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Abstract

Traditional statistical analysis of network data is often employed to determine traf-
fic distribution, to summarize user’s behavior patterns, or to predict future network
traffic. Mining of network data may be used to discover hidden user groups, to detect
payment fraud, or to identify network abnormalities. In our research we combine
traditional traffic analysis with data mining technique. We analyze three months of
continuous network log data from a deployed public safety trunked radio network. Af-
ter data cleaning and traffic extraction, we identify clusters of talk groups by applying
AutoClass tool and K-means algorithm on user’s behavior patterns represented by the
hourly number of calls. We propose a traffic prediction model by applying the clas-
sical SARIMA models on the clusters of users. The predicted network traffic agrees
with the collected traffic data and the proposed cluster-based prediction approach

performs well compared to the prediction based on the aggregate traffic.
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Chapter 1
Introduction

Analysis of traffic from operational wireless networks provides useful information
about the network and users’ behavior patterns. This information enables network
operators to better understand the behavior of network users, to better use network
resources, and, ultimately, to provide better quality of services.

Traffic prediction is important in assessing future network capacity requirements
and in planning network development. Traditional prediction of network traffic usually
considers aggregate traffic from individual network users. It also assumes a constant
number of network users. This approach cannot easily adapt to a dynamic network
environment where the number of users varies. An alternate approach that focuses
on individual users is impractical in predicting the aggregate network traffic because
of the high computational cost in cases where the network consists of thousands of
users. Employing clustering technique for predicting aggregate network traffic bridges
the apparent gap between these two approaches.

Data clustering may be used to identify and define customer groups in various
business environments based on their purchasing patterns. In the telecommunica-
tion industry, clustering techniques may be used to identify traffic patterns, detect
fraudulent activities, and discover users’ mobility patterns. Network users are usually
classified into user groups according to geographical location, organizational structure,

payment plan, or behavior pattern. Patterns of users’ behavior reflect the nature of
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user activities and, as such, are inherently consistent and predictable. However, em-
ploying users’ behavior patterns to classify user groups and to predict network traffic
is non-trivial.

In this thesis, we analyze traffic data collected from a deployed network. We use
hourly number of calls to represent individual user’s calling behavior. We then predict
network traffic based on the aggregate traffic and based on the identified clusters of
users. Experimental results show that the cluster-based prediction produces results
comparable to the traditional prediction of network traffic. The user cluster based
traffic prediction approach may also address the computational cost and the dynamic
number of users problems. An advantage of cluster-based prediction is that it may
be used for predictions in networks with variable number of users. This approach
provides a balance between a micro and a macro view of a network.

This thesis includes additional five chapters.

Chapter 2 begins with a brief introduction to the network and the traffic data that
we analyzed. It is followed by the description of data preprocessing, data extraction
and the results.

In Chapter 3, various statistical analysis routines have been applied to the traffic
data on three levels: network, agency, and talk group levels. The analysis results
include plots and basic statistical measures (maximum, minimum, mean value, and
variance).

In Chapter 4, we discuss the general clustering techniques and principles. We
apply the AutoClass clustering tool and K-means algorithm to classify talk groups
into clusters based on their calling activities. We also compare the the clustering
results of AutoClass and K-means.

In Chapter 5, we present the Seasonal Autoregressive Integrated Moving Average
(SARIMA) time series prediction model. We discuss the model selection method and
present the prediction results of the network traffic. We conclude with a comparison of
the prediction results of cluster-based models and models based on aggregate traffic.

We conclude the thesis with Chapter 6. A short summary of experiences that we
gained is given and the future work is addressed.

Appendics include additional database tables, SQL scripts, R scripts, and snippets
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of AutoClass model and report files. Experimental results of conditional dependency

analysis of the traffic data using Bayesian network are also presented.



Chapter 2
Data preparation

The traffic data analyzed in this thesis were obtained from E-Comm [1]. In this Chap-
ter, we first introduce the architecture of the E-Comm network and the underlying
technology. We also examine the database schema and describe the procedure for

data cleaning and the traffic data extraction.

2.1 E-Comm network

2.1.1 E-Comm network structure overview

E-Comm is the regional emergency communications center for Southwest British
Columbia, Canada. It provides emergency dispatch/communication services for a
number of police and fire departments in the Greater Vancouver Regional District
(GVRD), the Sunshine Coast Regional District, and the Whistler/Pemberton area.
E-Comm serves sixteen agencies such as Royal Canadian Mounted Police (RCMP),
fire and rescue, local police departments, ambulance, and industrial customers such
as BC Translink [2]. Each agency has a number of affiliated talk groups and the entire
network serves 617 talk groups. Figure 2.1 presents a rough geographical coverage of
the E-Comm network.

Before the establishment of E-Comm, ambulance, fire, and police agencies could

not communicate with each other effectively because they used separate radio systems.
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The deployment of the E-Comm network in 1999 provided an integrated shared com-
munications infrastructure to various emergence service agencies. It enables the cross
communication between various agencies and municipalities.

The E-Comm network employs Enhanced Digital Access Communications System
(EDACS), developed by M/A-COM [3] (formerly Comnet-Ericsson) in 1988. EDACS
system is a group-oriented communication system that allows groups of users to com-
municate with each other regardless of their physical locations. The main advantages
of this approach are improved coordination, efficient exchange of information, and
efficient resource usage.

The E-Comm network consists of 11 cells. Each cell covers one or more munici-
palities, such as Vancouver, Richmond, and Burnaby. Identical radio frequencies are
transmitted within one cell using multiple repeaters. This is known as simulcast. The
basic talking unit in the trunked radio network is a talk group: a group of individ-
ual users working and communicating with each other to accomplish certain tasks.
Although the E-Comm network is capable of both voice and data transmissions, we

analyze only voice traffic because it accounts for more than 99% of the network traffic.

2.1.2 E-Comm network terminology

We explain briefly the following network terms:

System/Cell: A trunked radio network is divided into smaller areas in order to
reuse the radio frequencies and to increase the network capacities. One system
represents one service area and a cell is the synonymous of a system. One system
could serve one or more municipalities, based on the frequencies availability and
geographical connection. A unique system id is associated with each system.
Within a system/cell, the radio signal is transmitted using the same range of

frequencies.

Channel: A channel is a small range of radio frequencies or a time slot. Various

numbers of channels are assigned in each system based on the traffic throughput
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Figure 2.1: E-Comm network coverage in the Greater Vancouver Regional District.

and the system needs. Two types of radio channel are used in EDACS: control
and traffic channels. There is one control channel in each cell, while the remain-
ing channels are used as traffic channels. The control channel is used to send
protocol messages between radios and the base station equipment for controlling
the operation of the system. Traffic channels are used to transmit the voice or

data messages between radios or between radios and the base stations.

Group Call: Group call is the typical call made in a trunked radio system. A group
is a set of users who need to communicate regularly in order to accomplish
certain tasks. For example, within a single city-wide system, the North and
South fire services may each have one talk group, while the police may be
subdivided into several talk groups. A user only needs to press the push-to-talk

(PTT) button on the radio device to initiate a group call. All users belonging to
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the same talk group will hear the communications in the group call irrespective
of their physical locations. Most EDACS network operators have observed that

more than 85% of calls are group calls [4].

Simulcast: In the E-Comm network, simulcast is used in a single cell. Within a cell,
identical radio frequencies are transmitted simultaneously between two or more

base station sites in order to improve signal strength and increase coverage.

Multi-System Call: It represents a single group call involving more than one
system/cell. A user may initiate a group call without knowing the physical
location of the group members. When all members of the talk group reside
within one system, the group call is a single-system call occupying only one
traffic channel in the system. However, when group members are distributed
over multiple systems, the group call becomes a multi-system call that occupies
one traffic channel in each system. Hence, the major difference between a multi-
system call and a single-system call is that the first occupies additional channels
and consumes more system resources. In the collected traffic data, more than

55 % of group calls are multi-system calls.

2.2 Network traffic Data

The traffic data received from E-Comm contains event log tables recording the activ-
ities occurred in the network. They are aggregated from the distributed database of

the network management systems.

