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Abstract

Traditional statistical analysis of network data is often employed to determine traf-

fic distribution, to summarize user’s behavior patterns, or to predict future network

traffic. Mining of network data may be used to discover hidden user groups, to detect

payment fraud, or to identify network abnormalities. In our research we combine

traditional traffic analysis with data mining technique. We analyze three months of

continuous network log data from a deployed public safety trunked radio network. Af-

ter data cleaning and traffic extraction, we identify clusters of talk groups by applying

AutoClass tool and K-means algorithm on user’s behavior patterns represented by the

hourly number of calls. We propose a traffic prediction model by applying the clas-

sical SARIMA models on the clusters of users. The predicted network traffic agrees

with the collected traffic data and the proposed cluster-based prediction approach

performs well compared to the prediction based on the aggregate traffic.

iii



To my parents and my wife!

iv



“The Tao is too great to be described by the name Tao.

If it could be named so simply, it would not be the eternal Tao.”

— Tao Te Ching, Lao Tzu
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Chapter 1

Introduction

Analysis of traffic from operational wireless networks provides useful information

about the network and users’ behavior patterns. This information enables network

operators to better understand the behavior of network users, to better use network

resources, and, ultimately, to provide better quality of services.

Traffic prediction is important in assessing future network capacity requirements

and in planning network development. Traditional prediction of network traffic usually

considers aggregate traffic from individual network users. It also assumes a constant

number of network users. This approach cannot easily adapt to a dynamic network

environment where the number of users varies. An alternate approach that focuses

on individual users is impractical in predicting the aggregate network traffic because

of the high computational cost in cases where the network consists of thousands of

users. Employing clustering technique for predicting aggregate network traffic bridges

the apparent gap between these two approaches.

Data clustering may be used to identify and define customer groups in various

business environments based on their purchasing patterns. In the telecommunica-

tion industry, clustering techniques may be used to identify traffic patterns, detect

fraudulent activities, and discover users’ mobility patterns. Network users are usually

classified into user groups according to geographical location, organizational structure,

payment plan, or behavior pattern. Patterns of users’ behavior reflect the nature of

1



CHAPTER 1. INTRODUCTION 2

user activities and, as such, are inherently consistent and predictable. However, em-

ploying users’ behavior patterns to classify user groups and to predict network traffic

is non-trivial.

In this thesis, we analyze traffic data collected from a deployed network. We use

hourly number of calls to represent individual user’s calling behavior. We then predict

network traffic based on the aggregate traffic and based on the identified clusters of

users. Experimental results show that the cluster-based prediction produces results

comparable to the traditional prediction of network traffic. The user cluster based

traffic prediction approach may also address the computational cost and the dynamic

number of users problems. An advantage of cluster-based prediction is that it may

be used for predictions in networks with variable number of users. This approach

provides a balance between a micro and a macro view of a network.

This thesis includes additional five chapters.

Chapter 2 begins with a brief introduction to the network and the traffic data that

we analyzed. It is followed by the description of data preprocessing, data extraction

and the results.

In Chapter 3, various statistical analysis routines have been applied to the traffic

data on three levels: network, agency, and talk group levels. The analysis results

include plots and basic statistical measures (maximum, minimum, mean value, and

variance).

In Chapter 4, we discuss the general clustering techniques and principles. We

apply the AutoClass clustering tool and K-means algorithm to classify talk groups

into clusters based on their calling activities. We also compare the the clustering

results of AutoClass and K-means.

In Chapter 5, we present the Seasonal Autoregressive Integrated Moving Average

(SARIMA) time series prediction model. We discuss the model selection method and

present the prediction results of the network traffic. We conclude with a comparison of

the prediction results of cluster-based models and models based on aggregate traffic.

We conclude the thesis with Chapter 6. A short summary of experiences that we

gained is given and the future work is addressed.

Appendics include additional database tables, SQL scripts, R scripts, and snippets
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of AutoClass model and report files. Experimental results of conditional dependency

analysis of the traffic data using Bayesian network are also presented.



Chapter 2

Data preparation

The traffic data analyzed in this thesis were obtained from E-Comm [1]. In this Chap-

ter, we first introduce the architecture of the E-Comm network and the underlying

technology. We also examine the database schema and describe the procedure for

data cleaning and the traffic data extraction.

2.1 E-Comm network

2.1.1 E-Comm network structure overview

E-Comm is the regional emergency communications center for Southwest British

Columbia, Canada. It provides emergency dispatch/communication services for a

number of police and fire departments in the Greater Vancouver Regional District

(GVRD), the Sunshine Coast Regional District, and the Whistler/Pemberton area.

E-Comm serves sixteen agencies such as Royal Canadian Mounted Police (RCMP),

fire and rescue, local police departments, ambulance, and industrial customers such

as BC Translink [2]. Each agency has a number of affiliated talk groups and the entire

network serves 617 talk groups. Figure 2.1 presents a rough geographical coverage of

the E-Comm network.

Before the establishment of E-Comm, ambulance, fire, and police agencies could

not communicate with each other effectively because they used separate radio systems.

4



CHAPTER 2. DATA PREPARATION 5

The deployment of the E-Comm network in 1999 provided an integrated shared com-

munications infrastructure to various emergence service agencies. It enables the cross

communication between various agencies and municipalities.

The E-Comm network employs Enhanced Digital Access Communications System

(EDACS), developed by M/A-COM [3] (formerly Comnet-Ericsson) in 1988. EDACS

system is a group-oriented communication system that allows groups of users to com-

municate with each other regardless of their physical locations. The main advantages

of this approach are improved coordination, efficient exchange of information, and

efficient resource usage.

The E-Comm network consists of 11 cells. Each cell covers one or more munici-

palities, such as Vancouver, Richmond, and Burnaby. Identical radio frequencies are

transmitted within one cell using multiple repeaters. This is known as simulcast. The

basic talking unit in the trunked radio network is a talk group: a group of individ-

ual users working and communicating with each other to accomplish certain tasks.

Although the E-Comm network is capable of both voice and data transmissions, we

analyze only voice traffic because it accounts for more than 99% of the network traffic.

2.1.2 E-Comm network terminology

We explain briefly the following network terms:

System/Cell: A trunked radio network is divided into smaller areas in order to

reuse the radio frequencies and to increase the network capacities. One system

represents one service area and a cell is the synonymous of a system. One system

could serve one or more municipalities, based on the frequencies availability and

geographical connection. A unique system id is associated with each system.

Within a system/cell, the radio signal is transmitted using the same range of

frequencies.

Channel: A channel is a small range of radio frequencies or a time slot. Various

numbers of channels are assigned in each system based on the traffic throughput
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Figure 2.1: E-Comm network coverage in the Greater Vancouver Regional District.

and the system needs. Two types of radio channel are used in EDACS: control

and traffic channels. There is one control channel in each cell, while the remain-

ing channels are used as traffic channels. The control channel is used to send

protocol messages between radios and the base station equipment for controlling

the operation of the system. Traffic channels are used to transmit the voice or

data messages between radios or between radios and the base stations.

Group Call: Group call is the typical call made in a trunked radio system. A group

is a set of users who need to communicate regularly in order to accomplish

certain tasks. For example, within a single city-wide system, the North and

South fire services may each have one talk group, while the police may be

subdivided into several talk groups. A user only needs to press the push-to-talk

(PTT) button on the radio device to initiate a group call. All users belonging to
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the same talk group will hear the communications in the group call irrespective

of their physical locations. Most EDACS network operators have observed that

more than 85% of calls are group calls [4].

Simulcast: In the E-Comm network, simulcast is used in a single cell. Within a cell,

identical radio frequencies are transmitted simultaneously between two or more

base station sites in order to improve signal strength and increase coverage.

Multi-System Call: It represents a single group call involving more than one

system/cell. A user may initiate a group call without knowing the physical

location of the group members. When all members of the talk group reside

within one system, the group call is a single-system call occupying only one

traffic channel in the system. However, when group members are distributed

over multiple systems, the group call becomes a multi-system call that occupies

one traffic channel in each system. Hence, the major difference between a multi-

system call and a single-system call is that the first occupies additional channels

and consumes more system resources. In the collected traffic data, more than

55 % of group calls are multi-system calls.

2.2 Network traffic Data

The traffic data received from E-Comm contains event log tables recording the activ-

ities occurred in the network. They are aggregated from the distributed database of

the network management systems.

2.2.1 Database setup

Analyzed data records span from 2003-03-01 00:00:00 to 2003-05-31 23:59:59 contin-

uously. The database size is ∼ 6G bytes, with 44,786,489 records for the 92 days of

data. It consists of 92 event log tables, each containing one data’s events generated

in the network, such as the call establishment, call drop, and emergency call events.

Its sheer volume was one of the main difficulties in our data analysis. For efficiency,
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we converted the data from the MS Access format to plain text files and imported

the records into the MySQL [5] database server under Linux platform.

2.2.2 Event log database schema

The complete twenty-six data fields in the event log table are:

1. Event UTC At: the timestamp of the event (granularity is 3 ms).

2. Duration$ms: the duration of the event in ms (granularity is 10 ms).

3. Network Id: the identification of the network (constant in the database).

4. Node Id: the identification of the network node (not populated).

5. System Id: the identification of the system/cell involved in the event, ranging

from 1 to 11.

6. Channel Id: the identification of the channel involved in the event.

7. Slot Id: this field is not populated in the database.

8. Caller: also known as LID (Logic ID). It is the caller’s id, ranging from 1 to

16,000. The first 2,000 LIDs are assigned to either talk groups or individual

users. The remaining LIDs are assigned to talk groups only.

9. Callee: the callee’s id in the event, having the same value range as Caller.

10. Call Type: the type of the call, such as group call, emergency call, and individual

call.

11. Call State: the state of the call event, such as assign channel, drop, and queue.

12. Call Direction: the direction of the call (meaning unknown).

13. Voice Call: a flag indicating a voice call.

14. Digital Call: a flag indicating a digital call.
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15. Interconnect Call: a flag indicating a call interconnecting the EDACS and the

Public Switched Telephone Network (PSTN).

16. Multi System Call: a flag indicating a multi-system call. It is only set in the

event of call drop.

17. Confirmed Call: a flag of the call. A call is a confirmed call when every member

of a talk group has to confirm the call before the conversation begins.

18. Msg Trunked Call: a flag of the call (meaning unknown).

19. Preempt Call: a flag of the call. A preempt call has higher queue priority.

20. Primary Call: a flag of the call (meaning unknown).

21. Queue Depth: the depth of the current system queue at the event moment. It

may be used to investigate the block rate of the system.

22. Queue Pri: the priority number of the call in queue.

23. MCP (Multi-Channel-Partition): the partition number of channels (not popu-

lated).

24. Caller Bill: set to 1 if the call is billable to the caller (not used in the current

system).

25. Callee Bill: set to 1 if the is billable to the callee (not used in the current

system).

26. Reason Code: the error reason code number, providing additional information

if any error occurs during the call.

2.2.3 Topic of interest

Two open questions, emanating from the discussions with E-Comm staff and the

analysis of database, are of particular interest to our analysis: the precise measurement

of network usage per agency and the traffic forecast based on user’s behavior patterns.
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A. Precise measurement of network usage

The current billing policy for agencies in the E-Comm network is based on the

geographic coverage and the approximate calling traffic volume of each agency. Traffic

volume factors are further broken down into the number of radios, radio traffic, and

user population. Shared radio infrastructure costs are allocated based on the coverage

area, number of radios, radio traffic, and population.

Presently, there is no precise measuring method for the traffic generated by each

individual user/talk group. The current database is an event log database, recording

every activity that occurred in the network, such as the call establishment, call drop,

and emergency calls. One group call may be recorded twice in the event log, as it

generates both call assignment and call drop events. One single multi-system call

involving several systems generates multiple entries in the database. Based solely

on the raw traffic logs, the calculation of network resources used by one agency is

inaccurate. Therefore, the traffic generated by agencies is not calculated directly

from the event database. It is, instead, based on an assumed mean value of call

duration, the coverage of cells by the agency, the number of radios possessed by the

agency, and the number of records corresponding to the agency. It is unable to identify

the number of calls made by each agency, the average/maximum number of systems

involved in calls for each agency, and the network usage for each talk group. A sample

of the data is shown in Section 2.4.

B. Traffic forecast based on user’s behavior patterns

Users’ behavior patterns in the trunked radio networks are different from the tradi-

tional telephone networks. Group calls involve more than two users, while traditional

telephone calls connect only two persons. Furthermore, since the E-Comm network

mainly serves emergency communications, the uncertainty of emergencies implies dif-

ferent behavior patterns of network users from users of ordinary telephone network.

In addition, different agencies may have different behavior patterns. For example,

the ambulance service may have different peak hours from the RCMP, while the fire

department often dispatch group of firefighters to the accident sites together with the

police groups.
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Understanding user’s behavior could help improve user satisfaction and be ben-

eficial for the network optimization and the planning for network expansion. For

example, if a police department plans to increase its manpower by increasing the pa-

trol groups and using more radios. A reasonable assumption is that the new groups

have similar behavior patterns to the existing users. New patrol groups may be clas-

sified into certain existing user groups based on their behavior patterns. Considering

the number of new members in the user groups, we may forecast the network traffic

based on the existing user’s behavior patterns, thus to make better assessment on the

network capacity.

2.3 Data preprocessing

The main difficulty in analyzing the network log data is the sheer volume of data.

Data preprocessing is the fundamental and mandatory step for data analysis. It is

used to clean the database and filter the outliers and redundant records. The current

database includes: surplus data fields with useless entries, obscure data records, and

inconsistent data fields. The goals of the data preprocessing step are to remove useless

information and to remove the outliers. They are accomplished by acquiring the

necessary domain knowledge from the system documentation and via interviews with

the E-Comm staff. The preprocessing procedure is composed of database shrinking

and cleaning.

