numbers and compute the average values using 95% confidence intervals. 

7.5.3.1 Performance of FTP application 

For the FTP application, we evaluate average values of the download response 

time, TCP goodput, TCP throughput, satellite link throughput, and satellite link 

utilization as a function of the BER values. The download response time for cases with 

and without delayed ACK are shown in Figures 7.28 and 7.29, respectively. For all TCP 

variants, the negative effect of losses due to satellite link errors is evident in the 

increasing response times as the BER increases. For the simulated BER values, TCP-

ADaLR SACK shows 13%–37% and 6%–31% shorter download response time than TCP 
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SACK with and without delayed ACK, respectively. TCP-ADaLR NewReno exhibits 

5%–26% and 2%–26% shorter download response time than TCP NewReno with and 

without delayed ACK, respectively. Performance gains increase at high BER values. The 

TCP-ADaLR variants are robust against heavy losses resulting from high BER values. 

The loss recovery mechanism enables quicker recovery from the losses due to satellite 

link errors. The adaptive window increase mechanisms also enable faster transmission of 

additional segments. TCP-ADaLR SACK and TCP-ADaLR NewReno show similar 

performance at low BER values. However, at high BER values, TCP-ADaLR SACK 

exhibits better performance than TCP-ADaLR NewReno. Hence, TCP-ADaLR offers 

better performance improvement with the SACK option. 
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Figure 7.28. FTP download response time for scenarios with only error losses and delayed ACK 
enabled. TCP-ADaLR SACK exhibits up to 37% shorter download response time than TCP SACK. 
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Figure 7.29. FTP download response time for scenarios with only error losses and delayed ACK 
disabled. At BER value of 10-6, TCP-ADaLR SACK shows ~31% shorter download response time 
than TCP SACK. 

The TCP goodput and TCP throughput are shown in Figures 7.30–7.33. The TCP-

ADaLR SACK shows 16%–61% and 7%–46% higher throughput than TCP SACK with 

and without delayed ACK, respectively. TCP-ADaLR NewReno exhibits 6%–36% and 

2%–35% higher throughput than TCP NewReno with and without delayed ACK, 

respectively. The adaptive cwnd increase mechanism causes additional segments to be 

rapidly sent after losses have occurred. The adaptive rwnd increase and loss recovery 

mechanisms allow at least two segments to be transmitted back-to-back when losses are 

detected in order to compensate for delayed ACK. These mechanisms enable TCP-

ADaLR to recover more quickly than TCP SACK and TCP NewReno. For corresponding 

BERs, TCP variants in scenarios with delayed ACK exhibit better performance than TCP 



 

 82

variants in scenarios without delayed ACK. Correspondingly, the satellite link throughput 

and utilization decrease with increasing BER, as shown in Figures 7.34–7.37. 

For all TCP variants, the TCP goodput and TCP throughput degrade considerably 

at BERs higher than 10-8 [103]. The long propagation delays prevent quick recovery from 

losses and exacerbate the performance degradation. Hence, it is difficult to sustain the 

higher throughputs at BER values lower than 10-8. When heavy losses occur and TCP 

throughput degrades, fewer segments are transmitted due to several RTO timer 

expirations in the absence of duplicate ACKs. When the delayed ACK option is enabled, 

it exacerbates the inability of TCP to recover quickly from the losses. Hence, for the four 

TCP variants, the satellite link utilization decreases. TCP-ADaLR SACK is the most 