2.2.1 Database setup

Analyzed data records span from 2003-03-01 00:00:00 to 2003-05-31 23:59:59 contin-
uously. The database size is ~ 6G bytes, with 44,786,489 records for the 92 days of
data. It consists of 92 event log tables, each containing one data’s events generated
in the network, such as the call establishment, call drop, and emergency call events.

Its sheer volume was one of the main difficulties in our data analysis. For efficiency,
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we converted the data from the MS Access format to plain text files and imported

the records into the MySQL [5] database server under Linux platform.

2.2.2 Event log database schema

The complete twenty-six data fields in the event log table are:

1.

10.

11.

12.

13.

14.

Event_UTC_At: the timestamp of the event (granularity is 3 ms).
Duration$ms: the duration of the event in ms (granularity is 10 ms).
Network_Id: the identification of the network (constant in the database).
Node_Id: the identification of the network node (not populated).

System_Id: the identification of the system/cell involved in the event, ranging
from 1 to 11.

Channel_Id: the identification of the channel involved in the event.
Slot_Id: this field is not populated in the database.

Caller: also known as LID (Logic ID). It is the caller’s id, ranging from 1 to
16,000. The first 2,000 LIDs are assigned to either talk groups or individual

users. The remaining LIDs are assigned to talk groups only.
Callee: the callee’s id in the event, having the same value range as Caller.

Call_Type: the type of the call, such as group call, emergency call, and individual

call.

Call_State: the state of the call event, such as assign channel, drop, and queue.
Call_Direction: the direction of the call (meaning unknown).

Voice_Call: a flag indicating a voice call.

Digital_Call: a flag indicating a digital call.
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15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Interconnect_Call: a flag indicating a call interconnecting the EDACS and the
Public Switched Telephone Network (PSTN).

Multi_System_Call: a flag indicating a multi-system call. It is only set in the

event of call drop.

Confirmed_Call: a flag of the call. A call is a confirmed call when every member

of a talk group has to confirm the call before the conversation begins.
Msg Trunked _Call: a flag of the call (meaning unknown).

Preempt_Call: a flag of the call. A preempt_call has higher queue priority.
Primary_Call: a flag of the call (meaning unknown).

Queue_Depth: the depth of the current system queue at the event moment. It

may be used to investigate the block rate of the system.
Queue_Pri: the priority number of the call in queue.

MCP (Multi-Channel-Partition): the partition number of channels (not popu-
lated).

Caller_Bill: set to 1 if the call is billable to the caller (not used in the current

system).

Callee_Bill: set to 1 if the is billable to the callee (not used in the current

system).

Reason_Code: the error reason code number, providing additional information

if any error occurs during the call.

2.2.3 Topic of interest

Two open questions, emanating from the discussions with E-Comm staff and the

analysis of database, are of particular interest to our analysis: the precise measurement

of network usage per agency and the traffic forecast based on user’s behavior patterns.
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A. Precise measurement of network usage

The current billing policy for agencies in the E-Comm network is based on the
geographic coverage and the approximate calling traffic volume of each agency. Traffic
volume factors are further broken down into the number of radios, radio traffic, and
user population. Shared radio infrastructure costs are allocated based on the coverage
area, number of radios, radio traffic, and population.

Presently, there is no precise measuring method for the traffic generated by each
individual user/talk group. The current database is an event log database, recording
every activity that occurred in the network, such as the call establishment, call drop,
and emergency calls. One group call may be recorded twice in the event log, as it
generates both call assignment and call drop events. One single multi-system call
involving several systems generates multiple entries in the database. Based solely
on the raw traffic logs, the calculation of network resources used by one agency is
inaccurate. Therefore, the traffic generated by agencies is not calculated directly
from the event database. It is, instead, based on an assumed mean value of call
duration, the coverage of cells by the agency, the number of radios possessed by the
agency, and the number of records corresponding to the agency. It is unable to identify
the number of calls made by each agency, the average/maximum number of systems
involved in calls for each agency, and the network usage for each talk group. A sample

of the data is shown in Section 2.4.

B. Traffic forecast based on user’s behavior patterns

Users’ behavior patterns in the trunked radio networks are different from the tradi-
tional telephone networks. Group calls involve more than two users, while traditional
telephone calls connect only two persons. Furthermore, since the E-Comm network
mainly serves emergency communications, the uncertainty of emergencies implies dif-
ferent behavior patterns of network users from users of ordinary telephone network.
In addition, different agencies may have different behavior patterns. For example,
the ambulance service may have different peak hours from the RCMP, while the fire
department often dispatch group of firefighters to the accident sites together with the

police groups.
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Understanding user’s behavior could help improve user satisfaction and be ben-
eficial for the network optimization and the planning for network expansion. For
example, if a police department plans to increase its manpower by increasing the pa-
trol groups and using more radios. A reasonable assumption is that the new groups
have similar behavior patterns to the existing users. New patrol groups may be clas-
sified into certain existing user groups based on their behavior patterns. Considering
the number of new members in the user groups, we may forecast the network traffic
based on the existing user’s behavior patterns, thus to make better assessment on the

network capacity.

2.3 Data preprocessing

The main difficulty in analyzing the network log data is the sheer volume of data.
Data preprocessing is the fundamental and mandatory step for data analysis. It is
used to clean the database and filter the outliers and redundant records. The current
database includes: surplus data fields with useless entries, obscure data records, and
inconsistent data fields. The goals of the data preprocessing step are to remove useless
information and to remove the outliers. They are accomplished by acquiring the
necessary domain knowledge from the system documentation and via interviews with
the E-Comm staff. The preprocessing procedure is composed of database shrinking

and cleaning.

2.3.1 Database shrinking

Not all data fields are useful to our analysis. Certain fields are not populated in
the database (Node_Id and Slot_Id fields), while others have identical value or are
unrelated to our research (Network_Id, Caller_Bill, and Callee_Bill). We are only in-
terested in fields that could capture the user’s behavior and network traffic. Thus, the
step is to remove these unpopulated, identical, or unrelated fields from the database,
such as the Digital_Call, Interconnect_Call, Confirmed_Call, Primary_Call, Caller_Bill,
Callee_Bill, and Reason_Code fields.
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From the twenty-six original fields in the database, nine fields are of particular
interest to our analysis: 1) Event_UTC_At, 2) Duration$ms, 3) System_Id, 4) Chan-
nel_Id, 5) Caller, 6) Callee, 7) Call_Type, 8) Call_State, and 9) Multi_System_Call.

2.3.2 Database cleaning

After reducing the database dimension to nine, we removed redundant records, such as
records having call_type = 100 or records with duration = 0. Records with call_state
= 1, which implies the call drop event, are redundant because each call drop event
already has a corresponding call assignment event in the database. (Note that the
reverse is not true.) Records with channel id = 0 should also be removed as well
because the channel id 0 represents the control channel whose traffic we have not
considered. We keep the the records with call_type = 0, 1, 2, or 10, representing
group call, individual call, emergency call, and start-emergency-call, respectively. The
complete call_type table is given in Appendix A.

The result of data preprocessing step is a smaller and cleaner database. The
number of records in each data table of original and cleaned databases are compared in
Table 2.1. Approximately 55% records have been removed from the original database
after preprocessing. Furthermore, due to the effect of the dimension reduction, the

total size of the database has been reduced to only 19% of the original size.