2.3.1 Database shrinking

Not all data fields are useful to our analysis. Certain fields are not populated in

the database (Node Id and Slot Id fields), while others have identical value or are

unrelated to our research (Network Id, Caller Bill, and Callee Bill). We are only in-

terested in fields that could capture the user’s behavior and network traffic. Thus, the

step is to remove these unpopulated, identical, or unrelated fields from the database,

such as the Digital Call, Interconnect Call, Confirmed Call, Primary Call, Caller Bill,

Callee Bill, and Reason Code fields.
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From the twenty-six original fields in the database, nine fields are of particular

interest to our analysis: 1) Event UTC At, 2) Duration$ms, 3) System Id, 4) Chan-

nel Id, 5) Caller, 6) Callee, 7) Call Type, 8) Call State, and 9) Multi System Call.

2.3.2 Database cleaning

After reducing the database dimension to nine, we removed redundant records, such as

records having call type = 100 or records with duration = 0. Records with call state

= 1, which implies the call drop event, are redundant because each call drop event

already has a corresponding call assignment event in the database. (Note that the

reverse is not true.) Records with channel id = 0 should also be removed as well

because the channel id 0 represents the control channel whose traffic we have not

considered. We keep the the records with call type = 0, 1, 2, or 10, representing

group call, individual call, emergency call, and start-emergency-call, respectively. The

complete call type table is given in Appendix A.

The result of data preprocessing step is a smaller and cleaner database. The

number of records in each data table of original and cleaned databases are compared in

Table 2.1. Approximately 55% records have been removed from the original database

after preprocessing. Furthermore, due to the effect of the dimension reduction, the

total size of the database has been reduced to only 19% of the original size.

2.4 Data extraction

The extraction of the network traffic may solve the first open question of imprecise

traffic measurement, as described in Section 2.2.3. A sample of the cleaned database

table is shown in Table 2.2. If a call is a multi-system call involving several systems,

several records (one for each involved system) are created to represent this call in the

original event log database. For example, based on the caller, callee, and duration

information, records 1 and 6 represent one group call from caller 13905 to callee 401,

involving systems 1 and 7 and lasting ∼ 1350 ms. Records 29, 31, 37, and 38 represent

a group call from caller 13233 to callee 249, involving systems 2, 1, 7, and 6. Thus, the
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Date Original Cleaned Date Original Cleaned Date Original Cleaned
2003/03/01 466,862 204,357 2003/04/01 578,834 260,752 2003/05/01 535,919 240,046
2003/03/02 415,715 184,973 2003/04/02 609,686 275,575 2003/05/02 536,092 240,585
2003/03/03 406,072 182,311 2003/04/03 503,666 225,041 2003/05/03 413,171 184,998
2003/03/04 464,534 207,016 2003/04/04 491,225 221,373 2003/05/04 393,421 176,878
2003/03/05 585,561 264,226 2003/04/05 479,043 215,979 2003/05/05 362,118 161,104
2003/03/06 605,987 271,514 2003/04/06 360,661 159,867 2003/05/06 463,040 202,153
2003/03/07 546,230 247,902 2003/04/07 423,915 189,111 2003/05/07 542,724 242,997
2003/03/08 513,459 233,982 2003/04/08 507,364 227,196 2003/05/08 559,787 248,127
2003/03/09 442,662 201,146 2003/04/09 563,334 252,753 2003/05/09 556,419 250,072
2003/03/10 419,570 186,201 2003/04/10 518,096 232,572 2003/05/10 471,745 213,051
2003/03/11 504,981 225,604 2003/04/11 501,114 224,941 2003/05/11 415,702 187,786
2003/03/12 516,306 233,140 2003/04/12 482,866 215,426 2003/05/12 381,057 170,031
2003/03/13 561,253 255,840 2003/04/13 406,548 180,903 2003/05/13 484,477 217,803
2003/03/14 550,732 248,828 2003/04/14 347,400 151,802 2003/05/14 530,492 236,520
2003/03/15 581,932 266,329 2003/04/15 429,918 190,384 2003/05/15 550,407 246,539
2003/03/16 519,893 237,804 2003/04/16 513,713 229,653 2003/05/16 514,825 231,259
2003/03/17 470,046 213,815 2003/04/17 515,302 231,966 2003/05/17 454,208 202,995
2003/03/18 583,717 267,938 2003/04/18 421,623 189,158 2003/05/18 448,726 202,213
2003/03/19 544,893 249,766 2003/04/19 414,045 183,778 2003/05/19 406,458 182,730
2003/03/20 575,978 262,049 2003/04/20 392,821 175,380 2003/05/20 421,129 187,064
2003/03/21 548,872 252,185 2003/04/21 325,268 143,316 2003/05/21 525,547 235,586
2003/03/22 525,830 240,821 2003/04/22 367,287 161,285 2003/05/22 574,971 258,432
2003/03/23 534,699 244,510 2003/04/23 428,419 187,621 2003/05/23 549,397 244,869
2003/03/24 475,808 215,582 2003/04/24 464,451 208,512 2003/05/24 502,278 225,573
2003/03/25 514,570 233,283 2003/04/25 471,794 211,731 2003/05/25 436,931 196,311
2003/03/26 589,203 267,982 2003/04/26 449,725 202,244 2003/05/26 394,320 176,583
2003/03/27 608,074 276,281 2003/04/27 369,049 165,248 2003/05/27 490,976 220,099
2003/03/28 503,455 227,615 2003/04/28 372,067 164,094 2003/05/28 517,567 232,240
2003/03/29 542,443 248,825 2003/04/29 464,529 206,596 2003/05/29 551,566 248,393
2003/03/30 446,921 203,254 2003/04/30 547,473 245,293 2003/05/30 556,295 250,757
2003/03/31 446,174 202,423 2003/05/31 511,056 229,872
Total: 16,012,432 7,257,502 Total: 13,721,236 6,129,550 Total: 15,052,821 6,743,666

Table 2.1: Number of records per day: original vs. cleaned database.
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network operator cannot count the number of group calls made by a certain talk group

or agency merely based on the original multiple entries. Furthermore, it is impossible

to find the number of multi-system calls and the average number of systems in a

multi-system call.

We explore the relationships of fields among similar records and find that, within

a certain range, multiple records with identical caller id and callee id and similar call

duration fields might represent one single group call in the database. Caused by the

transmission latency and glitch in the distributed database system, the call duration

is sometimes inconsistent. For example, records 1 (1340 ms) and 6 (1350 ms) in Table

2.2, have 10 ms difference in call duration field although they represent one single

group call. Experimental results indicate that 50 ms difference in call duration is an

acceptable choice when combining the multiple records (compared to 20 ms, 30 ms,

or 100 ms).

The algorithm for extracting and combining the traffic data from the cleaned

database is shown in Figure 2.2. It is implemented by Perl. A sample of the results

of the traffic extraction from Table 2.2 is shown in Table 2.3. Record 1 in Table 2.3

is the combination of records 1 and 6 in Table 2.2, while record 7 corresponds to the

combination of records 29, 31, 37, and 38 in Table 2.2.

2.5 Summary

In this Chapter, we provided a short presentation of the trunked radio systems and

infrastructure of the E-Comm network. The importance of the data preprocessing

have been illustrated using data shown in Table 2.1. We described the traffic data

schema, data preprocessing, and traffic extraction. The data extraction process was

used to extract traffic data by combining multiple entries of one group call into a

single record. The result of data preprocessing, together with data extraction, is a

clean and neat database with ∼ 81 % fewer records. A comparison of the number

of records in original, cleaned, and extracted database is shown in Figure 2.3. The

generated traffic data was used for further data analysis, clustering, and prediction.
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No. Date Time Call System Channel Caller Callee Call Call Multi-system
(hh:mm:ss)(ms) duration id id type state call

1 2003-03-01 00:00:00 30 1340 1 12 13905 401 0 0 0
3 2003-03-01 00:00:00 179 3330 7 1 14663 249 0 0 0
4 2003-03-01 00:00:00 259 3330 6 3 14663 249 0 0 0
6 2003-03-01 00:00:00 489 1350 7 4 13905 401 0 0 0
7 2003-03-01 00:00:00 590 2990 6 4 4266 1443 0 0 0
10 2003-03-01 00:00:01 150 2840 1 2 6109 1817 0 0 0
22 2003-03-01 00:00:03 119 6110 9 6 15202 465 0 0 0
23 2003-03-01 00:00:03 119 6100 10 9 15202 465 0 0 0
24 2003-03-01 00:00:03 149 2980 2 6 16068 673 0 0 0
25 2003-03-01 00:00:03 370 6110 6 5 15202 465 0 0 0
29 2003-03-01 00:00:03 620 7550 2 7 13233 249 0 0 0
30 2003-03-01 00:00:03 700 2980 9 7 16068 673 0 0 0
31 2003-03-01 00:00:03 760 7560 1 3 13233 249 0 0 0
32 2003-03-01 00:00:03 830 1580 2 8 13333 245 0 0 0
33 2003-03-01 00:00:03 879 5790 7 5 12183 201 0 0 0
34 2003-03-01 00:00:03 970 1590 1 8 13333 245 0 0 0
36 2003-03-01 00:00:04 150 2970 1 9 6009 1817 0 0 0
37 2003-03-01 00:00:04 260 7560 7 6 13233 249 0 0 0
38 2003-03-01 00:00:04 340 7560 6 6 13233 249 0 0 0
41 2003-03-01 00:00:04 980 3810 1 12 13906 403 0 0 0
42 2003-03-01 00:00:05 169 2410 1 2 15906 401 0 0 0
46 2003-03-01 00:00:05 449 3800 7 7 13906 403 0 0 0
49 2003-03-01 00:00:05 679 2400 7 1 15906 401 0 0 0
50 2003-03-01 00:00:05 979 2160 6 7 4831 1443 0 0 0
53 2003-03-01 00:00:06 900 1300 2 9 9701 673 0 0 0
56 2003-03-01 00:00:07 409 1300 9 8 9701 673 0 0 0
60 2003-03-01 00:00:08 149 880 1 4 7003 786 0 0 0

Table 2.2: A sample of cleaned data.
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Figure 2.2: Algorithm for extracting traffic data.
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No. Date Time Call Caller Callee Call Call Multi Number List
(hh:mm:ss)(ms) duration id id type state system of of

call systems system(s)

1 2003-03-01 00:00:00 30 1340 13905 401 0 0 0 2 1, 7
2 2003-03-01 00:00:00 179 3330 14663 249 0 0 0 2 7, 6
3 2003-03-01 00:00:00 590 2990 4266 1443 0 0 0 1 6
4 2003-03-01 00:00:01 150 2840 6109 1817 0 0 0 1 1
5 2003-03-01 00:00:03 119 6110 15202 465 0 0 0 3 9, 10, 6
6 2003-03-01 00:00:03 149 2980 16068 673 0 0 0 2 2, 9
7 2003-03-01 00:00:03 620 7550 13233 249 0 0 0 4 2, 1, 7, 6
8 2003-03-01 00:00:03 830 1580 13333 245 0 0 0 2 2, 1
9 2003-03-01 00:00:03 879 5790 12183 201 0 0 0 1 7
10 2003-03-01 00:00:04 150 2970 6009 1817 0 0 0 1 1
11 2003-03-01 00:00:04 980 3810 13906 403 0 0 0 2 1, 7
12 2003-03-01 00:00:05 169 2410 15906 401 0 0 0 2 1, 7
13 2003-03-01 00:00:05 979 2160 4831 1443 0 0 0 1 6
14 2003-03-01 00:00:06 900 1300 9701 673 0 0 0 2 2, 9
15 2003-03-01 00:00:08 149 880 7003 786 0 0 0 1 1
16 2003-03-01 00:00:10 239 3420 4266 1443 0 0 0 1 6
17 2003-03-01 00:00:10 359 3930 15895 201 0 0 0 1 7
18 2003-03-01 00:00:12 450 1820 12277 417 0 0 0 3 2, 1, 5
19 2003-03-01 00:00:12 870 2810 13906 403 0 0 0 2 1, 7
20 2003-03-01 00:00:13 49 11720 14663 249 0 0 0 4 2, 1, 7, 6

Table 2.3: A sample of extracted traffic data.
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Figure 2.3: Comparison of number of records in original, cleaned, and extracted
databases.



Chapter 3

Data analysis

Statistical analysis on the extracted traffic trace usually includes finding maximum,

minimum, mean value, measure of variation, data plots, and histograms. Data net-

work traffic may be measured in terms of the number of packets, number of connec-

tions, or number of bytes transmitted. Similarly, the traffic of voice networks may be

measured by the number of calls and the call duration. We use the hourly number

of calls to analyze the E-Comm network traffic on three levels: aggregate network,

agency, and talk group level.

3.1 Analysis on Network level

On the network level, the traffic is the aggregation of all users’ traffic. The analysis of

network-level traffic provides overview of the network usage. The aggregate traffic of

the entire network, in terms of hourly and daily number of calls, is shown in Figure 3.1.

The upper and lower dotted lines indicate the maximum and the minimum number

of calls, respectively. The middle dashed line is the mean value.