robust variant in the presence of heavy losses due to satellite link errors. 
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Figure 7.30. Goodput for scenarios with only error losses and delayed ACK enabled. TCP-ADaLR 
SACK exhibits up to 27% higher goodput than TCP SACK. 
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Figure 7.31. Goodput for scenarios with only error losses and delayed ACK disabled. TCP-ADaLR 
SACK shows 7%–46% higher goodput than TCP SACK. 
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Figure 7.32. TCP throughput for scenarios with only error losses and delayed ACK enabled. TCP-
ADaLR SACK and TCP-ADaLR NewReno exhibit higher TCP throughputs than TCP SACK and 
TCP NewReno, respectively. 
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Figure 7.33. TCP throughput for scenarios with only error losses and delayed ACK disabled. For all 
BER values, TCP-ADaLR SACK exhibits the highest throughput. 
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Figure 7.34. Satellite link throughput for scenarios with only error losses and delayed ACK enabled. 
TCP-ADaLR SACK exhibits up to 73% higher satellite link throughput than TCP SACK. 
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Figure 7.35. Satellite link throughput for scenarios with only error losses and delayed ACK disabled. 
For all BER values, TCP-ADaLR SACK exhibits the highest satellite link throughput. 
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Figure 7.36. Satellite link utilization for scenarios with only error losses and delayed ACK enabled. 
TCP-ADaLR SACK and TCP-ADaLR NewReno exhibit comparable link utilization higher than 
TCP SACK and TCP NewReno. 
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Figure 7.37. Satellite link utilization for scenarios with only error losses and delayed ACK disabled. 
TCP-ADaLR variants exhibit up to 46% higher satellite link utilization than TCP SACK and TCP 
NewReno. 

7.5.3.2 Performance of HTTP application 

The page response times for cases with and without delayed ACK are shown in 

Figures 7.38 and 7.39, respectively. Both TCP-ADaLR variants exhibit similar page 

response times and outperform both TCP SACK and TCP NewReno. When all 

outstanding segments have been acknowledged, the adaptive cwnd increase mechanism 

enables rapid transmission of segments after loss recovery. The adaptive rwnd increase 

and loss recovery mechanisms enable TCP-ADaLR to recover more quickly from losses 

than TCP SACK or TCP NewReno. For cases with and without delayed ACK, the 

performance gains by TCP-ADaLR SACK and TCP-ADaLR NewReno are highest when 

the BER is lower than 10-6. For cases with and without delayed ACK, TCP-ADaLR 

variants exhibit 2%–12% and 7%–23% shorter page response time than TCP SACK and 
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TCP NewReno, respectively. When the BER is lower than 10-6, the TCP variants without 

delayed ACK exhibit better performance than with delayed ACK. At BER values higher 

than 10-7, the four TCP variants show similar page response times for cases with and 

without delayed ACK. 

The four TCP variants suffer performance degradation at BERs higher than 10-7 

because the increasing BER causes additional segment losses. Several lost TCP segments 

may compose a complete web page and embedded objects. Hence, a webpage download 

request may be completed in multiples of the usual response time, as indicated by the 

higher values of page response times. 
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Figure 7.38. HTTP page response time for scenarios with only error losses and delayed ACK 
enabled. TCP-ADaLR SACK and TCP-ADaLR NewReno show 2%–12% shorter page response 
times than TCP SACK and TCP NewReno. 
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Figure 7.39. HTTP page response time for scenarios with only error losses and delayed ACK 
disabled. TCP-ADaLR SACK and TCP-ADaLR NewReno exhibit 7%–23% shorter page response 
times than TCP SACK and TCP NewReno. 

7.5.4 Satellite channel with both congestion and error losses 

We evaluate the performance of TCP-ADaLR in the presence of both congestion 

losses at the bottleneck gateway and losses due to satellite link errors. The bottleneck 

gateway had finite buffer sizes for FTP and HTTP applications. We test various BER 

values shown in Table 7.1. For each BER value, we use different random seed numbers 

and compute the average values using 95% confidence intervals. 

7.5.4.1 Performance of FTP application 

In the presence of error and congestion losses, the two TCP-ADaLR variants 

show comparable FTP download response time with TCP SACK and TCP NewReno 

when the BER value is 10-7 and lower, as shown in Figures 7.40 and 7.41. The TCP 

goodput, TCP throughput, satellite link throughput, and utilization are shown in Figures 
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7.42–7.49. At lower BERs, TCP-ADaLR variants exhibit comparable performance to 

TCP SACK and TCP NewReno because losses are mainly due to congestion. At higher 

BERs, TCP-ADaLR variants exhibit better performance than TCP SACK and TCP 

NewReno because satellite link errors are the more prevalent cause of losses. For the case 

with delayed ACK at BER value of 10-6 and higher, TCP-ADaLR SACK exhibits up to 

29% shorter download response time than TCP SACK. For the case without delayed 

ACK, TCP-ADaLR NewReno exhibits shorter download response time than TCP 

NewReno. At higher BERs, the adaptive cwnd increase mechanism enables quick 

recovery from segment losses when all outstanding segments have been acknowledged. 