2.4 Data extraction

The extraction of the network traffic may solve the first open question of imprecise
traffic measurement, as described in Section 2.2.3. A sample of the cleaned database
table is shown in Table 2.2. If a call is a multi-system call involving several systems,
several records (one for each involved system) are created to represent this call in the
original event log database. For example, based on the caller, callee, and duration
information, records 1 and 6 represent one group call from caller 13905 to callee 401,
involving systems 1 and 7 and lasting ~ 1350 ms. Records 29, 31, 37, and 38 represent
a group call from caller 13233 to callee 249, involving systems 2, 1, 7, and 6. Thus, the



Date Original Cleaned Date Original Cleaned Date Original Cleaned
2003,/03/01 466,862 204,357 | 2003/04/01 578,834 260,752 | 2003/05/01 535,919 240,046
2003/03/02 415,715 184,973 | 2003/04/02 609,686 275,575 | 2003/05/02 536,092 240,585
2003/03/03 406,072 182,311 | 2003/04/03 503,666 225,041 | 2003/05/03 413,171 184,998
2003/03/04 464,534 207,016 | 2003/04/04 491,225 221,373 | 2003/05/04 393,421 176,878
2003,/03/05 585,561 264,226 | 2003/04/05 479,043 215,979 | 2003/05/05 362,118 161,104
2003,/03/06 605,987 271,514 | 2003/04/06 360,661 159,867 | 2003/05,/06 463,040 202,153
2003/03/07 546,230 247,902 | 2003/04/07 423,915 189,111 | 2003/05/07 542,724 242,997
2003/03/08 513,459 233,982 | 2003/04/08 507,364 227,196 | 2003/05/08 559,787 248,127
2003/03/09 442,662 201,146 | 2003/04/09 563,334 252,753 | 2003/05/09 556,419 250,072
2003/03/10 419,570 186,201 | 2003/04/10 518,096 232,572 | 2003/05/10 471,745 213,051
2003/03/11 504,981 225,604 | 2003/04/11 501,114 224,941 | 2003/05/11 415,702 187,786
2003/03/12 516,306 233,140 | 2003/04/12 482,866 215,426 | 2003/05/12 381,057 170,031
2003/03/13 561,253 255,840 | 2003/04/13 406,548 180,903 | 2003/05/13 484,477 217,803
2003/03/14 550,732 248,828 | 2003/04/14 347,400 151,802 | 2003/05/14 530,492 236,520
2003/03/15 581,932 266,329 | 2003/04/15 429,918 190,384 | 2003/05/15 550,407 246,539
2003/03/16 519,893 237,804 | 2003/04/16 513,713 229,653 | 2003/05/16 514,825 231,259
2003/03/17 470,046 213,815 | 2003/04/17 515,302 231,966 | 2003/05/17 454,208 202,995
2003/03/18 583,717 267,938 | 2003/04/18 421,623 189,158 | 2003/05/18 448,726 202,213
2003/03/19 544,893 249,766 | 2003/04/19 414,045 183,778 | 2003/05/19 406,458 182,730
2003/03/20 575,978 262,049 | 2003/04/20 392,821 175,380 | 2003/05/20 421,129 187,064
2003,/03/21 548,872 252,185 | 2003/04/21 325,268 143,316 | 2003/05/21 525,547 235,586
2003/03/22 525,830 240,821 | 2003/04/22 367,287 161,285 | 2003/05/22 574,971 258,432
2003/03/23 534,699 244,510 | 2003/04/23 428,419 187,621 | 2003/05/23 549,397 244,869
2003/03/24 475,808 215,582 | 2003/04/24 464,451 208,512 | 2003/05/24 502,278 225,573
2003/03/25 514,570 233,283 | 2003/04/25 471,794 211,731 | 2003/05/25 436,931 196,311
2003/03/26 589,203 267,982 | 2003/04/26 449,725 202,244 | 2003/05/26 394,320 176,583
2003/03/27 608,074 276,281 | 2003/04/27 369,049 165,248 | 2003/05/27 490,976 220,099
2003/03/28 503,455 227,615 | 2003/04/28 372,067 164,094 | 2003/05/28 517,567 232,240
2003/03/29 542,443 248,825 | 2003/04/29 464,529 206,596 | 2003/05/29 551,566 248,393
2003/03/30 446,921 203,254 | 2003/04/30 547,473 245,293 | 2003/05/30 556,295 250,757
2003,/03/31 446,174 202,423 2003/05/31 511,056 229,872
Total: 16,012,432 7,257,502 | Total: 13,721,236 6,129,550 | Total: 15,052,821 6,743,666

Table 2.1: Number of records per day: original vs. cleaned database.
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CHAPTER 2. DATA PREPARATION 14

network operator cannot count the number of group calls made by a certain talk group
or agency merely based on the original multiple entries. Furthermore, it is impossible
to find the number of multi-system calls and the average number of systems in a
multi-system call.

We explore the relationships of fields among similar records and find that, within
a certain range, multiple records with identical caller id and callee id and similar call
duration fields might represent one single group call in the database. Caused by the
transmission latency and glitch in the distributed database system, the call duration
is sometimes inconsistent. For example, records 1 (1340 ms) and 6 (1350 ms) in Table
2.2, have 10 ms difference in call duration field although they represent one single
group call. Experimental results indicate that 50 ms difference in call duration is an
acceptable choice when combining the multiple records (compared to 20 ms, 30 ms,
or 100 ms).

The algorithm for extracting and combining the traffic data from the cleaned
database is shown in Figure 2.2. It is implemented by Perl. A sample of the results
of the traffic extraction from Table 2.2 is shown in Table 2.3. Record 1 in Table 2.3
is the combination of records 1 and 6 in Table 2.2, while record 7 corresponds to the
combination of records 29, 31, 37, and 38 in Table 2.2.

2.5 Summary

In this Chapter, we provided a short presentation of the trunked radio systems and
infrastructure of the E-Comm network. The importance of the data preprocessing
have been illustrated using data shown in Table 2.1. We described the traffic data
schema, data preprocessing, and traffic extraction. The data extraction process was
used to extract traffic data by combining multiple entries of one group call into a
single record. The result of data preprocessing, together with data extraction, is a
clean and neat database with ~ 81 % fewer records. A comparison of the number
of records in original, cleaned, and extracted database is shown in Figure 2.3. The

generated traffic data was used for further data analysis, clustering, and prediction.



No. Date Time Call System Channel | Caller Callee | Call Call Multi-system
(hh:mm:ss)(ms) | duration id id type state call

1 | 2003-03-01 00:00:00 30 1340 1 12 13905 401 0 0 0

3 | 2003-03-01 00:00:00 179 3330 7 1 14663 249 0 0 0
4 | 2003-03-01 00:00:00 259 3330 6 3 14663 249 0 0 0
6 | 2003-03-01 00:00:00 489 1350 7 4 13905 401 0 0 0

7 | 2003-03-01 00:00:00 590 2990 6 4 4266 1443 0 0 0
10 | 2003-03-01 00:00:01 150 2840 1 2 6109 1817 0 0 0
22| 2003-03-01 00:00:03 119 6110 9 6 15202 465 0 0 0
23| 2003-03-01 00:00:03 119 6100 10 9 15202 465 0 0 0
24| 2003-03-01 00:00:03 149 2980 2 6 16068 673 0 0 0
25| 2003-03-01 00:00:03 370 6110 6 5 15202 465 0 0 0
29| 2003-03-01 00:00:03 620 7550 2 7 13233 249 0 0 0
30 | 2003-03-01 00:00:03 700 2980 9 7 16068 673 0 0 0
31| 2003-03-01 00:00:03 760 7560 1 3 13233 249 0 0 0
32| 2003-03-01 00:00:03 830 1580 2 8 13333 245 0 0 0
33| 2003-03-01 00:00:03 879 5790 7 5 12183 201 0 0 0
34 | 2003-03-01 00:00:03 970 1590 1 8 13333 245 0 0 0
36 | 2003-03-01 00:00:04 150 2970 1 9 6009 1817 0 0 0
37| 2003-03-01 00:00:04 260 7560 7 6 13233 249 0 0 0
38| 2003-03-01 00:00:04 340 7560 6 6 13233 249 0 0 0
41| 2003-03-01 00:00:04 980 3810 1 12 13906 403 0 0 0
42| 2003-03-01 00:00:05 169 2410 1 2 15906 401 0 0 0
46 | 2003-03-01  00:00:05 449 3800 7 7 13906 403 0 0 0
49 | 2003-03-01  00:00:05 679 2400 7 1 15906 401 0 0 0
50 | 2003-03-01 00:00:05 979 2160 6 7 4831 1443 0 0 0
53| 2003-03-01 00:00:06 900 1300 2 9 9701 673 0 0 0
56 | 2003-03-01 00:00:07 409 1300 9 8 9701 673 0 0 0
60 | 2003-03-01 00:00:08 149 880 1 4 7003 786 0 0 0

Table 2.2: A sample of cleaned data.
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Figure 2.2: Algorithm for extracting traffic data.