Figure 3.1 demonstrates the inherent cyclic patterns of the network traffic. We

check the periodic patterns by applying the Fast Fourier Transform (FFT) on the

network data to find the highest frequency in the hourly and the daily number of

calls. The FFT reveals the high frequency components at 24 for the hourly number of

calls and at 7 for the daily number of calls, as shown in Figure 3.2. We conclude that

19
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the network traffic exhibits daily (24 hours) and weekly (168 hours) cycles in terms of

number of calls. Similar daily and weekly cyclic traffic patterns of various networks

have been observed in the literature [6], [7], [8].
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Figure 3.1: Statistical analysis of hourly (top) and daily (bottom) number of calls.
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Figure 3.2: Fast Fourier Transform (FFT) analysis on hourly (top) and daily (bot-
tom) number of calls. The high frequency components at 24 (top) and 7 (bottom)
indicate that the network traffic exhibits daily (24 hours) and weekly (168 hours)
cycles, respectively.
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3.2 Analysis on agency level

Network users belong to various agencies such as RCMP, police, ambulance, and fire

department. The study of agency behavior may help network operators identify the

aggregate traffic patterns in the organizational usage of network resources. Agency

names are eliminated to protect their privacy. Instead, we use agency id to identify

the agency structure for talk groups.

The agency id in the E-Comm network ranges from 0 to 15. The agency id 0

represents unknown or corrupted agency group information of users. The network

usage statistic data of each agency is summarized in Table 3.1. The rows are sorted

in ascending order by the number of calls made by each agency. 92% of calls are made

by three agencies with id 10, 2, 5, while the remaining 13 agencies account for only

8% of the calls. The average call duration ranges from 2.3 to 5.9 seconds. We also

observed that more than 55% of calls in the network are multi-system calls. Beside

the hourly number of calls, call duration is another major factor affecting the network

resource usage. In order to measure how long and how many channels have been

occupied by a call in the network, we define the network resource usage for a call as:

Network resource = Call duration ∗ Number of systems.

Three different aspects of agency traffic are shown in Figure 3.3. We use different

symbol in the figure to represent different agency. The top plot is the daily number

of calls for each agency. The middle plot is the daily average call duration of each

agency. The bottom plot represents the average number of systems involved in the

calls of each agency. The daily average call duration is relatively constant for agencies,

while the daily number of calls shows large variations among agencies.

3.3 Analysis on talk group level

The basic talking unit in the E-Comm network is a talk group. This is the finest

unit for our analysis. Traffic analysis on the agency level is too coarse to capture the

behavior of small talking units in the network. Even though each talk group belongs
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Agency Number Average Number Number of Number of
id of duration of multi-system multi-system

calls (ms) calls (%) calls calls (%)
20 22 2,329 0.00% 0 0.00%
15 37 2,239 0.00% 8 21.62%
8 129 4,230 0.00% 127 98.44%
7 2,963 4,080 0.03% 606 20.45%
14 5,523 3,279 0.06% 248 4.49%
0 10,037 3,278 0.11% 6,368 63.44%
13 13,590 5,986 0.15% 0 0.00%
6 39,363 3,871 0.45% 1,427 3.62%
11 58,622 3,861 0.67% 2,220 3.78%
4 82,482 3,175 0.95% 11,862 14.38%
1 91,417 3,857 1.05% 13,567 14.84%
3 117,289 4,024 1.35% 39,507 33.68%
21 282,907 3,480 3.26% 180,792 63.90%
10 950,725 3,438 10.97% 722,822 76.02%
2 2,527,096 3,853 29.16% 917,037 36.28%
5 4,481,384 3,838 51.72% 3,193,948 71.27%

Sum 8,663,586 3,772 100% 5,090,539 58.76%

Table 3.1: Agency network usage.
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Figure 3.3: Traffic analysis by agencies (Top: the daily number of calls for each agency.
Middle: the daily average call duration of each agency. Bottom: the average number
of systems involved in the calls of each agency.
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to a certain agency, the organizational structure does not necessarily imply similar

usage patterns. Talk groups belonging to different agencies may have similar behavior,

while talk groups within the same agency may have different behavior patterns.

A sample of talk groups’ behavior patterns is shown in Table 3.2. The behavior

patterns include average resources, average duration, and average number of systems

involved in group calls. The talk groups are sorted in descending order of the total

number of calls during the 92 days. The average call duration exhibits a relatively

constant pattern with mean value of 3,621.50 ms and standard variance of 397 ms. To

the contrary, the average number of systems involved in calls is quite different. For

example, the members of talk group 1809 are usually distributed across more than 4

systems, while the members of talk group 785 often reside in one system when making

calls. Accordingly, the number of systems engaged in a call greatly affects the network

resource usage.

3.4 Summary

The preliminary statistical analysis of traffic data at different levels shows the diversity

and complexity of network user’s (talk group’s) behavior. User’s behavior exhibits

patterns that may be used to categorize talk groups. We are particularly interested

in building clusters of talk groups based on their behavior patterns. This topic is

addressed in Chapter 4.
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Talk Agency Number Average Average Average
group id of resources duration number of

id calls used (ms) systems
801 2 461,128 4,756.23 3,489.76 1.35
817 2 382,065 6,953.52 3,484.94 1.96
465 5 363,138 11,421.93 3,640.22 3.11
785 2 354,324 4,390.52 3,532.91 1.23
1817 10 312,131 5,259.29 3,638.01 1.44
497 5 303,991 10,758.75 3,547.97 3.00
401 5 303,948 8,256.77 3,416.61 2.40
833 2 303,854 6,180.41 3,678.45 1.66
1801 10 294,687 15,968.30 3,836.57 4.14
1809 10 278,872 17954.45 3,844.45 4.62
481 5 278,634 11,805.02 3,240.11 3.61
471 5 276,404 10,548.83 3,543.19 2.95
673 1 260,813 6,392.49 3,427.50 1.85
449 5 258,019 9,159.69 3,711.86 2.43
433 5 226,492 8,558.56 3,695.66 2.30
786 2 225,612 4,939.96 4,653.82 1.06
418 5 207,583 6,868.27 3,259.42 2.08
289 5 159,649 16,216.39 3,473.22 4.61
249 5 145,875 23,454.87 4,939.05 4.73

... ... ...

Table 3.2: Sample of the resource consumption for various talk groups.



Chapter 4

Data clustering

Data mining employs a variety of data analysis tools to discover hidden patterns and

relationships in data sets. Clustering analysis, with its various objectives, groups or

segments a collection of objects into subsets or clusters so that objects within one

cluster are more “close” to each other than objects in distinct clusters. It attempts

to find natural groups of components (or data) based on certain similarities. It is

one of the powerful tools in data mining, with applications in a variety of fields

including consumer data analysis, DNA classification, image processing, and vector

quantization.

In this Chapter, we first describe the data used for the clustering analysis. We

then introduce the AutoClass [9] tool and K-means [10] algorithm. The results of

clustering and the comparison are also presented.

4.1 Data representing user’s behavior

An object can be described by a set of measurements or by its relations to other

objects. Customers’ purchasing behavior may be characterized by shopping lists with

the type and quantity of the commodities bought. Network users’ behavior may be

measured as the time of calls, the average length of the call, or the number of calls

made in a certain period of time. Telecommunication companies often use call inter-

arrival time and call holding time to calculate the blocking rate and to determine the

27
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network usage. In the E-Comm network, the call inter-arrival time are exponentially

distributed, while the call holding time fits a lognormal distribution [11].

The number of users’ call is of particular interest to our analysis. A commonly used

metric in the telecommunication industry is the hourly number of calls. It may be

regarded as the footprint of a user’s calling behavior. Units less than an hour (minute)

is large enough to capture the calling activity since a call usually lasts 3∼5 seconds

in the E-Comm network. However, the one minute recording unit may impose large

computational cost because of the huge number of data points (92∗24∗60 = 132, 480).

Units larger than an hour (day) are too coarse to capture user’s behavior patterns

and will reduce the number of data points to merely 92 in our analysis.

The talk group is the basic talking unit in the E-Comm network. Hence, we use

a talk group’s hourly number of calls to capture a user’s behavior. The collected 92

days of traffic data (2,208 hours) imply that each talk group’s calling behavior may

be portrayed by the 2,208 ordered hourly numbers of calls. Samples of the hourly

number of calls for talk groups 1 and 2 over 168-hour are shown in Figure 4.1, while

talk group 20 and 263’s calling behavior are shown in Figure 4.2. Table 4.1 shows a

small sample of the user’s calling behavior. The first column shows the talk group

id. The remaining columns are the hourly number of calls starting from 2003-03-01

00:00:00 (hour 1) and ending at 2003-05-31 23:59:59 (hour 2208). One row corresponds

to one talk group’s calling behavior over the 2,208 hours. This will be used in our

clustering analysis.

For simplicity and based on prior experience with clustering tools, we selected

AutoClass [12] tool and K-means [10] algorithms to classify the calling patterns of

talk groups.

4.2 AutoClass tool

A general approach to clustering is to view it as a density estimation problem. We

assume that in addition to the observed variables for each data point, there is a hidden,

unobserved variable indicating the “cluster membership” (cluster label). Hence, the

data are assumed to be generated from a mixture model and that the labels (cluster
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Figure 4.1: Calling patterns for talk groups 1 (top) and 2 (bottom) over the 168-hour
period.
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Talk Hour Hour Hour Hour ... Hour Hour Hour
group id 1 2 3 4 ... 2206 2207 2208
0 26 25 24 20 ... 30 24 26
1089 6 29 0 10 ... 22 23 0
28 1 0 2 32 ... 13 36 81
... ... ... ... ... ... ... ... ...
113 3 0 0 5 ... 3 0 0
162 0 0 0 232 ... 193 176 256
230 3 0 3 77 ... 203 270 187
... ... ... ... ... ... ... ... ...

Table 4.1: Sample of hourly number of calls for various talk groups.

identification) are hidden. In general, a mixture model M has K clusters Ci, i =

1, ..., K, assigning a probability to a data point x as:

P (x|M) =
K

∑

i=1

Wi ∗ P (x|Ci, M),

where Wi is the mixture weight. Some clustering algorithms assume that the number

of clusters K is known a priori.

AutoClass [12] is an unsupervised classification tool based on the classical finite

mixture model [13]. According to Cheeseman, [9]

“The goal of Bayesian unsupervised classification is to find the most

probable set of class descriptions given the data and prior expectations.”

In the past, AutoClass was applied to classify distinct user groups in Telus Mobility

Cellular Digital Packet Data (CDPD) network [8].

AutoClass was developed by Bayesian Learning Group at NASA Ames Research

Center [14]. We use AutoClass C version 3.3.4. The key features of AutoClass include:

• determining the optimal number of classes automatically

• handling both discrete and continuous values

• handling missing values
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• “soft” probabilistic cluster membership instead of “hard” cluster membership.

AutoClass begins by creating a random classification and then manipulates it

into a high probability classification through local changes. It repeats the process

until it converges to a local maximum. It then starts over again and continues until

a maximum number of specified tries. Each effort is called a try. The computed

probability is intended to cover the entire parameter space around this maximum,

rather than just the peak. Each new try begins with a certain number of clusters

and may conclude with a smaller number of clusters. In general, AutoClass begins

the process with a certain number of clusters that previous tries have indicated to be

promising.

The input data for AutoClass are stored in two files: data file (.db2) and header

file (.hd2). The data file are in vector format. The 2,208 number of calls for each talk

group are extracted from database and stored in matrix structure. Each row stands

for one talk group and each column is one of the 2,208 hourly number of calls, except

that the first column is the identification number of a talk group. In the header file,

we specify the data type, name, relative observation error for each column. Part of

the header file is shown in Figure 4.2.

AutoClass uses a model file (.model) to describe the possible distribution model for

each attribute of the data. Four types of models are currently supported in AutoClass:

• single multinomial: models discrete attributes as multinomial distribution with

missing values. It can handle symbolic or integer attributes that are condition-

ally independent of other attributes given the class label. Missing values will be

represented by one of these existing values.

• single normal cn: models real valued attributes as normal distribution without

missing values. The model parameters are mean and variance.

• single normal cm: models real valued attributes as normal distribution with

missing values. The model can be applied to real scalar attributes using a

log-transform of the attributes.
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#Leo Chen, 2003-Oct-22
#the header file for E-Comm data user data clustering
num db2 format defs 2
#required
number of attributes 2209

# optional - default values are specified
# unknown token ’?’
separator char ’ ’
# comment char ’#’

0 discrete nominal “talkgroup” range 1754
1 real scalar “NC[1]” zero point 0.0 rel error 0.001
2 real scalar “NC[2]” zero point 0.0 rel error 0.001
3 real scalar “NC[3]” zero point 0.0 rel error 0.001
... ...
... ...
2205 real scalar “NC[2205]” zero point 0.0 rel error 0.001
2206 real scalar “NC[2206]” zero point 0.0 rel error 0.001
2207 real scalar “NC[2207]” zero point 0.0 rel error 0.001
2208 real scalar “NC[2208]” zero point 0.0 rel error 0.001

Figure 4.3: Sample of the AutoClass header file.
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• multi normal cn: a covariant normal model without missing values. This model

applies to a set of real valued attributes, each with a constant measurement

error and without missing values, which are conditionally independent of other

attributes given the cluster label.

The model file used is given in Appendix B. A search parameters file (.s-param)

is also used to adjust the search behavior of AutoClass. The most frequently used

parameters are start j list, fixed j, and max n tries.

• start j list: AutoClass will start the search with the certain number of clusters

in the list.

• fixed j: AutoClass will always search for the fixed j number of clusters, if spec-

ified.

• max n tries: AutoClass stops search when it reaches the maximum number of

the tries.

The detailed description of the remaining searching and reporting parameters may be

found in the AutoClass manual [9], [15].

AutoClass used ∼20 hours in searching for the best clustering of the 617 talk

groups in the E-Comm data. The search results include three important values for

the clustering:

• attribute influence values: presents the relative influence or significance of the

attributes.