The adaptive rwnd increase and loss recovery mechanisms enable TCP-ADaLR SACK to 

recover more quickly from losses than either TCP SACK and TCP NewReno. 
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Figure 7.40. FTP download response time for scenarios with both congestion and error losses and 
delayed ACK enabled. When BER is higher than 10-7, TCP-ADaLR variants exhibit shorter 
download response times than TCP SACK and TCP NewReno. 
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Figure 7.41. FTP download response time for scenarios with both congestion and error losses and 
delayed ACK disabled. TCP-ADaLR SACK exhibits 23%–28% shorter download response times 
than TCP SACK. 
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Figure 7.42. Goodput for scenarios with both congestion and error losses and delayed ACK enabled. 
TCP-ADaLR SACK exhibits 36%–43% higher goodput than TCP SACK and TCP NewReno at BER 
higher than 10-7. 
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Figure 7.43. Goodput for scenarios with both congestion and error losses and delayed ACK disabled. 
TCP-ADaLR SACK shows 32% higher goodput than TCP SACK for BER values of 10-6 and 10-5, 
respectively. 
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Figure 7.44. TCP throughput for scenarios with both congestion and error losses and delayed ACK 
enabled. For BER values higher than 10-7, TCP-ADaLR SACK and TCP-ADaLR NewReno exhibit 
42%–43% and 10%–39% higher throughput than TCP SACK and TCP NewReno, respectively. 
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Figure 7.45. TCP throughput for scenarios with both congestion and error losses and delayed ACK 
disabled. At BER values higher than 10-7, TCP-ADaLR SACK exhibits 32%–39% higher throughput 
than TCP SACK. 
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Figure 7.46. Satellite link throughput for scenarios with both congestion and error losses and delayed 
ACK disabled is comparable for all TCP variants at low BER values. TCP-ADaLR SACK shows 
57%–86% higher satellite link throughput than TCP SACK with delayed ACK. 



 

 93

10-9 10-8 10-7 10-6 10-50

0.5

1

1.5

2

2.5

3

3.5

4

x 105

BER

Th
ro

ug
hp

ut
 (b

/s
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

 
Figure 7.47. Satellite link throughput for scenarios with both congestion and error losses and delayed 
ACK disabled. TCP-ADaLR SACK shows 51%–79% higher satellite link throughput than TCP 
SACK. 
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Figure 7.48. Satellite link utilization for scenarios with both congestion and error losses and delayed 
ACK enabled. The satellite link utilization for the four TCP variants is severely reduced because of 
the heavy losses caused by congestion and satellite link errors. 
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Figure 7.49. Satellite link utilization for scenarios with both congestion and error losses and delayed 
ACK disabled. At BER greater than 10-7, TCP-ADaLR SACK exhibits the best performance. 

7.5.4.2 Performance of HTTP application 

We evaluate performance of the HTTP application in terms of the page response 

time. The increased HTTP page response time indicates the effect of both congestion and 

error losses, as shown in Figure 7.50 and 7.51. 

TCP-ADaLR SACK shows the best performance in both cases with and without 

delayed ACK. Hence, the SACK option improves the TCP-ADaLR algorithm 

performance for the HTTP application. TCP-ADaLR SACK shows up to 32% and 26% 

shorter page response times than TCP SACK for cases with and without delayed ACK, 

respectively. The short and bursty nature of HTTP transfers ensures small number of 

outstanding unacknowledged bytes. Hence, when losses occur, the adaptive cwnd 

increase mechanism enables the HTTP web pages to open more quickly with TCP-
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ADaLR than with TCP SACK and TCP NewReno. The adaptive rwnd and loss recovery 

mechanisms compensate for delayed ACK by allowing at least two segments to be 

transferred back-to-back during the fast recovery phase. Hence, the HTTP transfers are 