No. Date Time Call Caller Callee | Call Call | Multi Number List
(hh:mm:ss)(ms) | duration id id type state | system of of
call systems system(s)
1 | 2003-03-01 00:00:00 30 1340 13905 401 0 0 0 2 1,7
2 | 2003-03-01 00:00:00 179 3330 14663 249 0 0 0 2 7,6
3 | 2003-03-01 00:00:00 590 2990 4266 1443 0 0 0 1 6
4 | 2003-03-01 00:00:01 150 2840 6109 1817 0 0 0 1 1
5 | 2003-03-01 00:00:03 119 6110 15202 465 0 0 0 3 9,10, 6
6 | 2003-03-01 00:00:03 149 2980 16068 673 0 0 0 2 2,9
7 | 2003-03-01  00:00:03 620 7550 13233 249 0 0 0 4 2,1,7,6
8 | 2003-03-01 00:00:03 830 1580 13333 245 0 0 0 2 2,1
9 | 2003-03-01 00:00:03 879 5790 12183 201 0 0 0 1 7
10 | 2003-03-01 00:00:04 150 2970 6009 1817 0 0 0 1 1
11| 2003-03-01 00:00:04 980 3810 13906 403 0 0 0 2 1,7
12| 2003-03-01 00:00:05 169 2410 15906 401 0 0 0 2 1,7
13| 2003-03-01 00:00:05 979 2160 4831 1443 0 0 0 1 6
14 | 2003-03-01 00:00:06 900 1300 9701 673 0 0 0 2 2,9
15| 2003-03-01 00:00:08 149 880 7003 786 0 0 0 1 1
16 | 2003-03-01 00:00:10 239 3420 4266 1443 0 0 0 1 6
17 | 2003-03-01 00:00:10 359 3930 15895 201 0 0 0 1 7
18 | 2003-03-01 00:00:12 450 1820 12277 417 0 0 0 3 2,1, 5
19 | 2003-03-01 00:00:12 870 2810 13906 403 0 0 0 2 1,7
20 | 2003-03-01 00:00:13 49 11720 14663 249 0 0 0 4 2,1,7,6

Table 2.3: A sample of extracted traffic data.
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Chapter 3
Data analysis

Statistical analysis on the extracted traffic trace usually includes finding maximum,
minimum, mean value, measure of variation, data plots, and histograms. Data net-
work traffic may be measured in terms of the number of packets, number of connec-
tions, or number of bytes transmitted. Similarly, the traffic of voice networks may be
measured by the number of calls and the call duration. We use the hourly number
of calls to analyze the E-Comm network traffic on three levels: aggregate network,

agency, and talk group level.

3.1 Analysis on Network level

On the network level, the traffic is the aggregation of all users’ traffic. The analysis of
network-level traffic provides overview of the network usage. The aggregate traffic of
the entire network, in terms of hourly and daily number of calls, is shown in Figure 3.1.
The upper and lower dotted lines indicate the maximum and the minimum number
of calls, respectively. The middle dashed line is the mean value.

Figure 3.1 demonstrates the inherent cyclic patterns of the network traffic. We
check the periodic patterns by applying the Fast Fourier Transform (FFT) on the
network data to find the highest frequency in the hourly and the daily number of
calls. The FFT reveals the high frequency components at 24 for the hourly number of

calls and at 7 for the daily number of calls, as shown in Figure 3.2. We conclude that

19



CHAPTER 3. DATA ANALYSIS 20

the network traffic exhibits daily (24 hours) and weekly (168 hours) cycles in terms of
number of calls. Similar daily and weekly cyclic traffic patterns of various networks

have been observed in the literature [6], [7], [8].
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3.2 Analysis on agency level

Network users belong to various agencies such as RCMP, police, ambulance, and fire
department. The study of agency behavior may help network operators identify the
aggregate traffic patterns in the organizational usage of network resources. Agency
names are eliminated to protect their privacy. Instead, we use agency id to identify
the agency structure for talk groups.

The agency id in the E-Comm network ranges from 0 to 15. The agency id 0
represents unknown or corrupted agency group information of users. The network
usage statistic data of each agency is summarized in Table 3.1. The rows are sorted
in ascending order by the number of calls made by each agency. 92% of calls are made
by three agencies with id 10, 2, 5, while the remaining 13 agencies account for only
8% of the calls. The average call duration ranges from 2.3 to 5.9 seconds. We also
observed that more than 55% of calls in the network are multi-system calls. Beside
the hourly number of calls, call duration is another major factor affecting the network
resource usage. In order to measure how long and how many channels have been

occupied by a call in the network, we define the network resource usage for a call as:
Network resource = Call duration x Number of systems.

Three different aspects of agency traffic are shown in Figure 3.3. We use different
symbol in the figure to represent different agency. The top plot is the daily number
of calls for each agency. The middle plot is the daily average call duration of each
agency. The bottom plot represents the average number of systems involved in the
calls of each agency. The daily average call duration is relatively constant for agencies,

while the daily number of calls shows large variations among agencies.

3.3 Analysis on talk group level

The basic talking unit in the E-Comm network is a talk group. This is the finest
unit for our analysis. Traffic analysis on the agency level is too coarse to capture the

behavior of small talking units in the network. Even though each talk group belongs



Agency | Number | Average | Number | Number of Number of
id of duration of multi-system | multi-system
calls (ms) calls (%) calls calls (%)

20 22 2,329 0.00% 0 0.00%

15 37 2,239 0.00% 8 21.62%

8 129 4,230 0.00% 127 98.44%

7 2,963 4,080 0.03% 606 20.45%
14 5,523 3,279 0.06% 248 4.49%

0 10,037 3,278 0.11% 6,368 63.44%
13 13,590 5,986 0.15% 0 0.00%

6 39,363 3,871 0.45% 1,427 3.62%

11 58,622 3,861 0.67% 2,220 3.78%

4 82,482 3,175 0.95% 11,862 14.38%

1 91,417 3,857 1.05% 13,567 14.84%

3 117,289 4,024 1.35% 39,507 33.68%
21 282,907 3,480 3.26% 180,792 63.90%
10 950,725 3,438 10.97% 722,822 76.02%

2 2,527,096 3,853 29.16% 917,037 36.28%

5 4,481,384 3,838 51.72% 3,193,948 71.27%
Sum 8,663,586 3,772 100% 5,090,539 58.76%

Table 3.1: Agency network usage.
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to a certain agency, the organizational structure does not necessarily imply similar
usage patterns. Talk groups belonging to different agencies may have similar behavior,
while talk groups within the same agency may have different behavior patterns.

A sample of talk groups’ behavior patterns is shown in Table 3.2. The behavior
patterns include average resources, average duration, and average number of systems
involved in group calls. The talk groups are sorted in descending order of the total
number of calls during the 92 days. The average call duration exhibits a relatively
constant pattern with mean value of 3,621.50 ms and standard variance of 397 ms. To
the contrary, the average number of systems involved in calls is quite different. For
example, the members of talk group 1809 are usually distributed across more than 4
systems, while the members of talk group 785 often reside in one system when making
calls. Accordingly, the number of systems engaged in a call greatly affects the network

resource usage.

3.4 Summary

The preliminary statistical analysis of traffic data at different levels shows the diversity
and complexity of network user’s (talk group’s) behavior. User’s behavior exhibits
patterns that may be used to categorize talk groups. We are particularly interested
in building clusters of talk groups based on their behavior patterns. This topic is
addressed in Chapter 4.