• cross-reference by case number: lists the primary class probability for each da-

tum, ordered by the case number.

• cross-reference by class number: for each class, lists each datum in the class,

ordered by case number.

The content of one clustering report is given in Appendix B. The ten best results

of talk group clustering are summarized in Table 4.2. The number of talk groups in
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Probability Number Number
of clusters of tries

exp(-6548529.230) 24 653
exp(-6592578.320) 18 930
exp(-6619633.090) 21 940
exp(-6622783.940) 24 323
exp(-6626274.570) 17 542
exp(-6637269.320) 24 1084
exp(-6657627.910) 18 677
exp(-6658596.390) 19 918
exp(-6660040.920) 18 528
exp(-6671271.570) 12 385

Table 4.2: AutoClass results: 10 best clusters.

Cluster ID Size Cluster ID Size Cluster ID Size
[1] 144 [2] 67 [3] 66
[4] 31 [5] 25 [6] 23
[7] 22 [8] 21 [9] 20
[10] 20 [11] 19 [12] 19
[13] 18 [14] 18 [15] 18
[16] 17 [17] 15 [18] 13
[19] 12 [20] 10 [21] 9
[22] 4 [23] 3 [24] 3

Table 4.3: AutoClass results: cluster sizes.

each cluster (cluster size) is also shown in the Table 4.3. Hourly number of calls for

talk groups in clusters 5, 17, and 22 are shown in Figure 4.4. Talk groups in different

clusters exhibit distinct calling behavior patterns.

4.3 K-means algorithm

K-means algorithm is one of the most commonly used data clustering algorithms. It

partitions a set of objects into K clusters so that the resulting intra-cluster similarity

is high while the inter-cluster similarity is low. The number of clusters K and the
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Figure 4.4: Number of calls for three AutoClass clusters with IDs 5 (top), 17 (middle),
and 22 (bottom).
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object similarity function are two input parameters to the K-means algorithm. Cluster

similarity is measured by the average distance from cluster objects to the mean value

of the objects in a cluster, which can be viewed as the cluster’s center of gravity. The

algorithm is well-known for its simplicity and efficiency. It is relatively efficient and

stable. The use of various similarity or distance functions makes it flexible. It has

numerous variations and it is applicable in areas such as physics, biology, geographical

information system, and cosmology. However, its main drawback is its sensitivity to

the initial seeds of clusters and outliers, which may distort the distribution of data.

In addition, user sometimes may not know a priori the desired number of clusters K,

which is the most important input parameter to the algorithm.

The distance between two points is taken as a common metric to assess the simi-

larity among the components of a population. The most popular distance measure is

the Euclidean Distance. The Euclidean distance of two data points x = (x1, x2, ..., xn)

and y = (y1, y2, ..., yn) is:

d(x, y) =

√

√

√

√

n
∑

i=1

(xi − yi)2.

We use a variation of K-means, PAM (Partitioning Around Medoids) [10] and our

own implementation of K-means to cluster the talk group data. The PAM algorithm

searches for K representative objects or medoids among the observations of the data

set. It finds K representative objects that minimize the sum of the dissimilarities of

the observations to their closet medoids.

We also implemented the classical K-means algorithm using the Perl programming

language [16]. The program first seeks K random seeds as cluster centroids in the

data set. Based on the Euclidean distance of the object from the seeds, each object is

assigned to a cluster. The centroid’s position is recalculated every time an object is

added to the cluster. This process continues until all the objects are grouped into the

final specified number of clusters. Objects change their cluster memberships after the

recalculation of the centroids and the re-assignment. Clusters become stable when

no object is re-assigned. Different clustering results are obtained depending on the

random seeds. However, clustering results for different runs with the same number K
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are relatively stable when K is not large, i.e., the clusters converge and different runs

result in almost identical cluster partitions.

Without knowing the actual cluster label for each talk group, we are unable to

measure the clustering quality using objective measurement factor, such as the F-

measure [17]. We use the inter-cluster and the intra-cluster distances to assess the

overall clustering quality. The inter-cluster distance is defined as the Euclidean dis-

tance between two cluster centroids, which reflects the dissimilarity between clusters.

The intra-cluster distance is the average distance of objects from their cluster cen-

troids, expressing the coherent similarity of data in the same cluster. A large inter-

cluster distance and a small intra-cluster distance indicate better clusters. The overall

clustering quality indicator is defined as the difference between the minimum inter-

cluster distance and the maximum intra-cluster distance. The greater the indicator,

the better the overall clustering quality. Another measure for the clustering quality

is silhouette coefficient [10], which is rather independent on the number of clusters,

K. Experience shows that the silhouette coefficient between 0.7 and 1.0 indicates

clustering with excellent separation between clusters.

The cluster size, distance measurement, overall quality, and silhouette coefficient

of K-means clustering results for clusters with various number of K are shown in Table

4.4. Based on the overall quality and the silhouette coefficient, the best clustering

result is obtained for K = 3 (in the top three rows). Figure 4.5 shows one week

of traffic for each talk groups in the three clusters. The maximum, minimum, and

average number of calls for each cluster are also shown. The plots demonstrate the

distinct calling behavior of each cluster.

4.4 Comparison of AutoClass and K-means

To compare the clustering results of AutoClass and K-means, we enforce the number

of clusters in AutoClass by specifying the parameter fixed j to 3 in the search param-

eter file. The calling behavior properties for talk groups in the AutoClass clusters

and in K-means clusters are compared in Table 4.5. The three clusters identified

by K-means are more reasonable than the clusters produced by AutoClass. With
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No. of Cluster Average Average Maximum Minimum Overall Silhouette
clusters size intra dist. inter dist. intra dist. inter dist. quality coefficient

3 17, 31, 569 1882.14 4508.38 2971.76 1626.4 -1345.36 0.7756
3 17, 31, 569 1882.14 4508.38 2971.76 1626.4 -1345.36 0.7756
3 17, 31, 569 1882.14 4508.38 2971.76 1626.4 -1345.36 0.7756
4 17, 33, 4, 563 1863 3889.12 2971.76 1556.68 -1415.07 0.7684
4 1, 17, 27, 572 1436.08 3966.26 2971.76 1282.01 -1689.75 0.7632
4 17, 39, 552, 9 2155.46 3848.36 3730.61 1011.97 -2718.63 0.7691
6 13, 17, 22, 3, 34, 528 2059.67 3284.52 3299.43 594.21 -2705.21 0.7640
6 14, 17, 25, 4, 551, 6 2210.88 3353.47 3485.42 1051.92 -2433.49 0.7639
6 15, 17, 3, 42, 5, 535 1693.28 2984.82 3087.33 605.38 -2481.95 0.7635
9 ... 1020.08 3520.04 3065.25 808.28 -2256.96 0.7492
9 ... 1451.46 2661.29 3687.39 735.37 -2952.01 0.7491
9 ... 1478.42 2867.43 3716.73 607.67 -3109.06 0.7483
12 ... 1372.67 3582.98 3278.14 731.26 -2546.88 0.7435
12 ... 1443.9 2271.58 3436.66 398.95 -3037.7 0.7459
12 ... 1676.57 3225.75 3908.67 581.68 -3326.99 0.7456
16 ... 983.63 1815.79 3571.27 248.19 -3323.07 0.7337
16 ... 1290.87 2154.53 3859.53 320.06 -3539.46 0.7387
16 ... 1329.99 2275.42 3478.55 271.6 -3206.95 0.7412
20 ... 1355.8 2458.39 3604.33 314.49 -3289.84 0.7386
20 ... 1025.44 2296.45 3730.61 413.76 -3316.84 0.7390
20 ... 924.43 2042.43 3661.58 343.15 -3318.43 0.7377

Table 4.4: K-means results: cluster size and distances.
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Figure 4.5: K-means result: number of calls in three clusters.
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Alg. Clu. Min. Max. Avg. Total Total
size nc nc nc nc nc (%)

AC 60 0 2 - 356 0 - 0.7 15,870 0.07
AC 202 0 - 6 7 - 1613 0.04 - 208 8,641,508 99.75
AC 355 0 1 - 243 0 - 0.8 6208 0.18

K 17 0 - 6 352 - 700 94 - 208 5,091,695 59
K 31 0 - 3 135 - 641 17 - 66 2,261,055 26
K 569 0 1 - 1613 0 - 16 1,310,836 15

Table 4.5: Comparison of talk group calling properties (AC: AutoClass, K: K-means, nc:
number of calls).

K-means clustering, the first cluster has 17 talk groups, representing the busiest dis-

patch groups whose main tasks are coordinating and scheduling other talk groups

for certain tasks. The second cluster contains 31 talk groups with medium network

usage. The last cluster identifies a group of least frequent network users who made on

average no more than 16 calls per hour. These interpretations of clusters have been

confirmed by domain experts. On the contrary, it is difficult to provide reasonable

explanations for group behavior for the three clusters identified by AutoClass. Thus,

we use the three clusters identified by K-means in the prediction of network traffic.

4.5 Summary

Clustering analysis of the talk groups’ calling behavior reveals hidden structure of

talk groups by grouping the talk groups with similar calling behavior rather than by

their organizational structure.

We used AutoClass tool and applied K-means algorithm to identify clusters of

talk groups based on their calling behavior. Talk groups’ behavior patterns are then

categorized and extracted from the clusters. The optimal number of clusters is diffi-

cult to determine. By comparing the overall quality measurement and the silhouette

coefficient measure, we found that three is the best number of clusters for K-means

algorithm. Based on the domain knowledge, the three clusters identified by K-means
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are more reasonable than clusters produced by AutoClass. Other clustering algo-

rithms, such as hierarchical [18] and density based [19] clustering may also be used to

cluster the user data.



Chapter 5

Data prediction

In this Chapter, we describe the time series data analysis and the Auto-Regressive

Integrated Moving Average (ARIMA) models. We describe how to identify, esti-

mate, and forecast network traffic using the ARIMA model. We also present the

cluster-based prediction models and compare the prediction results with the results

of traditional prediction based on aggregate traffic.

5.1 Time series data analysis

Performance evaluation techniques are important in the design of networks, services,

and applications. Of particular interest are techniques employed to predict the QoS

related network performance. Modeling and predicting network traffic are essential

steps in performance evaluation. It helps network planners understand the underlying

network traffic process and to predict future traffic. Analysis of commercial network

traffic is difficult because the commercial network traffic traces are not easily available.

Furthermore, there are privacy and business issues to consider.

The Erlang-C model [20], currently used by the E-Comm staff, was developed

based on individual user’s calling behavior in wired networks. It considers no-group

call behavior in trunked radio systems. Network traffic may also be considered as

a series of observations of a random process, and, hence, the classical time-series

prediction ARIMA models can be used for traffic prediction.

43
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We employ the Seasonal Autoregressive Integrated Moving Average (SARIMA)

model [21], a special case of ARIMA, to predict the E-Comm network traffic. SARIMA

models have been applied to modeling and predicting traffic from both large scale

networks (NSFNET [22]) and from small scale sub-networks [23]. The fitted model

is only an approximation of the data and the quality of the model depends on the

complexity of the phenomenon being modeled and the understanding of data.

5.2 ARIMA model

The ARIMA model, developed by Box and Jenkins in 1976 [21], provides a systematic

approach to the analysis of time series data. It is a general model for forecasting a

time series that can be stationarized by transformations such as differencing and log

transformation. Lags of the differenced series appearing in the forecasting equation

are called auto-regressive terms. Lags of the forecast errors are called moving average

terms. A time series that needs to be differenced to be made stationary is said to be

an integrated version of a stationary series. Random-walk and random-trend models,

autoregressive models, and exponential smoothing models (exponential weighted mov-

ing averages) are special cases of the ARIMA models [24]. ARIMA model is popular

because of its power and flexibility.

5.2.1 Autoregressive (AR) models

Regression model is a widely applied multivariate model used to predict the target

data based on observations and to analyze the relationship between observations and

predictions. Autoregressive model is conceptually similar to the regression model. In-

stead of the multi-variative observed data, the previous observations of the univariate

target data are used as the effective factors of the target data. The regression model

assumes the future value of the target variable to be determined by other related

observed data, while the autoregressive model assumes the future value of the target

variable to be determined by the previous value of the same variable. An AR model

closely resembles the traditional regression model.
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An AR(p) model Xt can be written as

Xt = φ1Xt−1 + φ2Xt−2 + ... + φpXt−p + Zt,

where Zt denotes a random process with zero mean and variance σ2.
Using the backward shift operator B, where BXt = Xt−1, the AR(p)
model may be written as

φ(B)Xt = Zt,

where φ(B) = (1 − φ1B − ... − φpB
p) is a polynomial in B of order p.

Figure 5.1: Definition of the autoregressive (AR) model.

A time series Xt is said to be a moving-average process of order q if

Xt = Zt + θ1Zt−1 + ... + θqZt−q,

where Zt ∼ WN(0, σ2) denotes a random process with zero mean and
constant variance σ2 and θ1, ..., θq are constants.

Figure 5.2: Definition of the moving average (MA) model.

5.2.2 Moving average (MA) models

A moving average model describes a time series whose elements are sums of a series

of random shock values. The process that generates a moving average model has no

memory of past values. For example, a time series of an MA(1) process might be

generated by a variable with measurement error or a process where the impact of

a shock takes one period to fade away. In an MA(2) process, the shock takes two

periods to completely fade away.
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An ARIMA(p, d, q) model Xt can be written as

φ(B)(1 − B)dXt = θ(B)Zt,

where φ(B) and θ(B) are polynomials in B of finite order p and q,
respectively. The backward shift operator B is defined as BiXt = Xt−i.
A SARIMA (p, d, q) × (P, D, Q)S model exhibits seasonal pattern and
can be represented as:

φ(Bs)φ(B)(1 − Bs)D(1 − B)dXt = θ(Bs)θ(B)Zt,

where φ(B) and θ(B) represent the AR and MA parts, and φ(Bs) and
θ(Bs) represent the seasonal AR and seasonal MA parts, respectively.
B is the back-shift operator BiXt = Xt−i.