completed faster with the TCP-ADaLR. TCP-ADaLR NewReno outperforms TCP 

NewReno when the delayed ACK option is disabled. However, TCP-ADaLR NewReno 

performs worse than TCP NewReno when the delayed ACK option is enabled. This 

performance reduction may be due to loss of several original and retransmitted segments 

due to the initial high transmission rate of the TCP-ADaLR algorithm. In the absence of 

losses at the start of transmission, TCP-ADaLR opens the cwnd faster than TCP SACK 

and TCP NewReno, thus resulting in an initial high transmission rate. This is the only 

scenario we observed where TCP-ADaLR NewReno performs worse than TCP 

NewReno. 
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Figure 7.50. HTTP page response time for scenarios with both congestion and error losses and 
delayed ACK enabled. For most BER values, TCP-ADaLR SACK exhibits the best performance. 
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Figure 7.51. HTTP page response time for scenarios with both congestion and error losses and 
delayed ACK disabled. TCP-ADaLR SACK and TCP-ADaLR NewReno exhibit comparable 
performance and outperform both TCP SACK and TCP NewReno. 

7.5.5 Fairness and friendliness 

An important feature of TCP is its ability to ensure a fair division among multiple 

competing connections. A TCP variant is fair if coexisting connections achieve equal 

bandwidth allocation. Friendliness refers to coexisting TCP connections with distinct 

TCP variants having a fair share of the available bandwidth. We employ the Jain’s metric 

of fairness [23] defined as 

∑
∑
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j j
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j j
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Fairness
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)(

)(
,                                          (7.4)                        

where n is the number of competing connections and tj is the average throughput of the 

jth connection. The Jain’s metric of fairness is used to evaluate both fairness and 
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friendliness. The fairness/friendliness metric has a value between 1/n and 1, where 1/n 

corresponds to unfair and 1 to fair (equal) bandwidth allocation for all n connections. 

Max-min fairness [104] for multiple competing connections using the identical 

protocols is defined as 

max

min

j

j

t
t

Fairness = ,                                                        (7.5) 

where 
minjt  and 

maxjt  are the minimum and maximum throughputs, respectively. The max-

min fairness metric is also used to evaluate fairness. 

 Common TCP variants such as TCP SACK and TCP NewReno are known to be 

fair when the competing connections have similar RTTs [65]. However, if the competing 

connections have different RTTs, the connections with shorter RTTs consume a larger 

fraction of the available bottleneck bandwidth and starve connections with longer RTTs. 

 TCP variants in deployed networks are expected to coexist and share bottleneck 

links among connections of distinct RTTs. We evaluate the fairness and friendliness of 

TCP-ADaLR NewReno in the absence of losses for an FTP application. (TCP-ADaLR 

NewReno and TCP-ADaLR SACK exhibit identical performance in the absence of 

losses. Similarly TCP NewReno and TCP SACK exhibit identical performance in the 

absence of losses.) All TCP connections are configured with the delayed ACK option 

enabled. We evaluate fairness and friendliness using the network model shown in Figure 

7.52. All links, including the GEO satellite link, are bi-directional with 10 Mb/s data rate. 

Shown are one-way propagation delays. A single client connects to a single server and 

corresponding server-client pairs have the same subscript notation. We test six TCP 
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connections with various RTTs using two fairness scenarios where TCP connections 

employ TCP-ADaLR NewReno and TCP NewReno, respectively. We evaluate fairness 

using (7.4) and (7.5). In the friendliness scenario, we test three TCP-ADaLR NewReno 

and three TCP NewReno coexisting connections. We evaluate the friendliness of TCP-

ADaLR NewReno using (7.4). 
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Figure 7.52. Network configuration for evaluating TCP fairness and TCP friendliness of TCP-
ADaLR NewReno. 

7.5.5.1 TCP-ADaLR fairness 

The average throughput of the six TCP-ADaLR NewReno and six TCP NewReno 

connections are shown in Tables 7.11 and 7.12, respectively. The longest (500 ms) RTT 

connection using TCP-ADaLR NewReno has average throughput 47% higher than the 

corresponding TCP NewReno 500 ms RTT connection. Conversely, the average 

throughput of the shortest RTT connection using TCP-ADaLR NewReno drops by 12%. 