Talk Agency | Number | Average Average Average

group id of resources duration number of
id calls used (ms) systems
801 2 461,128 4,756.23 3,489.76 1.35
817 2 382,065 6,953.52 3,484.94 1.96
465 5 363,138 | 11,421.93  3,640.22 3.11
785 2 354,324 4,390.52 3,632.91 1.23
1817 10 312,131 5,259.29 3,638.01 1.44
497 5 303,991 | 10,758.75  3,547.97 3.00
401 5 303,948 8,256.77 3,416.61 2.40
833 2 303,854 6,180.41 3,678.45 1.66
1801 10 294,687 | 15,968.30  3,836.57 4.14
1809 10 278,872 17954.45  3,844.45 4.62
481 5 278,634 | 11,805.02  3,240.11 3.61
471 5 276,404 | 10,548.83  3,543.19 2.95
673 1 260,813 6,392.49 3,427.50 1.85
449 5 258,019 9,159.69 3,711.86 2.43
433 5 226,492 8,558.56 3,695.66 2.30
786 2 225,612 4,939.96 4,653.82 1.06
418 5 207,583 6,868.27 3,259.42 2.08
289 5 159,649 | 16,216.39  3,473.22 4.61
249 5 145,875 | 23,454.87  4,939.05 4.73

Table 3.2: Sample of the resource consumption for various talk groups.
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Chapter 4
Data clustering

Data mining employs a variety of data analysis tools to discover hidden patterns and
relationships in data sets. Clustering analysis, with its various objectives, groups or
segments a collection of objects into subsets or clusters so that objects within one
cluster are more “close” to each other than objects in distinct clusters. It attempts
to find natural groups of components (or data) based on certain similarities. It is
one of the powerful tools in data mining, with applications in a variety of fields
including consumer data analysis, DNA classification, image processing, and vector
quantization.

In this Chapter, we first describe the data used for the clustering analysis. We
then introduce the AutoClass [9] tool and K-means [10] algorithm. The results of

clustering and the comparison are also presented.

4.1 Data representing user’s behavior

An object can be described by a set of measurements or by its relations to other
objects. Customers’ purchasing behavior may be characterized by shopping lists with
the type and quantity of the commodities bought. Network users’ behavior may be
measured as the time of calls, the average length of the call, or the number of calls
made in a certain period of time. Telecommunication companies often use call inter-

arrival time and call holding time to calculate the blocking rate and to determine the
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network usage. In the E-Comm network, the call inter-arrival time are exponentially
distributed, while the call holding time fits a lognormal distribution [11].

The number of users’ call is of particular interest to our analysis. A commonly used
metric in the telecommunication industry is the hourly number of calls. It may be
regarded as the footprint of a user’s calling behavior. Units less than an hour (minute)
is large enough to capture the calling activity since a call usually lasts 3~5 seconds
in the E-Comm network. However, the one minute recording unit may impose large
computational cost because of the huge number of data points (92x24%60 = 132, 480).
Units larger than an hour (day) are too coarse to capture user’s behavior patterns
and will reduce the number of data points to merely 92 in our analysis.

The talk group is the basic talking unit in the E-Comm network. Hence, we use
a talk group’s hourly number of calls to capture a user’s behavior. The collected 92
days of traffic data (2,208 hours) imply that each talk group’s calling behavior may
be portrayed by the 2,208 ordered hourly numbers of calls. Samples of the hourly
number of calls for talk groups 1 and 2 over 168-hour are shown in Figure 4.1, while
talk group 20 and 263’s calling behavior are shown in Figure 4.2. Table 4.1 shows a
small sample of the user’s calling behavior. The first column shows the talk group
id. The remaining columns are the hourly number of calls starting from 2003-03-01
00:00:00 (hour 1) and ending at 2003-05-31 23:59:59 (hour 2208). One row corresponds
to one talk group’s calling behavior over the 2,208 hours. This will be used in our
clustering analysis.

For simplicity and based on prior experience with clustering tools, we selected
AutoClass [12] tool and K-means [10] algorithms to classify the calling patterns of
talk groups.

4.2 AutoClass tool

A general approach to clustering is to view it as a density estimation problem. We
assume that in addition to the observed variables for each data point, there is a hidden,
unobserved variable indicating the “cluster membership” (cluster label). Hence, the

data are assumed to be generated from a mixture model and that the labels (cluster
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Talk Hour | Hour | Hour | Hour | ... | Hour | Hour | Hour
group id 1 2 3 4 ... | 2206 | 2207 | 2208
0 26 25 24 20 30 24 26
1089 6 29 0 10 22 23 0
28 1 0 2 32 13 36 81
113 3 0 0 5 3 0 0
162 0 0 0 232 | ...| 193 176 256
230 3 0 3 77 ... | 203 270 187

Table 4.1: Sample of hourly number of calls for various talk groups.

identification) are hidden. In general, a mixture model M has K clusters C;,i =
1, ..., K, assigning a probability to a data point x as:
K
P(z|M) = Z W; * P(z|C;, M),
i=1
where W; is the mixture weight. Some clustering algorithms assume that the number
of clusters K is known a priori.

AutoClass [12] is an unsupervised classification tool based on the classical finite

mixture model [13]. According to Cheeseman, [9]

“The goal of Bayesian unsupervised classification is to find the most

probable set of class descriptions given the data and prior expectations.”

In the past, AutoClass was applied to classify distinct user groups in Telus Mobility
Cellular Digital Packet Data (CDPD) network [§].

AutoClass was developed by Bayesian Learning Group at NASA Ames Research
Center [14]. We use AutoClass C version 3.3.4. The key features of AutoClass include:

e determining the optimal number of classes automatically
e handling both discrete and continuous values

e handling missing values
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e “soft” probabilistic cluster membership instead of “hard” cluster membership.

AutoClass begins by creating a random classification and then manipulates it
into a high probability classification through local changes. It repeats the process
until it converges to a local mazrimum. It then starts over again and continues until
a maximum number of specified tries. Each effort is called a try. The computed
probability is intended to cover the entire parameter space around this maximum,
rather than just the peak. Each new try begins with a certain number of clusters
and may conclude with a smaller number of clusters. In general, AutoClass begins
the process with a certain number of clusters that previous tries have indicated to be
promising.

The input data for AutoClass are stored in two files: data file (.db2) and header
file (\hd2). The data file are in vector format. The 2,208 number of calls for each talk
group are extracted from database and stored in matrix structure. Each row stands
for one talk group and each column is one of the 2,208 hourly number of calls, except
that the first column is the identification number of a talk group. In the header file,
we specify the data type, name, relative observation error for each column. Part of
the header file is shown in Figure 4.2.

AutoClass uses a model file (.model) to describe the possible distribution model for

each attribute of the data. Four types of models are currently supported in AutoClass:

e single_multinomial: models discrete attributes as multinomial distribution with
missing values. It can handle symbolic or integer attributes that are condition-
ally independent of other attributes given the class label. Missing values will be

represented by one of these existing values.

e single_normal_cn: models real valued attributes as normal distribution without

missing values. The model parameters are mean and variance.

e single_normal_cm: models real valued attributes as normal distribution with
missing values. The model can be applied to real scalar attributes using a

log-transform of the attributes.
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#Leo Chen, 2003-Oct-22

#the header file for E-Comm data user data clustering
num_db2_format_defs 2

#required

number_of_attributes 2209

# optional - default values are specified
# unknown_token ’?’

separator_char "’

# comment_char #’

0 discrete nominal “talkgroup” range 1754

1 real scalar “NCJ1]” zero_point 0.0 rel_error 0.001
2 real scalar “NC[2]” zero_point 0.0 rel_error 0.001
3 real scalar “NC[3]” zero_point 0.0 rel_error 0.001

2205 real scalar “NC[2205]” zero_point 0.0 rel_error 0.001
2206 real scalar “NC[2206]” zero_point 0.0 rel_error 0.001
2207 real scalar “NC[2207]” zero_point 0.0 rel_error 0.001
2208 real scalar “NC[2208]” zero_point 0.0 rel_error 0.001

7

Figure 4.3: Sample of the AutoClass header file.
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e multi_normal_cn: a covariant normal model without missing values. This model
applies to a set of real valued attributes, each with a constant measurement
error and without missing values, which are conditionally independent of other

attributes given the cluster label.

The model file used is given in Appendix B. A search parameters file (.s-param)
is also used to adjust the search behavior of AutoClass. The most frequently used

parameters are start_j_list, fived_j, and maz_n_tries.

e start_j list: AutoClass will start the search with the certain number of clusters
in the list.

e fixed j: AutoClass will always search for the fixed_j number of clusters, if spec-
ified.

e max_n_tries: AutoClass stops search when it reaches the maximum number of

the tries.