Figure 5.3: Definition of the ARIMA/SARIMA model.

5.2.3 SARIMA (p, d, q) × (P, D, Q)S models

The ARIMA model includes both autoregressive and moving average parameters and

explicitly includes in the formulation of the model differencing, which is used to sta-

tionarize the series. The three types of parameters in the model are: the autoregressive

order (p), the number of differencing passes (d), and the moving average order (q).

Box and Jenkins denote it as ARIMA (p, d, q) [21]. For example, a model ARIMA (0,

1, 2) means that it contains 0 (zero) autoregressive (p) order, 2 moving average (q)

parameters, and the model fits the series after being differenced once (1). A SARIMA

model is a ARIMA model plus seasonal fluctuation. It comprises normal orders (p,

d, q) and seasonal orders (P, D, Q), and the seasonal period S. A general SARIMA

model is denoted as SARIMA (p, d, q) × (P, D, Q)S.
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5.2.4 SARIMA model selection

The general ARIMA model building process has three major steps:

• model identification

• model estimation

• model verification.

Model identification is used to decide the orders of the model, i.e., to determine the

value of orders p, d, q, seasonal orders P, D, Q, and the seasonal period S. The φ(x)

and θ(x) coefficients are computed in the model estimation phase, using minimum

linear square error method or maximum likelihood estimation methods. Models are

verified by diagnostic checking on the null hypothesis of the residual or by various

tests, such as Box-Ljung and Box-Pierce tests [21], [24], [25].

The major tools used in the model identification phase include plots of the time

series, correlograms of autocorrelation function (ACF), and partial autocorrelation

function (PACF). Model identification is often difficult and in less typical cases re-

quires not only experience but also a good deal of experimentation with models with

various orders and parameters. The relation of the ACF with the MA(q) model, and

the relation of the PACF with the AR(p) model, are shown in Figure 5.4.

We use three measurements to find the best models and check the validity of the

model parameters. A smaller value of the measurement indicates a better selection of

model.

• Akaike’s Information Criterion (AIC)

AIC = −2ln(max.likelihood) + 2p

• Akaike’s Information Criterion Corrected (AICC)

AICC = AIC + 2(p + 1)(p + 2)/(N − p − 2)

• Bayesian Information Criterion (BIC)

BIC = −2ln(max.likelihood) + p + plnN
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Let {Yt} be the MA(q) model, so the ACF ρ(k)

ρ(k) =











∑q−|k|
i=0 θiθi+|k|/

∑q
i=0 θ2

i , |k| ≤ q, k 6= 0,
1, k = 0,
0, otherwise.

The PACF of a stationary time series is defined as

φ11 = ρ(1),
φkk = corr(Yk+1 − Psp{Y2,···,Yk}Yk+1, Y1 − Psp{Y2,···,Yk}Y1),
k ≥ 2,

where Psp{Y2,···,Yk}Y denotes the projection of the random variable
Y onto the closed linear subspace spanned by the random variable
{Y2, · · · , Yk}.

Theorem [23]
For an AR(p), φkk = 0 for k > p.

Figure 5.4: Auto-correlation function and Partial auto-correlation function.
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(p, d, q) × (P, D, Q)S m nmse AIC AICC BIC
(2, 0, 1)× (0, 1, 1)168 1512 0.173 20558.7 20558.8 20590.3
(2, 0, 9) × (0, 1, 1)24 1512 0.379 22744.6 22744.9 22826.8
(2, 0, 1)× (0, 1, 1)168 1680 0.174 23129.8 23129.8 23161.9
(1, 0, 1)× (0, 1, 1)168 1680 0.175 23145.1 23145.1 23170.8
(2, 0, 9) × (1, 1, 1)24 1680 0.5253 25292.1 25292.4 25382.1
(1, 0, 2) × (1, 1, 1)24 1680 0.411 25332.6 25332.6 25371.2
(2, 0, 9) × (0, 1, 1)24 1680 0.546 25345.9 25346.1 25429.4
(2, 0, 1) × (0, 1, 1)24 1680 0.537 25360.5 25360.6 25392.6
(3, 0, 1) × (0, 1, 1)24 1680 0.404 25361.2 25361.2 25399.7

Table 5.1: Summary of SARIMA models fitting measurement.

We test a series of SARIMA models selected based on the time series plot, ACF,

and PACF. The measurement results for several SARIMA models are shown in Ta-

ble 5.1. The rows are sorted in ascending order of the value of the measurement BIC.

Based on the same amount of training data 1,680, the model (2, 0, 1)× (0, 1, 1)168 has

the smallest BIC value. Thus, it may be the most suitable model for the data we

tested.

Null hypothesis test was used to check a model’s goodness-of-fit. They verify the

randomness of the time series and may be applied to the residual of the model. If

the identified/estimated model fits the training data well, the residual obtained by

subtracting the fitted data from the original observation, should be a true random

series. Usual null hypothesis test includes time plot analysis and ACF checks. In

addition, two types of goodness-of-fit test, Box-Ljung and Box-Pierce tests may be

used to check the null hypothesis of the model.

Figures 5.5 and 5.6 show the time plot of the residual series and their ACF function,

for two SARIMA models (3, 0, 1) × (0, 1, 1)24 and (1, 1, 0) × (0, 1, 1)24, respectively.

Also shown are the P-value [26] of the Box-Ljung test for these two models. P-value

of the test represents the probability that the sample could have been drawn from

the population(s) being tested given the assumption that the null hypothesis is true.

Thus, a higher P-value implies that the model being tested are more likely to pass the

null hypothesis test. Based on the plot and P-value, the model (3, 0, 1) × (0, 1, 1)24
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passed the null hypothesis test, while the model (1, 1, 0)× (0, 1, 1)24 failed.

5.3 Prediction based on aggregate traffic

The correlograms of the autocorrelation function and the partial autocorrelation func-

tion of the E-Comm data are shown in Figures 5.7 and 5.8, respectively. By differ-

encing the sample data with 24 hours lag, we estimate from the ACF shown in Figure

5.7 that the MA order could be up to 9. Based on the PACF shown in Figure 5.8,

we estimate that the order of AR part is 2 because of the apparent cut-off at lag 2.

Hence, the ARIMA models (2, 0, 1) and (2, 0, 9) are selected as model candidates.

The order (0, 1, 1) are commonly used for seasonal part (P, D, Q). It is selected

because the cyclical seasonal pattern itself is usually a random-walk process and may

be modeled as an MA (1) process after one time differencing. Thus, we use the order

of (0, 1, 1) for seasonal pattern.

A useful metric called normalized mean square error (nmse) is used to measure the

prediction quality by comparing the deviation of the predicted data and the observed

data. The nmse of the forecast is equal to the normalized sum of the variance of the

forecast divided by the squared bias of the forecast. It is defined as

nmse(a, b) =
m+n
∑

i=m+1

(ai − bi)
2

(ai − ā)2
,

where ai is the observed data, bi is the prediction, and ā is the mean value of ai.

Smaller values of nmse indicate better model performance.

An open source statistical tools R [27], [28], [29] was used to identify, estimate, and

verify the SARIMA model and to forecast the traffic. The E-Comm network traffic

possesses both daily and weekly patterns. Hence, both 24-hour and 168-hour (one

week) intervals are selected as seasonal period parameters. Hence, in addition to the

(2, 0, 9) × (0, 1, 1)24 and (2, 0, 1) × (0, 1, 1)24 models, two models (2, 0, 9) × (0, 1, 1)168

and (2, 0, 1)× (0, 1, 1)168 are also used to predict the network traffic. The four models

and corresponding parameters fitted for the E-Comm network traffic are shown in

Table 5.2. The model performance is tested with four groups of data (A, B, C, and
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Figure 5.5: Residual analysis: diagnostic test for model (3, 0, 1) × (0, 1, 1)24.
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Figure 5.6: Residual analysis: diagnostic test for model (1, 1, 0) × (0, 1, 1)24.



C
H

A
P

T
E

R
5
.

D
A

T
A

P
R

E
D

IC
T

IO
N

53

0 5 10 15 20 25 30 35

−
0.

5
0.

5

Lag

A
C

F
Original data series

0 5 10 15 20 25 30 35

−
0.

5
0.

5

Lag

A
C

F

Data series with difference of 24

0 5 10 15 20 25 30 35

−
0.

5
0.

5

Lag

A
C

F

Data series with difference of 168

F
igu

re
5.7:

N
u
m

b
er

of
calls:

sam
p
le

au
to-correlation

fu
n
ction

(A
C

F
).



C
H

A
P

T
E

R
5
.

D
A

T
A

P
R

E
D

IC
T

IO
N

54

0 5 10 15 20 25 30

−
0.

5
0.

5

Lag

P
A

C
F

Original data series

0 5 10 15 20 25 30

−
0.

5
0.

5

Lag

P
A

C
F

Data series with difference of 24

0 5 10 15 20 25 30

−
0.

5
0.

5

Lag

P
A

C
F

Data series with difference of 168

F
igu

re
5.8:

N
u
m

b
er

of
calls:

sam
p
le

P
artial

au
to-correlation

fu
n
ction

(P
A

C
F
).



CHAPTER 5. DATA PREDICTION 55

No. p d q P D Q S Trained (m) Predicted (n) nmse
A1 2 0 9 0 1 1 24 1512 672 0.3790
A2 2 0 1 0 1 1 24 1512 672 0.3803
A3 2 0 9 0 1 1 168 1512 672 0.1742
A4 2 0 1 0 1 1 168 1512 672 0.1732
B1 2 0 9 0 1 1 24 1680 168 0.3790
B2 2 0 1 0 1 1 24 1680 168 0.4079
B3 2 0 9 0 1 1 168 1680 168 0.1736
B3 2 0 1 0 1 1 168 1680 168 0.1745
C1 2 0 9 0 1 1 24 1920 24 0.3164
C2 2 0 1 0 1 1 24 1920 24 0.1941
C3 2 0 9 0 1 1 168 1920 24 0.1002
C4 2 0 1 0 1 1 168 1920 24 0.0969
D1 2 0 9 0 1 1 24 2016 168 0.3384
D2 2 0 1 0 1 1 24 2016 168 0.3433
D3 2 0 9 0 1 1 168 2016 168 0.1282
D4 2 0 1 0 1 1 168 2016 168 0.1178

Table 5.2: Aggregate-traffic-based prediction results.

D). We forecast the future n traffic data based on m past traffic data samples. In

Table 5.2, p, d, q represent the order of the AR, difference, and MA model for the

original data points, respectively. The P, D, Q represent the order of AR, difference,

and MA model for the seasonal pattern, respectively. S is the seasonal period for the

models.

Four SARIMA models with four groups of training data are shown in Table 5.2.

The models differ in the order of moving average and the seasonal period.

• Model 1: (2, 0, 9) × (0, 1, 1)24 (rows A1, B1, C1, and D1) is the model with

24-hour seasonal period and moving average of order 9. The model performance

does not depend on the number of training data, with nmse ranging from 0.3164

to 0.3790.

• Model 2: (2, 0, 1) × (0, 1, 1)24 (rows A2, B2, C2, and D2) is the model with

24-hour seasonal period and moving average of order 1. It exhibits similar



CHAPTER 5. DATA PREDICTION 56

prediction effectiveness as Model 1. It performs better in row C2 than model 1

in row C1.

• Model 3: (2, 0, 9) × (0, 1, 1)168 (rows A3, B3, C3, and D3) is the model with

a 168-hour period weekly cycle. It differs from Model 1 only in the seasonal

period, but provides much better prediction results than Model 1.

• Model 4: (2, 0, 1)× (0, 1, 1)168 (rows A4, B4, C4, and D4), differs from Model 2

in the seasonal period. It performs better than Model 2.

The comparisons of rows A1 with A2, B1 with B2, and D1 with D2, indicate that

Model 1 leads to better prediction results than Model 2. However, the prediction C1 is

worse than C2. Furthermore, for all four groups of training data, Models 3 and 4 with

168-hour period always lead to better prediction results than Models 1 and 2 with 24-

hour period. The 24-hour period models assume that the traffic is relatively constant

for a weekday, while the 168-hour period models take into account traffic variations

between between weekdays. To predict traffic on a Wednesday based on Tuesday’s

data not as accurate as predicting Wednesday’s traffic based on the data of previous

Wednesdays. However, the computational cost of identifying and forecasting 168-hour

period models is much larger that for the 24-hour period models. Often, 168-hour

models require over 100 times the CPU needed for 24-hour models. A comparison

of the prediction results of the 24-hour model and the 168-hour model in predicting

one future week of traffic based on the 1,680 past hours is shown in Figure 5.9. It

is consistent with the nmse value. The 168-hour period model performs better than

the 24-hour period model. The continuous curve shows the observation data. Symbol

“o” indicate the predicted traffic based on the 168-hour season model. Symbol “*”

denotes the prediction of the 24-hour season model. Based on the nmse values, the

prediction of the 168-hour based model fits better the observations than the prediction

based on the 24-hour model.
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Figure 5.9: Predicting 168 hours of traffic data based on the 1,680 past data.

5.4 Cluster-based prediction approach

A key assumption of the prediction based on the aggregate traffic described in Sec-

tion 5.3 is the constant number of network users and constant behavior patterns.

However, this assumption does not hold in case of network expansions. Hence, it is

difficult to use traditional models to forecast traffic of such networks. We propose

here a cluster-based approach to predict the network traffic by aggregating traffic

predicted for individual clusters.