The fairness values are shown in Table 7.13. With both metrics of fairness, TCP-ADaLR 
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NewReno reduces the penalty caused by long RTT connections and exhibits better 

fairness than TCP NewReno. 

Table 7.11. Average throughput achieved by six competing TCP-ADaLR NewReno connections, each 
with distinct RTTs. 

RTT (ms) Average throughput (bytes/s) 

25 283,404.6 

50 281,750.6 

100 268,984.6 

300 195,099.8 

400 175,343.8 

500 160,897.4 

Table 7.12. Average throughput achieved by six competing TCP NewReno connections, each with 
distinct RTTs. 

RTT (ms) Average throughput (bytes/s) 

25 322,418.0 

50 300,629.1 

100 263,129.2 

300 158,601.5 

400 129,560.8 

500 109,239.5 

Table 7.13. TCP fairness values of TCP-ADaLR NewReno and TCP NewReno using the Jain’s 
metric of fairness and max-min fairness metric. 

TCP Variant 
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∑
=

=

×
= n

j j

n

j j

tn

t
Fairness

1
2

2
1

)(

)(
max

min

j

j

t
t

Fairness =  

TCP-ADaLR NewReno 0.9510 0.5677 

TCP NewReno 0.8650 0.3388 
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 In the friendliness scenario, the average throughput of each competing connection 

is shown in Table 7.14. The friendliness value (close to 1), shown in Table 7.15, confirms 

that TCP-ADaLR NewReno is TCP-friendly. Hence, the three long RTT connections 

have a fair share of the bottleneck link’s available bandwidth. 

Table 7.14. Average throughput achieved by six competing TCP connections using distinct TCP 
variants. 

RTT (ms) TCP variant Average throughput (bytes/s) 

25 TCP NewReno 253,202.9 

50 TCP NewReno 231,009.8 

100 TCP NewReno 206,831.7 

300 TCP-ADaLR NewReno 211,369.5 

400 TCP-ADaLR NewReno 188,513.4 

500 TCP-ADaLR NewReno 177,309.9 

Table 7.15. TCP friendliness of TCP-ADaLR NewReno and TCP NewReno competing connections. 

TCP variant mix 
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TCP-ADaLR NewReno 
and TCP NewReno 

0.9859 0.7000 
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CHAPTER 8: CONCLUSIONS AND FUTURE WORK 

 The importance of broadband GEO satellite networks in providing core high-

speed backbone and broadband access for the next generation Internet cannot be over 

emphasized. TCP as the dominant transport protocol will continue to provide byte-stream 

transport layer services for evolving Internet applications. 

In this thesis, we proposed the TCP-ADaLR algorithm (TCP with adaptive delay 

and loss response) to reduce the adverse impact of the long propagation delays and high 

BERs on TCP performance in heterogeneous networks with GEO satellite links. In each 

simulation scenario, we considered the case with the TCP delayed ACK option enabled 

and the case with the TCP delayed ACK option disabled. The TCP-ADaLR algorithm 

was implemented as an extension to TCP SACK. We also evaluated the algorithm 

performance when implemented as an extension to TCP NewReno. We named the two 

TCP-ADaLR variants TCP-ADaLR SACK and TCP-ADaLR NewReno. Simulation 

results indicated that TCP-ADaLR improves the end-to-end performance of TCP for 

HTTP and FTP applications in the absence of losses with delayed ACK enabled and with 

delayed ACK disabled. The TCP-ADaLR algorithm reduced the response times for 

downloading HTTP WebPages and FTP files. In the presence of only congestion losses, 

both TCP-ADaLR SACK and TCP-ADaLR NewReno show comparable performance to 

TCP SACK and TCP NewReno. In the presence of only error losses, TCP-ADaLR 

SACK outperforms TCP SACK and TCP NewReno and improves the average TCP 

throughput, TCP goodput, and satellite link utilization. TCP-ADaLR SACK also shows 
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better performance than TCP SACK and TCP NewReno in the presence of both 

congestion and error losses. Hence, TCP-ADaLR SACK exhibits the best performance in 

all cases followed by TCP-ADaLR NewReno. In each simulation scenario, TCP-ADaLR 

with delayed ACK disabled outperforms TCP-ADaLR with delayed ACK enabled. 