The detailed description of the remaining searching and reporting parameters may be
found in the AutoClass manual [9], [15].

AutoClass used ~20 hours in searching for the best clustering of the 617 talk
groups in the E-Comm data. The search results include three important values for

the clustering:

e attribute influence values: presents the relative influence or significance of the

attributes.

e cross-reference by case number: lists the primary class probability for each da-

tum, ordered by the case number.

e cross-reference by class number: for each class, lists each datum in the class,

ordered by case number.

The content of one clustering report is given in Appendix B. The ten best results

of talk group clustering are summarized in Table 4.2. The number of talk groups in
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Probability Number | Number

of clusters | of tries
exp(-6548529.230) 24 653
exp(-6592578.320) 18 930
exp(-6619633.090) 21 940
exp(-6622783.940) 24 323
exp(-6626274.570) 17 542
exp(-6637269.320) 24 1084
exp(-6657627.910) 18 677
exp(-6658596.390) 19 918
exp(-6660040.920) 18 528
exp(-6671271.570) 12 385

Table 4.2: AutoClass results: 10 best clusters.

Cluster ID Size | Cluster ID Size | Cluster ID Size
1] 144 2] 67 3] 66
[4] 31 5] 25 6] 23
[7] 22 8] 21 9] 20
[10] 20 [11] 19 [12] 19
[13] 18 [14] 18 [15] 18
[16] 17 [17] 15 [18] 13
[19] 12 [20] 10 [21] 9
[22] 4 [23] 3 [24] 3

Table 4.3: AutoClass results: cluster sizes.

each cluster (cluster size) is also shown in the Table 4.3. Hourly number of calls for
talk groups in clusters 5, 17, and 22 are shown in Figure 4.4. Talk groups in different

clusters exhibit distinct calling behavior patterns.

4.3 K-means algorithm

K-means algorithm is one of the most commonly used data clustering algorithms. It
partitions a set of objects into K clusters so that the resulting intra-cluster similarity

is high while the inter-cluster similarity is low. The number of clusters K and the
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Cluster ID: 5 (size=25)
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Figure 4.4: Number of calls for three AutoClass clusters with IDs 5 (top), 17 (middle),
and 22 (bottom).



CHAPTER 4. DATA CLUSTERING 37

object similarity function are two input parameters to the K-means algorithm. Cluster
similarity is measured by the average distance from cluster objects to the mean value
of the objects in a cluster, which can be viewed as the cluster’s center of gravity. The
algorithm is well-known for its simplicity and efficiency. It is relatively efficient and
stable. The use of various similarity or distance functions makes it flexible. It has
numerous variations and it is applicable in areas such as physics, biology, geographical
information system, and cosmology. However, its main drawback is its sensitivity to
the initial seeds of clusters and outliers, which may distort the distribution of data.
In addition, user sometimes may not know a priori the desired number of clusters K,
which is the most important input parameter to the algorithm.

The distance between two points is taken as a common metric to assess the simi-
larity among the components of a population. The most popular distance measure is

the Fuclidean Distance. The Euclidean distance of two data points z = (z1, z9, ..., ,,)

and y = (Y1, Y2, - Yn) is:

n

d(z,y) = Z;(xi - vi)

We use a variation of K-means, PAM (Partitioning Around Medoids) [10] and our
own implementation of K-means to cluster the talk group data. The PAM algorithm
searches for K representative objects or medoids among the observations of the data
set. It finds K representative objects that minimize the sum of the dissimilarities of
the observations to their closet medoids.

We also implemented the classical K-means algorithm using the Perl programming
language [16]. The program first seeks K random seeds as cluster centroids in the
data set. Based on the Euclidean distance of the object from the seeds, each object is
assigned to a cluster. The centroid’s position is recalculated every time an object is
added to the cluster. This process continues until all the objects are grouped into the
final specified number of clusters. Objects change their cluster memberships after the
recalculation of the centroids and the re-assignment. Clusters become stable when
no object is re-assigned. Different clustering results are obtained depending on the

random seeds. However, clustering results for different runs with the same number K
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are relatively stable when K is not large, i.e., the clusters converge and different runs
result in almost identical cluster partitions.

Without knowing the actual cluster label for each talk group, we are unable to
measure the clustering quality using objective measurement factor, such as the F-
measure [17]. We use the inter-cluster and the intra-cluster distances to assess the
overall clustering quality. The inter-cluster distance is defined as the Euclidean dis-
tance between two cluster centroids, which reflects the dissimilarity between clusters.
The intra-cluster distance is the average distance of objects from their cluster cen-
troids, expressing the coherent similarity of data in the same cluster. A large inter-
cluster distance and a small intra-cluster distance indicate better clusters. The overall
clustering quality indicator is defined as the difference between the minimum inter-
cluster distance and the maximum intra-cluster distance. The greater the indicator,
the better the overall clustering quality. Another measure for the clustering quality
is silhouette coefficient [10], which is rather independent on the number of clusters,
K. FExperience shows that the silhouette coefficient between 0.7 and 1.0 indicates
clustering with excellent separation between clusters.

The cluster size, distance measurement, overall quality, and silhouette coefficient
of K-means clustering results for clusters with various number of K are shown in Table
4.4. Based on the overall quality and the silhouette coefficient, the best clustering
result is obtained for K = 3 (in the top three rows). Figure 4.5 shows one week
of traffic for each talk groups in the three clusters. The maximum, minimum, and
average number of calls for each cluster are also shown. The plots demonstrate the

distinct calling behavior of each cluster.

4.4 Comparison of AutoClass and K-means

To compare the clustering results of AutoClass and K-means, we enforce the number
of clusters in AutoClass by specifying the parameter fized_j to 3 in the search param-
eter file. The calling behavior properties for talk groups in the AutoClass clusters
and in K-means clusters are compared in Table 4.5. The three clusters identified

by K-means are more reasonable than the clusters produced by AutoClass. With



No. of Cluster Average Average | Maximum Minimum | Overall | Silhouette
clusters size intra dist. inter dist. | intra dist. inter dist. | quality | coefficient
3 17, 31, 569 1882.14 4508.38 2971.76 1626.4 -1345.36 0.7756
3 17, 31, 569 1882.14 4508.38 2971.76 1626.4 -1345.36 0.7756
3 17, 31, 569 1882.14 4508.38 2971.76 1626.4 -1345.36 0.7756
4 17, 33, 4, 563 1863 3889.12 2971.76 1556.68 | -1415.07 0.7684
4 1,17, 27, 572 1436.08 3966.26 2971.76 1282.01 -1689.75 0.7632
4 17, 39, 552, 9 2155.46 3848.36 3730.61 1011.97 | -2718.63 0.7691
6 13, 17, 22, 3, 34, 528 2059.67 3284.52 3299.43 594.21 -2705.21 0.7640
6 14, 17, 25, 4, 551, 6 2210.88 3353.47 3485.42 1051.92 | -2433.49 0.7639
6 15, 17, 3, 42, 5, 535 1693.28 2984.82 3087.33 605.38 -2481.95 0.7635
9 1020.08 3520.04 3065.25 808.28 -2256.96 0.7492
9 1451.46 2661.29 3687.39 735.37 -2952.01 0.7491
9 1478.42 2867.43 3716.73 607.67 -3109.06 0.7483
12 1372.67 3582.98 3278.14 731.26 -2546.88 0.7435
12 1443.9 2271.58 3436.66 398.95 -3037.7 0.7459
12 1676.57 3225.75 3908.67 581.68 -3326.99 0.7456
16 983.63 1815.79 3571.27 248.19 -3323.07 0.7337
16 1290.87 2154.53 3859.53 320.06 -3539.46 0.7387
16 1329.99 2275.42 3478.55 271.6 -3206.95 0.7412
20 1355.8 2458.39 3604.33 314.49 -3289.84 0.7386
20 1025.44 2296.45 3730.61 413.76 -3316.84 0.7390
20 924.43 2042.43 3661.58 343.15 -3318.43 0.7377

Table 4.4: K-means results: cluster size and distances.
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Figure 4.5: K-means result: number of calls in three clusters.
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Alg| Clu. | Min. Max. Avg. Total Total
size | nc nc nc nc nc (%)
AC| 60 0 2 - 356 0-0.7 15,870 0.07
AC| 202 |0-6 7-1613 0.04-208| 8,641,508 99.75
AC| 355 | O 1-243 0-038 6208 0.18
K| 17 [ 0-6 352-700 94-208 | 5,091,695 59
K| 31 |[0-3 135-641 17-66 | 2,261,055 26
K|569| 0 1-1613 0-16 1,310,836 15

Table 4.5: Comparison of talk group calling properties (AC: AutoClass, K: K-means, nc:
number of calls).