Network users are classified into clusters according to the similarity of their be-

havior. It is impractical to predict each individual user’s traffic and then aggregate

the predicted data. With user clusters, this task reduces to predicting and then ag-

gregating several clusters of users’ traffic. For each clusters produced by K-means

in Section 4.3, we predict network traffic using SARIMA models (2, 0, 1) × (0, 1, 1)24

and (2, 0, 1)× (0, 1, 1)168. Results of the cluster-based prediction are compared to the

prediction based on aggregate traffic in Table 5.3.

In Table 5.3, rows marked A represent the prediction based on aggregate user
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Cluster (p,d,q) (P,D,Q) S m n nmse
1 (2,0,1) (0,1,1) 24 1680 48 1.1954
2 (2,0,1) (0,1,1) 24 1680 48 2.4519
3 (2,0,1) (0,1,1) 24 1680 48 0.3701
A (2,0,1) (0,1,1) 24 1680 48 0.6298
∗ (2,0,1) (0,1,1) 24 1680 48 0.6256
O (2,0,1) (0,1,1) 24 1680 48 0.4231

1 (2,0,1) (0,1,1) 168 1,920 24 0.2241
2 (2,0,1) (0,1,1) 168 1,920 24 0.3818
3 (2,0,1) (0,1,1) 168 1,920 24 0.1163
A (2,0,1) (0,1,1) 168 1,920 24 0.0969
∗ (2,0,1) (0,1,1) 168 1,920 24 0.1175

1 (2,0,1) (0,1,1) 24 1,920 24 0.2508
2 (2,0,1) (0,1,1) 24 1,920 24 0.2697
3 (2,0,1) (0,1,1) 24 1,920 24 0.3020
A (2,0,1) (0,1,1) 24 1,920 24 0.1941
∗ (2,0,1) (0,1,1) 24 1,920 24 0.2052

1 (2,0,1) (0,1,1) 24 1,680 168 0.5477
2 (2,0,1) (0,1,1) 24 1,680 168 0.6883
3 (2,0,1) (0,1,1) 24 1,680 168 0.2852
A (2,0,1) (0,1,1) 24 1,680 168 0.4079
∗ (2,0,1) (0,1,1) 24 1,680 168 0.4093

Table 5.3: Summary of the results of cluster-based prediction.
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traffic (without clustering of users) using the model shown in rows A2, B2, C2, and

D2 in Table 5.2. Rows 1, 2, and 3 represent traffic prediction for user clusters 1, 2, and

3, respectively. Row * is the weighted aggregate prediction of network traffic based

on the prediction for three user clusters. Row O stands for the optimized weighted

aggregate prediction. Note that the nmse > 1.0 for clusters 1 and 2 implies that the

prediction results are worse than prediction based on the mean value of past data. A

better prediction shown in row O is obtained if the mean value prediction is adopted

for clusters 1 and 2. We named it the optimized cluster-based prediction. Even with

un-optimized clustered based prediction (row *), the prediction results are not worse

than results of prediction based on aggregate traffic (rows A).

The advantage of the cluster-based prediction is that we could predict traffic in

a network with variable number of users as long as the new user groups could be

classified into the existing user clusters. The computational cost of forecasting the

network traffic is reduced to the number of clusters times the prediction cost for one

cluster.

5.5 Additional prediction results

Additional prediction results are presented in Tables 5.4 – 5.7. The experimental

results show that 57% of the cluster-based prediction models perform better than the

prediction models based on aggregate traffic when the seasonal period is 168 hours.

Furthermore, 7 out of 8 optimized models give better prediction results when the

model seasonal period is 24 hours.

5.5.1 Comparison of predictions with the (2, 0, 1) × (0, 1, 1)24

model

The results of cluster-based prediction and the prediction based on aggregate traffic

are compared in Tables 5.4 and 5.5. In the tables, pdq, PDQ, and S are SARIMA

model orders, seasonal orders, and season period, respectively. m is the number of

model training data and n is the number of predicted data. Tables 5.4 and 5.5 also
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show the nmse for prediction of each cluster, nmse for prediction based on aggregate

user traffic, nmse for cluster-based prediction, and nmse for optimized cluster-based

prediction, if any. Note that we use the same optimization method as used in Table 5.3:

we use the mean value of training data m to replace the “bad” cluster predictions when

nmse > 1.0. Rows marked “()” indicate that the cluster-based predictions perform

better than the predictions based on aggregate traffic (8 out of 56). Rows marked “[]”

show that the optimized cluster-based prediction performs better than the prediction

based on aggregate traffic (7 out of 56). 7 out of 8 optimized predictions perform

better than the aggregate-traffic-based predictions, which proves the effectiveness of

the proposed optimization method.

5.5.2 Comparison of predictions with the (2, 0, 1) × (0, 1, 1)168

model

The results of cluster-based prediction and the prediction based on aggregate traffic

using SARIMA model (2, 0, 1) × (0, 1, 1)168 are compared in Tables 5.6 and 5.7. In

the tables, pdq, PDQ, and S are SARIMA model orders, seasonal orders, and season

period, respectively. m is the number of model training data and n is the number of

data predicted. Tables 5.6 and 5.7 also show the nmse for prediction of each cluster,

nmse for prediction based on aggregate user traffic, nmse for cluster-based prediction,

and nmse for optimized cluster-based prediction, if any. Note that we also applied

the same optimization method as used in Table 5.3, which replaces “bad” prediction

results (nmse > 1.0) with the mean value of training data m. None of the optimized

cluster-based predictions performs better than the predictions based on aggregate user

traffic. However, more than 57% cluster-based predictions perform better than the

predictions based on aggregate traffic, which are shown in rows marked “()”.

5.6 Summary

In this Chapter, we described the analysis of time series data, emphasizing the

SARIMA models. The SARIMA model was used to fit the aggregate network traffic
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No pdq PDQ S m n nmse nmse nmse nmse nmse nmse

cluster1 cluster2 cluster3 aggregate clusters optimized

(1) 201 011 24 240 24 0.3237 0.5481 0.3084 0.2546 ( 0.2416 ) n/a
(2) 201 011 24 240 48 0.3942 0.7123 0.4457 0.3431 ( 0.3324 ) n/a
(3) 201 011 24 240 72 0.4367 0.6914 0.4596 0.3708 ( 0.3605 ) n/a
(4) 201 011 24 240 96 0.4278 0.8055 0.3828 0.3559 ( 0.3456 ) n/a
(5) 201 011 24 240 120 0.4992 0.8066 0.3556 0.3904 ( 0.381 ) n/a
(6) 201 011 24 240 144 0.5073 0.7856 0.3316 0.3905 ( 0.3831 ) n/a
(7) 201 011 24 240 168 0.4804 0.7793 0.3345 0.3806 ( 0.3748 ) n/a
(8) 201 011 24 480 24 0.4249 0.322 0.1071 0.1203 ( 0.1187 ) n/a
9 201 011 24 480 48 0.3189 0.3427 0.1661 0.1661 0.167 n/a
10 201 011 24 480 72 0.7208 0.5083 0.2042 0.3206 0.3419 n/a
11 201 011 24 480 96 0.712 0.5202 0.2449 0.3673 0.3933 n/a
12 201 011 24 480 120 0.5282 0.4922 0.3037 0.3422 0.3633 n/a
13 201 011 24 480 144 0.4408 0.4841 0.3116 0.3122 0.3223 n/a
14 201 011 24 480 168 0.3943 0.4817 0.3015 0.3016 0.3046 n/a
15 201 011 24 720 24 0.2699 2.029 0.3572 0.221 0.2535 0.2993
16 201 011 24 720 48 0.3063 0.6413 0.3788 0.2894 0.2986 n/a
17 201 011 24 720 72 0.3439 0.687 0.3901 0.3255 0.3321 n/a
18 201 011 24 720 96 0.3146 0.714 0.4147 0.3103 0.3151 n/a
19 201 011 24 720 120 0.3055 0.7431 0.3585 0.3081 0.3107 n/a
20 201 011 24 720 144 0.3482 0.7229 0.3551 0.334 0.3352 n/a
21 201 011 24 720 168 0.4586 0.7054 0.4089 0.4105 0.4117 n/a
22 201 011 24 960 24 0.1621 0.2336 0.1112 0.08545 0.09052 n/a
23 201 011 24 960 48 0.1636 0.3572 0.1209 0.09983 0.103 n/a
24 201 011 24 960 72 0.2262 0.4515 0.3382 0.2409 0.2449 n/a
25 201 011 24 960 96 0.3613 0.5711 0.4261 0.3387 0.3429 n/a
26 201 011 24 960 120 0.4374 0.6528 0.3934 0.3703 0.3738 n/a
27 201 011 24 960 144 0.4408 0.6533 0.3629 0.3469 0.3504 n/a
28 201 011 24 960 168 0.4625 0.6376 0.3332 0.3378 0.3414 n/a

Table 5.4: Comparison of predictions with (2, 0, 1) × (0, 1, 1)24 model: part 1.
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No pdq PDQ S m n nmse nmse nmse nmse nmse nmse

cluster1 cluster2 cluster3 aggregate clusters optimized

[29] 201 011 24 1200 24 2.413 1.579 0.2961 0.5975 0.5794 [ 0.3952 ]
[30] 201 011 24 1200 48 5.716 2.808 0.2886 1.131 1.125 [ 0.8403 ]
[31] 201 011 24 1200 72 1.774 1.976 0.2708 0.8846 0.886 [ 0.8463 ]
[32] 201 011 24 1200 96 1.319 0.8667 0.2602 0.6112 0.6138 [ 0.6106 ]
33 201 011 24 1200 120 0.8409 0.7031 0.2457 0.4637 0.4672 n/a
34 201 011 24 1200 144 0.6657 0.6472 0.2367 0.3966 0.3997 n/a
35 201 011 24 1200 168 0.7114 0.6709 0.2384 0.3863 0.3877 n/a
36 201 011 24 1440 24 0.4070 0.5568 0.2421 0.3257 0.3363 n/a
37 201 011 24 1440 48 0.5247 0.6054 0.2556 0.3803 0.3917 n/a
38 201 011 24 1440 72 0.6247 0.6268 0.23 0.4209 0.4328 n/a
39 201 011 24 1440 96 0.5938 0.6044 0.2755 0.4236 0.4326 n/a
40 201 011 24 1440 120 0.5915 0.6317 0.2728 0.4264 0.4334 n/a
41 201 011 24 1440 144 0.5472 0.6506 0.2810 0.4093 0.4139 n/a
42 201 011 24 1440 168 0.5222 0.6306 0.2715 0.3896 0.3943 n/a
[43] 201 011 24 1680 24 0.9441 1.522 0.4123 0.5372 0.5486 [ 0.4657 ]
[44] 201 011 24 1680 48 1.195 2.452 0.3701 0.6256 0.6298 [ 0.4231 ]
[45] 201 011 24 1680 72 0.9587 2.074 0.3459 0.5968 0.5968 [ 0.494 ]
46 201 011 24 1680 96 0.6411 0.9414 0.3347 0.4707 0.471 n/a
47 201 011 24 1680 120 0.5395 0.666 0.3172 0.4128 0.4139 n/a
48 201 011 24 1680 144 0.5155 0.6677 0.3011 0.4041 0.4057 n/a
49 201 011 24 1680 168 0.5477 0.6885 0.2853 0.4079 0.4093 n/a
50 201 011 24 1920 24 0.2509 0.2696 0.3013 0.1942 0.2050 n/a
51 201 011 24 1920 48 0.278 0.5794 0.3844 0.3227 0.3289 n/a
52 201 011 24 1920 72 0.2846 0.6823 0.3584 0.3761 0.3821 n/a
53 201 011 24 1920 96 0.2690 0.676 0.3253 0.3513 0.3573 n/a
54 201 011 24 1920 120 0.3312 0.6597 0.3935 0.3797 0.3848 n/a
55 201 011 24 1920 144 0.3696 0.6635 0.3944 0.3964 0.4005 n/a
56 201 011 24 1920 168 0.3678 0.6753 0.3694 0.3927 0.3957 n/a