Hence, TCP-ADaLR does not degrade performance of TCP connections with delayed 

ACK disabled and yields better performance. 

 Increasing the propagation delay of the terrestrial segment reduces the 

performance of the four TCP variants. However, TCP-ADaLR exhibits better throughput 

and goodput performance than TCP SACK and TCP NewReno. High data rate is an 

important feature of broadband networks. With increased link data rate, TCP-ADaLR 

shows higher satellite link throughput and better link utilization than TCP SACK and 

TCP NewReno. 

 The deployment of TCP-ADaLR in heterogeneous networks requires 

modifications only at the TCP sender. These modifications place additional albeit 

minimal processing and memory overheads at the TCP sender. The TCP-ADaLR 

algorithm does not require modifications or introduction of packet prioritization 

mechanisms at intermediate network nodes. No modifications are required at the TCP 

receiver. TCP-ADaLR is fair to competing connections with different RTTs. It is also 

friendly to TCP NewReno connections. Hence, it may be deployed in networks with 

other TCP variants. Finally, TCP-ADaLR maintains the end-to-end semantics of TCP. 

 An important area of future research is performance comparison of TCP-ADaLR 

with TCP variants designed for satellite networks such as TCP Westwood, TCP Hybla, 

TCP-Peach, TCP NewVegas, and TCP-Star, which are currently not available in OPNET. 
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Furthermore, a mechanism to distinguish between congestion losses and error losses 

could be introduced to the TCP-ADaLR algorithm to further improve its performance in 

satellite networks. The performance of TCP-ADaLR algorithm may also be evaluated for 

NGEO networks, which exhibit characteristics such as frequent handovers and varying 

propagation delays. 
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APPENDIX A: FEATURES OF OPNET SIMULATIONS 

In this Appendix, we present details of the simulation and simulated times for the 

four simulation scenarios. 

In the OPNET discrete event simulator, simulation variables are defined in the 

simulation set info menu, as shown in Figure A.1. The duration is the specified real-time 

simulated (simulated time). The seed is the random seed number employed for the 

simulation run. Multiple seed numbers may be defined with the multiple seed values 

attribute. Four seed values were employed in the scenarios with various BER values. The 

values per statistic is the collection interval between collecting consecutive result data. 

Hence, for a duration = 18,000 s and values per statistic = 3,600, the interval between 

collecting consecutive result data is 5 s. The update interval is the number of events that 

are required before a simulation update is generated by the OPNET discrete event 

simulator. A higher value of update interval implies a longer interval update period. The 

update interval attribute can be set to a high value to reduce the number of updates 

received during simulation and, and, thus reduce the simulation time. The OPNET default 

is 500,000 events. However, we set this variable to 1, 000, 000 events for all simulations. 

The simulation time is the actual real-time that elapses for the simulation to be 

completed. A simulation may completed before the duration elapses as in the case when 

simulated application (FTP or HTTP) download is completed. 
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Figure A.1. The OPNET simulation set info menu for specifying simulator parameters. The common 
attributes include duration, seed, values per statistic, update interval, and simulation kernel. 

A.1. FTP file download application 

For the FTP file download application, the simulated time for all simulation 

scenarios was 5 hours (18,000 s). A single 50 MB file was downloaded in each scenario 

unless otherwise stated. However, each simulation scenario exhibited different simulation 

times for the four TCP variants, as shown in Tables A.1–A.5. The simulation time is 

shorter than the simulated time (18,000 s) in all scenarios because the simulated 

application (FTP file download) was completed before the simulated time (duration) 

elapsed. The simulation time increased with file size, as shown in Table A.2, because a 

larger file requires a higher number of events to take place before the file download is 

completed. 

Table A.1. Simulation times for the four TCP variants with delayed ACK enabled in the ideal lossless 
satellite channel scenario for the simulated 50 MB FTP file download application. 