K-means clustering, the first cluster has 17 talk groups, representing the busiest dis-
patch groups whose main tasks are coordinating and scheduling other talk groups
for certain tasks. The second cluster contains 31 talk groups with medium network
usage. The last cluster identifies a group of least frequent network users who made on
average no more than 16 calls per hour. These interpretations of clusters have been
confirmed by domain experts. On the contrary, it is difficult to provide reasonable
explanations for group behavior for the three clusters identified by AutoClass. Thus,

we use the three clusters identified by K-means in the prediction of network traffic.

4.5 Summary

Clustering analysis of the talk groups’ calling behavior reveals hidden structure of
talk groups by grouping the talk groups with similar calling behavior rather than by
their organizational structure.

We used AutoClass tool and applied K-means algorithm to identify clusters of
talk groups based on their calling behavior. Talk groups’ behavior patterns are then
categorized and extracted from the clusters. The optimal number of clusters is diffi-
cult to determine. By comparing the overall quality measurement and the silhouette
coefficient measure, we found that three is the best number of clusters for K-means

algorithm. Based on the domain knowledge, the three clusters identified by K-means
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are more reasonable than clusters produced by AutoClass. Other clustering algo-

rithms, such as hierarchical [18] and density based [19] clustering may also be used to

cluster the user data.



Chapter 5
Data prediction

In this Chapter, we describe the time series data analysis and the Auto-Regressive
Integrated Moving Average (ARIMA) models. We describe how to identify, esti-
mate, and forecast network traffic using the ARIMA model. We also present the
cluster-based prediction models and compare the prediction results with the results

of traditional prediction based on aggregate traffic.

5.1 Time series data analysis

Performance evaluation techniques are important in the design of networks, services,
and applications. Of particular interest are techniques employed to predict the QoS
related network performance. Modeling and predicting network traffic are essential
steps in performance evaluation. It helps network planners understand the underlying
network traffic process and to predict future traffic. Analysis of commercial network
traffic is difficult because the commercial network traffic traces are not easily available.
Furthermore, there are privacy and business issues to consider.

The Erlang-C model [20], currently used by the E-Comm staff, was developed
based on individual user’s calling behavior in wired networks. It considers no-group
call behavior in trunked radio systems. Network traffic may also be considered as
a series of observations of a random process, and, hence, the classical time-series

prediction ARIMA models can be used for traffic prediction.
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We employ the Seasonal Autoregressive Integrated Moving Average (SARIMA)
model [21], a special case of ARIMA, to predict the E-Comm network traffic. SARIMA
models have been applied to modeling and predicting traffic from both large scale
networks (NSFNET [22]) and from small scale sub-networks [23]. The fitted model
is only an approximation of the data and the quality of the model depends on the

complexity of the phenomenon being modeled and the understanding of data.

5.2 ARIMA model

The ARIMA model, developed by Box and Jenkins in 1976 [21], provides a systematic
approach to the analysis of time series data. It is a general model for forecasting a
time series that can be stationarized by transformations such as differencing and log
transformation. Lags of the differenced series appearing in the forecasting equation
are called auto-regressive terms. Lags of the forecast errors are called moving average
terms. A time series that needs to be differenced to be made stationary is said to be
an integrated version of a stationary series. Random-walk and random-trend models,
autoregressive models, and exponential smoothing models (exponential weighted mov-
ing averages) are special cases of the ARIMA models [24]. ARIMA model is popular

because of its power and flexibility.

5.2.1 Autoregressive (AR) models

Regression model is a widely applied multivariate model used to predict the target
data based on observations and to analyze the relationship between observations and
predictions. Autoregressive model is conceptually similar to the regression model. In-
stead of the multi-variative observed data, the previous observations of the univariate
target data are used as the effective factors of the target data. The regression model
assumes the future value of the target variable to be determined by other related
observed data, while the autoregressive model assumes the future value of the target
variable to be determined by the previous value of the same variable. An AR model

closely resembles the traditional regression model.
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An AR(p) model X; can be written as

X = 01 Xi 1+ Xy o+ + 0 Xy + 7y,
where Z, denotes a random process with zero mean and variance o2.
Using the backward shift operator B, where BX; = X; 1, the AR(p)
model may be written as
¢(B) Xy = Z,
where ¢(B) = (1 — 1B — ... — ¢,BP) is a polynomial in B of order p.

Figure 5.1: Definition of the autoregressive (AR) model.

A time series X, is said to be a moving-average process of order q if

Xt — Zt ‘l— 91Zt—l ‘l— + qut—qa

where Z; ~ WN(0,0?) denotes a random process with zero mean and
constant variance o2 and 6y, ..., §, are constants.

Figure 5.2: Definition of the moving average (MA) model.

5.2.2 Moving average (MA) models

A moving average model describes a time series whose elements are sums of a series
of random shock values. The process that generates a moving average model has no
memory of past values. For example, a time series of an MA(1) process might be
generated by a variable with measurement error or a process where the impact of
a shock takes one period to fade away. In an MA(2) process, the shock takes two

periods to completely fade away.
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An ARIMA(p, d, q) model X; can be written as

6(B)(1 - BY'X, = 0(B)Z,

where ¢(B) and §(B) are polynomials in B of finite order p and ¢,
respectively. The backward shift operator B is defined as B‘X, = X,_;.
A SARIMA (p,d,q) x (P, D, Q)s model exhibits seasonal pattern and
can be represented as:

¢(B*)o(B)(1 — B*)(1 — B)'X, = 0(B*)0(B)Z,

where ¢(B) and 6(B) represent the AR and MA parts, and ¢(B*®) and
0(B*) represent the seasonal AR and seasonal MA parts, respectively.
B is the back-shift operator B'X, = X,_,.

Figure 5.3: Definition of the ARIMA/SARIMA model.

5.2.3 SARIMA (p,d,q) x (P,D,Q)s models

The ARIMA model includes both autoregressive and moving average parameters and
explicitly includes in the formulation of the model differencing, which is used to sta-
tionarize the series. The three types of parameters in the model are: the autoregressive
order (p), the number of differencing passes (d), and the moving average order (q).
Box and Jenkins denote it as ARIMA (p, d, q) [21]. For example, a model ARIMA (0,
1, 2) means that it contains 0 (zero) autoregressive (p) order, 2 moving average (q)
parameters, and the model fits the series after being differenced once (1). A SARIMA
model is a ARIMA model plus seasonal fluctuation. It comprises normal orders (p,
d, q) and seasonal orders (P, D, Q), and the seasonal period S. A general SARIMA
model is denoted as SARIMA (p,d, q) x (P,D,Q)s.
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5.2.4 SARIMA model selection

The general ARIMA model building process has three major steps:
e model identification
e model estimation
e model verification.

Model identification is used to decide the orders of the model, i.e., to determine the
value of orders p,d, q, seasonal orders P, D, @, and the seasonal period S. The ¢(x)
and 0(x) coefficients are computed in the model estimation phase, using minimum
linear square error method or maximum likelihood estimation methods. Models are
verified by diagnostic checking on the null hypothesis of the residual or by various
tests, such as Box-Ljung and Box-Pierce tests [21], [24], [25].