Table 5.5: Comparison of predictions with (2, 0, 1) × (0, 1, 1)24 model: part 2.
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No pdq PDQ S m n nmse nmse nmse nmse nmse nmse

cluster1 cluster2 cluster3 aggregate clusters optimized

1 201 011 168 840 24 0.2540 1.033 0.1483 0.1014 0.103 0.1815
2 201 011 168 840 48 0.394 0.9021 0.2578 0.2408 0.2434 n/a
3 201 011 168 840 72 0.3337 0.9385 0.2478 0.2437 0.2471 n/a
4 201 011 168 840 96 0.2516 0.7673 0.25 0.2234 0.2246 n/a
5 201 011 168 840 120 0.2283 0.5695 0.2467 0.2022 0.2022 n/a
(6) 201 011 168 840 144 0.2486 0.5127 0.2358 0.1979 ( 0.1952 ) n/a
(7) 201 011 168 840 168 0.2407 0.5249 0.2231 0.1873 ( 0.1839 ) n/a
(8) 201 011 168 840 336 0.3393 0.5027 0.2191 0.2200 ( 0.2172 ) n/a
(9) 201 011 168 840 504 0.4443 0.4479 0.2022 0.2179 ( 0.2153 ) n/a
(10) 201 011 168 1008 24 0.4441 0.3912 0.2593 0.2659 ( 0.2468 ) n/a
(11) 201 011 168 1008 48 0.6772 0.5235 0.3384 0.4131 ( 0.3706 ) n/a
(12) 201 011 168 1008 72 0.5758 0.6342 0.2783 0.3556 ( 0.3229 ) n/a
(13) 201 011 168 1008 96 0.566 0.6592 0.2435 0.3220 ( 0.2869 ) n/a
(14) 201 011 168 1008 120 0.4547 0.5026 0.2216 0.2805 ( 0.2578 ) n/a
(15) 201 011 168 1008 144 0.4166 0.4694 0.2071 0.2567 ( 0.2357 ) n/a
(16) 201 011 168 1008 168 0.4749 0.4955 0.2109 0.288 ( 0.2656 ) n/a
(17) 201 011 168 1008 336 0.6163 0.466 0.1906 0.2855 ( 0.2605 ) n/a
(18) 201 011 168 1008 504 0.4398 0.4468 0.1900 0.2379 ( 0.224 ) n/a
19 201 011 168 1176 24 3.401 0.7474 0.1688 0.3654 0.5072 0.4369
20 201 011 168 1176 48 2.292 0.8033 0.1279 0.2594 0.3225 0.3512
21 201 011 168 1176 72 3.302 0.8128 0.1615 0.3808 0.4249 0.4328
22 201 011 168 1176 96 1.566 0.9416 0.1529 0.3816 0.4087 0.4099
23 201 011 168 1176 120 1.555 0.5541 0.1549 0.3333 0.3505 0.3434
24 201 011 168 1176 144 1.007 0.4426 0.1438 0.2487 0.2607 0.3012
25 201 011 168 1176 168 0.8061 0.4015 0.1518 0.2237 0.2331 n/a
26 201 011 168 1176 336 0.4268 0.4028 0.1635 0.1905 0.1952 n/a
27 201 011 168 1176 504 0.3842 0.4013 0.1644 0.1871 0.1907 n/a

Table 5.6: Comparison of predictions with (2, 0, 1)× (0, 1, 1)168 model: part 1.
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No pdq PDQ S m n nmse nmse nmse nmse nmse nmse

cluster1 cluster2 cluster3 aggregate clusters optimized

(28) 201 011 168 1344 24 0.9896 0.5187 0.1794 0.1357 ( 0.1226 ) n/a
(29) 201 011 168 1344 48 0.9125 0.4876 0.1836 0.1537 ( 0.1491 ) n/a
(30) 201 011 168 1344 72 0.3931 0.5368 0.1684 0.1552 ( 0.1527 ) n/a
(31) 201 011 168 1344 96 0.2521 0.4719 0.1551 0.1515 ( 0.1498 ) n/a
(32) 201 011 168 1344 120 0.2002 0.4435 0.1651 0.1512 ( 0.1495 ) n/a
(33) 201 011 168 1344 144 0.1996 0.4145 0.1717 0.1531 ( 0.1512 ) n/a
(34) 201 011 168 1344 168 0.2695 0.3934 0.1746 0.1794 ( 0.1772 ) n/a
(35) 201 011 168 1344 336 0.2752 0.3797 0.1711 0.1802 ( 0.1784 ) n/a
(36) 201 011 168 1344 504 0.2890 0.3946 0.1559 0.1859 ( 0.1849 ) n/a
37 201 011 168 1512 24 0.4997 1.202 0.1069 0.2106 0.2196 0.2569
38 201 011 168 1512 48 0.5958 1.251 0.1157 0.2078 0.2094 0.2418
(39) 201 011 168 1512 72 0.3954 1.072 0.1399 0.1910 ( 0.1909 ) 0.2535
(40) 201 011 168 1512 96 0.3059 0.5117 0.1427 0.1742 ( 0.1729 ) n/a
(41) 201 011 168 1512 120 0.2713 0.3971 0.1393 0.1527 ( 0.151 ) n/a
(42) 201 011 168 1512 144 0.2762 0.3509 0.1636 0.1597 ( 0.1560 ) n/a
(43) 201 011 168 1512 168 0.2790 0.3498 0.1566 0.1633 ( 0.1589 ) n/a
(44) 201 011 168 1512 336 0.2938 0.3742 0.1424 0.1739 ( 0.1716 ) n/a
(45) 201 011 168 1512 504 0.3486 0.3755 0.1555 0.1808 ( 0.1780 ) n/a
(46) 201 011 168 1680 24 0.3677 0.4447 0.1156 0.1321 ( 0.1298 ) n/a
47 201 011 168 1680 48 0.3807 0.4671 0.095 0.1149 0.1168 n/a
48 201 011 168 1680 72 0.2827 0.4244 0.091 0.1068 0.1086 n/a
49 201 011 168 1680 96 0.2818 0.3341 0.1007 0.1094 0.1100 n/a
50 201 011 168 1680 120 0.2528 0.2676 0.1128 0.1236 0.1238 n/a
51 201 011 168 1680 144 0.2590 0.3575 0.1170 0.1627 0.1630 n/a
52 201 011 168 1680 168 0.3013 0.3779 0.1222 0.1745 0.1750 n/a
(53) 201 011 168 1680 336 0.3775 0.3559 0.1517 0.1809 ( 0.1805 ) n/a
54 201 011 168 1680 504 0.3500 0.3455 0.1566 0.1645 0.1654 n/a

Table 5.7: Comparison of predictions with (2, 0, 1)× (0, 1, 1)168 model: part 2.
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data and the traffic of user clusters. We compared the prediction based on aggre-

gate traffic with cluster-based prediction. Based on our tests, we noted that 57% of

the cluster-based prediction performed better than the aggregate traffic prediction

with SARIMA model (2, 0, 1)× (0, 1, 1)168. With SARIMA model (2, 0, 1)× (0, 1, 1)24,

cluster-based prediction performs better than prediction based on aggregate traffic in

8 out of 56 tests and 7 optimized cluster-based predictions gave better results too.

The advantage of cluster-based traffic prediction is the flexibility of predicting variable

number of users and the reduction of the computational cost.



Chapter 6

Conclusion

In this thesis, we proposed a new prediction approach by combining clustering tech-

niques with traditional time series prediction modeling. The new approach has been

tested to predict the network traffic from an operational trunked radio system. We an-

alyzed the network traffic data and extracted useful data from the E-Comm network.

We explored the effectiveness and usefulness of clustering techniques by applying

AutoClass tool and K-means algorithm to classify network talk groups into various

clusters based on the users’ behavior patterns. To solve the computational cost prob-

lem of “bottom-up” approach and the inflexibleness problem of “top-down” approach,

we proposed a cluster-based traffic prediction method. We applied the cluster-based

SARIMA models and aggregate-traffic-based models to predict the network traffic.

The cluster-based prediction method produced comparable prediction results as the

prediction based on aggregate network traffic. In our tests with the 168-hour SARIMA

model, the cluster-based prediction performs better than the aggregate-traffic-based

prediction. With the 24-hour SARIMA model, cluster-based predictions (8 out of

56 tests) and optimized cluster-based prediction (7 out of 56 tests) perform better

the aggregate-traffic-based predictions. Furthermore, the cluster-based prediction ap-

proach is applicable to networks with variable number of users where the prediction

based on aggregate-traffic-based could not be applied. Utilizing the network user

clusters indicates a possible prediction approach for operational networks. Our ap-

proach may also enable network operators to predict network traffic and may provide
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guidance for future network expansion. Another contribution of this research project

is the illustration how data mining techniques may be used to help solve practical

real-world problems.

We developed database processing and analysis skills while dealing with the 6

Gbyte database. By applying unsupervised classification method on the traffic data,

we learned that it is rarely possible to produce useful results without having the

domain knowledge. The discovery of important clusters is a process of finding classes,

interpreting the results, transforming and/or augmenting the data, and repeating the

cycle. The cluster-based prediction model illustrates the application of clustering

techniques to traditional network traffic analysis.

6.1 Related and future work

Prior analysis of traffic from a metropolitan-area wireless network and a local-area

wireless network indicated the recurring daily user behavior and mobility patterns [6],

[7]. Analysis of billing records from a CDPD mobile wireless network also revealed

daily and weekly cyclic patterns [8]. The analysis of traffic from a trunked radio net-

work traffic showed that the call holding time distribution is approximately lognormal,

while the call inter-arrival time is close to an exponential distribution [11]. Channel

utilization and the multi-system call behavior of trunked radio network have been

also simulated using OPNET [30] and a customized simulation tool (WarnSim) [31].

We also experimented with a Bayesian network based approach to explore the

causal and conditional relationships among the different characteristics of user behav-

ior, such as call duration, number of systems in a call, caller id, and callee id. We

used B-course [32], [33] and Tetrad [34], [35] and constructed Bayesian network from

the user calling behavior data. Analysis results are presented in Appendix C.

Since we only have three months of traffic data, we were able to extract only

the daily and weekly patterns of the user calling behavior. A larger volume of data

may enable identifying the monthly behavior patterns. Traffic models could also be

compared using simulation tools. This would help verify the prediction results.



Appendix A

Data table, SQL, and R scripts

A.1 Call Type table

Id Call type

0 Group call

1 Individual call

2 Emergency call

3 System call

4 Morse code

5 Test

6 Paging

7 Scramble

8 Group set

9 System log

10 Start emergency

11 Cancel emergency

100 N/A
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A.2 SQL scripts for statistical output

Script to compute the average resource consumption for each talk group, in descending

order of the number of calls during the 92 days.

SELECT callee, agency, sum(n_calls) AS sn,

TRUNCATE( SUM( n_calls * avgRes ) / SUM( n_calls ), 2 ) AS aR,

TRUNCATE( SUM( n_calls * avgDur ) / SUM( n_calls ), 2 ) AS aD,

TRUNCATE( SUM( avgSys * n_calls ) / SUM( n_calls ), 2 ) AS aSys

INTO OUTFILE ‘/tmp/dump/tg.res.stat’ FROM tgStat

GROUP BY callee ORDER BY sn desc;

A.3 R scripts for prediction test and result sum-

mary

A.3.1 R script for prediction test

pred.test.24<-function(data, p=2, d=0, q=1, P=0, D=1, Q=1,

start=240, end=1920, step=240, p.start=24, p.end=168, p.step=24, prefix)

{

result<-list();

counter<-0;

for (m in seq(start, end, step))

{

mm<-as.integer(m);

worked<-0;

for (n in seq(p.start, p.end, p.step))

{

f.name<-paste(prefix, "pred",mm,n,"(",p,d,q,P,D,Q,")-24",sep="_");

cat(counter,":checking file", f.name);

if (file.exists(paste("./pred.test.24/", f.name, sep=""))) {

cat(" ... ... tested already\n");
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worked<-1;

if (file.info(paste("./pred.test.24/", f.name, sep=""))$size != 0) {

load(paste("./pred.test.24/",f.name,sep=""));

x.arima<-result$arima;

x.a.t<-result$m.t;

rm(result);

break;

}

}

}

if (worked == 0) {

cat("building model based on", mm, "data!\n");

x.a.t<-system.time(x.arima<-arima(data[1:mm], order=c(p,d,q),

seasonal=list(order=c(P,D,Q), period=24)));

}

for (n in seq(p.start, p.end, p.step))

{

counter<-counter+1;

cat(counter,":predict",n,"based on",mm, "data !\n");

f.name<-paste(prefix, "pred",mm,n,"(",p,d,q,P,D,Q,")-24",sep="_");

if (file.exists(paste("./pred.test.24/", f.name, sep=""))) {

cat("tested already\n");

next;

}

x.p.t<-system.time(x.pred<-predict(x.arima, n.ahead=n));

x.nmse<-nmse(x.pred$pred[1:n], data[(mm+1):(mm+n)]);

cat("nmse=",x.nmse,"for (",p,d,q,P,D,Q,")-24\n");

result.pred<-x.pred$pred[1:n];

result<-list(par=c(p,d,q,P,D,Q,24,mm,n), arima=x.arima,

pred=result.pred, nmse=x.nmse, m.t=x.a.t, p.t=x.p.t);

save(result, file=paste("./pred.test.24/", f.name, sep=""));

}

}
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}

pred.test.168<-function(data, p=2, d=0, q=1, P=0, D=1, Q=1,

start=840, end=1680, step=168, p.start=24, p.end=168, p.step=24, prefix)

{

result<-list();

counter<-0;

for (m in seq(start, end, step))

{

mm<-as.integer(m);

worked<-0;

for (n in seq(p.start, p.end, p.step))

{

f.name<-paste(prefix, "pred",mm,n,"(",p,d,q,P,D,Q,")-168",sep="_");

cat(counter,":checking file", f.name);

if (file.exists(paste("./pred.test.168/", f.name, sep=""))) {

cat(" ... ... tested already\n");

worked<-1;

if (file.info(paste("./pred.test.168/", f.name, sep=""))$size != 0) {

load(paste("./pred.test.168/",f.name,sep=""));

x.arima<-result$arima;

x.a.t<-result$m.t;

rm(result);

break;

}

}

}

if (worked == 0) {

cat("building model based on", mm, "data!\n");

x.a.t<-system.time(x.arima<-arima(data[1:mm], order=c(p,d,q),

seasonal=list(order=c(P,D,Q), period=168)));

}

for (n in seq(p.start, p.end, p.step))
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{

counter<-counter+1;

cat(counter,":predict",n,"based on",mm, "data !\n");

f.name<-paste(prefix, "pred",mm,n,"(",p,d,q,P,D,Q,")-168",sep="_");

if (file.exists(paste("./pred.test.168/", f.name, sep=""))) {

cat("tested already\n");

next;