TCP variant Simulated time (s) Simulation time (s) 

TCP-ADaLR SACK 18,000 179 

TCP-ADaLR NewReno 18,000 179 

TCP SACK 18,000 184 

TCP NewReno 18,000 184 
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Table A.2. Simulation times (s) for TCP-ADaLR NewReno and TCP NewReno with delayed ACK 
enabled for various file sizes in the ideal lossless satellite channel scenarios for evaluating the effect of 
increasing file size. 

File size (MB) TCP variant Simulated 
time (s) 100 200 300 400 500 

TCP-ADaLR NewReno 18,000 306 741 1,124 1,447  

TCP NewReno 18,000 309 732 1,123 1,455  

Table A.3. Simulation times for the four TCP variants with delayed ACK enabled in the scenarios 
with only congestion losses for the simulated 50 MB FTP file download application. 

TCP variant Simulated time (s) Simulation time (s) 

TCP-ADaLR SACK 18,000 192 

TCP-ADaLR NewReno 18,000 257 

TCP SACK 18,000 195 

TCP NewReno 18,000 187 

Table A.4. Simulation times (s) for the four TCP variants with delayed ACK enabled in the scenarios 
with only error losses for the simulated 50 MB FTP file download application. 

Bite error rate TCP variant Simulated 
time (s) 10-9 10-8 10-7 10-6 10-5 

TCP-ADaLR SACK 18,000 189 190 190 197 243 

TCP-ADaLR NewReno 18,000 183 183 190 201 243 

TCP SACK 18,000 185 184 186 201 221 

TCP NewReno 18,000 185 188 194 195 219 

Table A.5. Simulation times for the four TCP variants with delayed ACK enabled in the scenarios 
with both congestion and error losses for the simulated 50 MB FTP file download application. 

Bite error rate TCP variant Simulated 
time (s) 10-9 10-8 10-7 10-6 10-5 

TCP-ADaLR SACK 18,000 189 183 189 203 244 

TCP-ADaLR NewReno 18,000 189 183 187 201 244 

TCP SACK 18,000 198 183 187 195 214 

TCP NewReno 18,000 179 183 186 194 271 
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A.2. HTTP web page download application 

For the HTTP web page download application (Table 7.3), the simulated time for 

all simulation scenarios was 600 s. Each simulation scenario exhibited comparable 

simulation times for the four TCP variants, as shown in Tables A.6–A.9. 

Table A.6. Simulation times for the four TCP variants with delayed ACK enabled in the ideal lossless 
satellite channel scenarios for the simulated HTTP web page download application. 

TCP variant Simulated time (s) Simulation time (s) 

TCP-ADaLR SACK 600 13 

TCP-ADaLR NewReno 600 13 

TCP SACK 600 13 

TCP NewReno 600 13 

Table A.7. Simulation times for the four TCP variants with delayed ACK enabled in the scenarios 
with only congestion losses for the simulated HTTP web page download application. 

TCP variant Simulated time (s) Simulation time (s) 

TCP-ADaLR SACK 600 14 

TCP-ADaLR NewReno 600 15 

TCP SACK 600 13 

TCP NewReno 600 13 

Table A.8. Simulation times (s) for the four TCP variants with delayed ACK enabled in the scenarios 
with only error losses for the simulated HTTP web page download application. 

Bite error rate TCP variant Simulated 
time (s) 10-9 10-8 10-7 10-6 10-5 

TCP- ADaLR SACK 600 14 14 13 14 13 

TCP- ADaLR NewReno 600 12 14 13 13 13 

TCP SACK 600 12 13 13 13 13 

TCP NewReno 600 12 14 13 13 13 
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Table A.9. Simulation times (s) for the four TCP variants with delayed ACK enabled in the scenarios 
with both congestion and error losses for the simulated HTTP web page download application. 

Bite error rate TCP variant Simulated 
time (s) 10-9 10-8 10-7 10-6 10-5 

TCP-ADaLR SACK 600 12 14 14 14 14 

TCP-ADaLR NewReno 600 11 14 14 14 15 

TCP SACK 600 12 14 13 13 14 

TCP NewReno 600 12 14 13 14 13 
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