}

x.p.t<-system.time(x.pred<-predict(x.arima, n.ahead=n));

x.nmse<-nmse(x.pred$pred[1:n], data[(mm+1):(mm+n)]);

cat("nmse=",x.nmse,"for (",p,d,q,P,D,Q,")-168\n");

result.pred<-x.pred$pred[1:n];

result<-list(par=c(p,d,q,P,D,Q,168,mm,n), arima=x.arima,

pred=result.pred, nmse=x.nmse, m.t=x.a.t, p.t=x.p.t);

save(result, file=paste("./pred.test.168/", f.name, sep=""));

}

for (n in 2:3*168)

{

counter<-counter+1;

cat(counter,":predict",n,"based on",mm, "data !\n");

f.name<-paste(prefix, "pred",mm,n,"(",p,d,q,P,D,Q,")-168",sep="_");

if (file.exists(paste("./pred.test.168/", f.name, sep=""))) {

cat("tested already\n");

next;

}

x.p.t<-system.time(x.pred<-predict(x.arima, n.ahead=n));

x.nmse<-nmse(x.pred$pred[1:n], data[(mm+1):(mm+n)]);

cat("nmse=",x.nmse,"for (",p,d,q,P,D,Q,")-168\n");

result.pred<-x.pred$pred[1:n];

result<-list(par=c(p,d,q,P,D,Q,168,mm,n), arima=x.arima,

pred=result.pred, nmse=x.nmse, m.t=x.a.t, p.t=x.p.t);

save(result, file=paste("./pred.test.168/", f.name, sep=""));

}
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}

}

A.3.2 R script used to summarize prediction results

pred.summary<-function(path, cluster=0) {

options(digits=8);

path.len<-nchar(path);

output<-file(paste("output/", path, ".summary", sep=""), open="wt");

files<-list.files(path, full.names=TRUE);

cat(file=output, "no", "(p,d,q)x(P,D,Q)-s", "m", "n",

"nmse", "m. time", "p. time\n", sep="\t");

for (i in 1:length(files))

{

cat("loading", files[i], "\n", sep="..");

load(files[i]);

f.par<-result$par;

f.arima<-result$arima;

f.m.t<-result$m.t;

f.p.t<-result$p.t;

f.nmse<-result$nmse;

rm(result);

if (cluster) {

cat(file=output, substr(files[i], path.len+2, path.len+3),

sep="");

} else {

cat(file=output, i, sep="");

}

cat(file=output, "\t(", f.par[1], ",", f.par[2], ",", f.par[3],
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")x(", f.par[4], ",", f.par[5], f.par[6], ")-", f.par[7],

"\t", f.par[8], "\t", f.par[9], "\t", f.nmse, "\t", f.m.t[3],

"\t", f.p.t[3], "\n", sep="");

cat("finished", files[i], "\n", sep="..");

}

flush(output);

close(output);

}

db.output<-function(dir) {

files<-list.files(dir);

output<-file("db.out", open="at");

type<-c("\’centroid\’", "\’medioid\’");

for (i in 1:length(files)) {

cat("working on", files[i], "\n");

file<-paste(dir, "/", files[i], sep="");

cluster<-length(grep("kc3", files[i]));

pdq<-substr(files[i], nchar(files[i]) - 10, nchar(files[i])-8);

season<-substr(files[i], 11, regexpr("-", files[i])[1]-1);

med<-type[length(grep("med", files[i]))+1];

cat("pdq:", pdq, "season:", season, "med:", med, "\n");

if (cluster) {

input<-scan(file, what=list(’character’, ’character’, ’integer’,

’integer’, ’numeric’, ’numeric’, ’numeric’), skip=1);

} else {

input<-scan(file, what=list(’integer’, ’character’, ’integer’,

’integer’, ’numeric’, ’numeric’, ’numeric’), skip=1);

}

for (i in 1:length(input[[1]])) {
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if (cluster) {

cat(file=output, "INSERT INTO prediction (cluster, type, pdq,

season, m, n,

nmse, m_time, p_time) VALUES (",

paste(substr(input[[1]][i], 2, 2), med, pdq, season,

input[[3]][i], input[[4]][i], input[[5]][i], input[[6]][i],

input[[7]][i], sep=", "), ");\n", sep=" ");

} else {

cat(file=output, "INSERT INTO prediction (pdq, season, m, n,

nmse, m_time, p_time) VALUES (", paste(pdq, season,

input[[3]][i], input[[4]][i], input[[5]][i], input[[6]][i],

input[[7]][i], sep=","), ");\n", sep=" ");

}

}

}

flush(output);

close(output);

}
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AutoClass files

B.1 AutoClass model file

The first column of the data file is talk group id. It should be ignored in finding the cluters.

The remaining columns use single normal cn model.

#Leo Chen, 2003-Sep-15

#the model file for E-Comm data user clustering

model index 0 2

ignore 0

single normal cn default

;; single normal cm

;; single multinomial

B.2 AutoClass influence factor report

#DATA_CLSF_HEADER

#AutoClass CLASSIFICATION for the 617 cases in

#/e-comm/clustering/tg.h/2208/tg2208.db2

#/e-comm/clustering/tg.h/2208/tg2208.hd2
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#with log-A<X/H> (approximate marginal likelihood) = -6548529.227

#from classification results file

#/e-comm/clustering/tg.h/2208/tg2208.results-bin

#and using models

#/e-comm/clustering/tg.h/2208/tg2208.model - index = 0

#DATA_SEARCH_SUMMARY

#SEARCH SUMMARY 1110 tries over 19 hours 17 minutes 49 seconds

#SUMMARY OF 10 BEST RESULTS

#PROBABILITY exp(-6548529.230) N_CLASSES 24 FOUND ON TRY 653 *SAVED* -1

#PROBABILITY exp(-6592578.320) N_CLASSES 18 FOUND ON TRY 930 *SAVED* -2

#PROBABILITY exp(-6619633.090) N_CLASSES 21 FOUND ON TRY 940

#PROBABILITY exp(-6622783.940) N_CLASSES 24 FOUND ON TRY 323

#PROBABILITY exp(-6626274.570) N_CLASSES 17 FOUND ON TRY 542

#PROBABILITY exp(-6637269.320) N_CLASSES 24 FOUND ON TRY 1084

#PROBABILITY exp(-6657627.910) N_CLASSES 18 FOUND ON TRY 677

#PROBABILITY exp(-6658596.390) N_CLASSES 19 FOUND ON TRY 918

#PROBABILITY exp(-6660040.920) N_CLASSES 18 FOUND ON TRY 528

#PROBABILITY exp(-6671271.570) N_CLASSES 12 FOUND ON TRY 385

DATA_POP_CLASSES

#CLASSIFICATION HAS 24 POPULATED CLASSES

(max global influence value = 10.988)

#Class Log of class Relative Class Normalized

#num strength class strength weight class weight

00 -8.23e+03 0.00e+00 144 0.233

01 -2.16e+04 0.00e+00 67 0.109

02 -7.69e+03 0.00e+00 66 0.107

03 -7.54e+03 0.00e+00 31 0.050

04 -7.54e+03 0.00e+00 25 0.041

05 -1.48e+04 0.00e+00 23 0.037

06 -6.95e+03 1.00e+00 22 0.036
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07 -1.73e+04 0.00e+00 21 0.034

08 -7.20e+03 0.00e+00 20 0.032

09 -1.13e+04 0.00e+00 20 0.032

10 -7.47e+03 0.00e+00 19 0.031

11 -7.62e+03 0.00e+00 19 0.031

12 -1.65e+04 0.00e+00 18 0.029

13 -1.16e+04 0.00e+00 18 0.029

14 -7.60e+03 0.00e+00 18 0.029

15 -7.47e+03 0.00e+00 17 0.028

16 -1.17e+04 0.00e+00 15 0.024

17 -6.98e+03 2.22e-13 13 0.021

18 -8.23e+03 0.00e+00 12 0.019

19 -1.84e+04 0.00e+00 10 0.016

20 -7.14e+03 0.00e+00 9 0.015

21 -1.05e+04 0.00e+00 4 0.006

22 -8.68e+03 0.00e+00 3 0.005

23 -7.37e+03 0.00e+00 3 0.005

DATA_CLASS_DIVS

#CLASS DIVERGENCES

#Class (class cross entropy) Class Normalized

#num (w.r.t. global class) weight class weight

00 1.11e+04 144 0.233

01 5.58e+03 67 0.109

02 1.17e+04 66 0.107

03 1.19e+04 31 0.050

04 1.19e+04 25 0.041

05 5.03e+03 23 0.037

06 1.25e+04 22 0.036

07 2.87e+03 21 0.034

08 1.22e+04 20 0.032

09 8.31e+03 20 0.032
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10 1.20e+04 19 0.031

11 1.18e+04 19 0.031

12 3.88e+03 18 0.029

13 8.04e+03 18 0.029

14 1.19e+04 18 0.029

15 1.20e+04 17 0.028

16 8.03e+03 15 0.024

17 1.25e+04 13 0.021

18 1.13e+04 12 0.019

19 2.62e+03 10 0.016

20 1.24e+04 9 0.015

21 9.85e+03 4 0.006

22 1.18e+04 3 0.005

23 1.25e+04 3 0.005

DATA_NORM_INF_VALS

#ORDERED LIST OF NORMALIZED ATTRIBUTE INFLUENCE

VALUES SUMMED OVER ALL CLASSES

# num description I-*k

4335 Log NC[81] 1.000

2490 Log NC[1926] 0.999

2986 Log NC[1430] 0.998

4039 Log NC[377] 0.998

3732 Log NC[684] 0.998

3832 Log NC[584] 0.996

3184 Log NC[1232] 0.996

3831 Log NC[585] 0.995

4043 Log NC[373] 0.992

3927 Log NC[489] 0.992

2487 Log NC[1929] 0.992

4209 Log NC[207] 0.991

2506 Log NC[1910] 0.991

3804 Log NC[612] 0.990
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2485 Log NC[1931] 0.990

3829 Log NC[587] 0.990

3948 Log NC[468] 0.988

3588 Log NC[828] 0.987

3013 Log NC[1403] 0.987

3158 Log NC[1258] 0.987

2700 Log NC[1716] 0.986

3949 Log NC[467] 0.986

2699 Log NC[1717] 0.985

B.3 AutoClass class membership report

# CROSS REFERENCE CLASS => CASE NUMBER MEMBERSHIP

#DATA_CLSF_HEADER

# AutoClass CLASSIFICATION for the 617 cases in

# /e-comm/clustering/tg.h/2208/tg2208.db2

# /e-comm/clustering/tg.h/2208/tg2208.hd2

# with log-A<X/H> (approximate marginal likelihood) = -6548529.227

# from classification results file

# /e-comm/clustering/tg.h/2208/tg2208.results-bin

# and using models

# /e-comm/clustering/tg.h/2208/tg2208.model - index = 0

DATA_CLASS 0

# CLASS = 0

#Case talkgroup NC[0] NC[1] NC[2] NC[3] NC[4] NC[5] NC[6] NC[7]

NC[8] NC[9] NC[10] NC[11] (Cls Prob)

008 1099.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

009 1100.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

015 1129.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

016 112.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000
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... ...

DATA_CLASS 1

# CLASS = 1

#Case talkgroup NC[0] NC[1] NC[2] NC[3] NC[4] NC[5] NC[6] NC[7]

NC[8] NC[9] NC[10] NC[11] (Cls Prob)

001 0.hour.nc 26 25 24 24 24 25 25 26 26 25 25 23 1.000

003 1089.hour.nc 6 29 0 0 0 8 0 0 2 80 0 0 1.000

098 1429.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

102 1441.hour.nc 41 9 13 8 15 44 88 9 26 25 21 25 1.000

109 1474.hour.nc 31 13 34 35 10 19 30 8 17 7 4 14 1.000

... ...

DATA_CLASS 2

# CLASS = 2

#Case talkgroup NC[0] NC[1] NC[2] NC[3] NC[4] NC[5] NC[6] NC[7]

NC[8] NC[9] NC[10] NC[11] (Cls Prob)

033 12118.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

039 12252.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

066 12858.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

069 12872.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

080 13405.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

087 13905.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

094 13931.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

... ...

DATA_CLASS 3

# CLASS = 3

#Case talkgroup NC[0] NC[1] NC[2] NC[3] NC[4] NC[5] NC[6] NC[7]

NC[8] NC[9] NC[10] NC[11] (Cls Prob)

014 1123.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

059 12708.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

073 12913.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000
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081 13427.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

082 13473.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

096 139.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

116 1480.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

118 1491.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

11 7076.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

522 8013.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

524 8021.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

580 8705.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 0.964 4 0.036

... ...

DATA_CLASS 4

# CLASS = 4

#Case talkgroup NC[0] NC[1] NC[2] NC[3] NC[4] NC[5] NC[6] NC[7]

NC[8] NC[9] NC[10] NC[11] (Cls Prob)

006 1097.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

022 1145.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

023 1146.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

058 126.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

074 13186.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

... ...

DATA_CLASS 5

# CLASS = 5

#Case talkgroup NC[0] NC[1] NC[2] NC[3] NC[4] NC[5] NC[6] NC[7]

NC[8] NC[9] NC[10] NC[11] (Cls Prob)

005 1091.hour.nc 0 0 0 0 4 0 0 0 0 0 0 0 1.000

020 113.hour.nc 3 0 0 0 0 0 0 0 0 0 0 0 1.000

108 146.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

232 163.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

... ...



Appendix C

Bayesian network analysis

C.1 B-Course analysis

Conditional dependency analysis results from B-Course are shown in Figures C.1 and C.2.

C.2 Tetrad analysis

Bayesian network analysis results from Tetrad are shown in Figures C.3 and C.4.
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Figure C.1: B-Course analysis: result 1.
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Figure C.2: B-Course analysis: result 2.
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Figure C.3: Tetrad analysis: result 1.
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Figure C.4: Tetrad analysis: result 2.
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