The major tools used in the model identification phase include plots of the time
series, correlograms of autocorrelation function (ACF), and partial autocorrelation
function (PACF). Model identification is often difficult and in less typical cases re-
quires not only experience but also a good deal of experimentation with models with
various orders and parameters. The relation of the ACF with the MA(q) model, and
the relation of the PACF with the AR(p) model, are shown in Figure 5.4.

We use three measurements to find the best models and check the validity of the
model parameters. A smaller value of the measurement indicates a better selection of

model.

e Akaike’s Information Criterion (AIC)
AIC = —2In(mazx.likelihood) + 2p

e Akaike’s Information Criterion Corrected (AIC()
AICe = AIC +2(p+ 1)(p+2)/(N —p —2)

e Bayesian Information Criterion (BIC)
BIC = —2In(max.likelihood) + p + pInN
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Let {Y;} be the MA(q) model, so the ACF p(k)

S 0.0, ) S0 02, k| < g,k #0,
p(k) =14 1, k=0,

0, otherwise.

The PACF of a stationary time series is defined as

o1 = p(1),
Orx = corr (Y1 — Pappva,- i} Yee 1, Y1 — Popiya, i Y1),
k> 2,

where Pgy,...v,}Y denotes the projection of the random variable
Y onto the closed linear subspace spanned by the random variable

{Y'Zv)Yk}

Theorem [23]
For an AR(p), ¢gx = 0 for k > p.

Figure 5.4: Auto-correlation function and Partial auto-correlation function.
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(p,d,q) x (P,D,Q)s | m nmse | AIC AlIC¢ BIC
(2,0,1) % (0,1, 1)1 | 1512 | 0.173 | 20558.7 | 20558.8 | 20590.3
(2,0,9) x (0,1,1)5y | 1512 | 0.379 | 22744.6 | 22744.9 | 22826.8
(2,0,1) x (0,1,1)165 | 1680 | 0.174 | 23129.8 | 23129.8 | 23161.9
(1,0,1) x (0,1,1)165 | 1680 | 0.175 | 23145.1 | 23145.1 | 23170.8
(2,0,9) x (1,1,1)24 | 1680 | 0.5253 | 25292.1 | 25292.4 | 25382.1
(1,0,2) x (1,1,1)5, | 1680 | 0.411 | 25332.6 | 25332.6 | 25371.2
(2,0,9) x (0,1,1) | 1680 | 0.546 | 25345.9 | 25346.1 | 25429.4
(2,0,1) % (0,1,1)5, | 1680 | 0.537 | 25360.5 | 25360.6 | 25392.6
(3,0,1) x (0,1,1)2 | 1680 | 0.404 | 25361.2 | 25361.2 | 25399.7

Table 5.1: Summary of SARIMA models fitting measurement.

We test a series of SARIMA models selected based on the time series plot, ACF,
and PACF. The measurement results for several SARIMA models are shown in Ta-
ble 5.1. The rows are sorted in ascending order of the value of the measurement BIC.
Based on the same amount of training data 1,680, the model (2,0, 1) x (0,1, 1)16s has
the smallest BIC value. Thus, it may be the most suitable model for the data we
tested.

Null hypothesis test was used to check a model’s goodness-of-fit. They verify the
randomness of the time series and may be applied to the residual of the model. If
the identified /estimated model fits the training data well, the residual obtained by
subtracting the fitted data from the original observation, should be a true random
series. Usual null hypothesis test includes time plot analysis and ACF checks. In
addition, two types of goodness-of-fit test, Box-Ljung and Box-Pierce tests may be
used to check the null hypothesis of the model.

Figures 5.5 and 5.6 show the time plot of the residual series and their ACF function,
for two SARIMA models (3,0,1) x (0,1,1)94 and (1,1,0) x (0,1, 1)a4, respectively.
Also shown are the P-value [26] of the Box-Ljung test for these two models. P-value
of the test represents the probability that the sample could have been drawn from
the population(s) being tested given the assumption that the null hypothesis is true.
Thus, a higher P-value implies that the model being tested are more likely to pass the
null hypothesis test. Based on the plot and P-value, the model (3,0,1) x (0,1,1)94
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passed the null hypothesis test, while the model (1,1,0) x (0, 1, 1), failed.

5.3 Prediction based on aggregate traffic

The correlograms of the autocorrelation function and the partial autocorrelation func-
tion of the E-Comm data are shown in Figures 5.7 and 5.8, respectively. By differ-
encing the sample data with 24 hours lag, we estimate from the ACF shown in Figure
5.7 that the MA order could be up to 9. Based on the PACF shown in Figure 5.8,
we estimate that the order of AR part is 2 because of the apparent cut-off at lag 2.
Hence, the ARIMA models (2, 0, 1) and (2, 0, 9) are selected as model candidates.

The order (0, 1, 1) are commonly used for seasonal part (P, D, Q). It is selected
because the cyclical seasonal pattern itself is usually a random-walk process and may
be modeled as an MA (1) process after one time differencing. Thus, we use the order
of (0, 1, 1) for seasonal pattern.

A useful metric called normalized mean square error (nmse) is used to measure the
prediction quality by comparing the deviation of the predicted data and the observed
data. The nmse of the forecast is equal to the normalized sum of the variance of the

forecast divided by the squared bias of the forecast. It is defined as

where a; is the observed data, b; is the prediction, and a is the mean value of a;.
Smaller values of nmse indicate better model performance.

An open source statistical tools R [27], [28], [29] was used to identify, estimate, and
verify the SARIMA model and to forecast the traffic. The E-Comm network traffic
possesses both daily and weekly patterns. Hence, both 24-hour and 168-hour (one
week) intervals are selected as seasonal period parameters. Hence, in addition to the
(2,0,9) x (0,1,1)94 and (2,0,1) x (0,1, 1)94 models, two models (2,0,9) x (0,1, 1)16s
and (2,0,1) x (0,1, 1)16s are also used to predict the network traffic. The four models
and corresponding parameters fitted for the E-Comm network traffic are shown in

Table 5.2. The model performance is tested with four groups of data (A, B, C, and
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Figure 5.5: Residual analysis: diagnostic test for model (3,0,1) x (0,1, 1)o4.
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Figure 5.6: Residual analysis: diagnostic test for model (1,1,0) x (0,1, 1)o4.
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Original data series

Figure 5.8: Number of calls:
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95

No.|p|d|q|P|D|Q| S | Trained (m) | Predicted (n) | nmse
Al 2101901 1] 24 1512 672 0.3790
A2 2|01 ]0]|1 1| 24 1512 672 0.3803
A3 |2]0]9]0|1 | 1)|168 1512 672 0.1742
A4 2|01 ]0|1|1]|168 1512 672 0.1732
Bl [2/0(9|0|1]1] 24 1680 168 0.3790
B2 [2|/0(1|0|1]1] 24 1680 168 0.4079
B3 [2/0(9|0|1]1]168 1680 168 0.1736
B3 |[2|0|1|0|1]1]168 1680 168 0.1745
C1 2101901 1] 24 1920 24 0.3164
C2 2101101 1] 24 1920 24 0.1941
C3 |2]0]9(0]1]1]|168 1920 24 0.1002
C4 |(2/0|1|{0|1]1]|168 1920 24 0.0969
DI [2/0(9|0|1]1] 24 2016 168 0.3384
D2 |2|/0|1|0|1]1] 24 2016 168 0.3433
D3 |[2|0|9|0|1]1]168 2016 168 0.1282
D4 |2|0|1|0|1]1]168 2016 168 0.1178

Table 5.2: Aggregate-traffic-based prediction results.

D). We forecast the future n traffic data based on m past traffic data samples. In
Table 5.2, p,d, g represent the order of the AR, difference, and MA model for the
original data points, respectively. The P, D, () represent the order of AR, difference,

and MA model for the seasonal pattern, respectively. .S is the seasonal period for the

models.

Four SARIMA models with four groups of training data are shown in Table 5.2.

The models differ in the order of moving average and the seasonal period.

e Model 1: (2,0,9) x (0,1,1)94 (rows Al, B1l, C1, and D1) is the model with

24-hour seasonal period and moving average of order 9. The model performance

does not depend on the number of training data, with nmse ranging from 0.3164
to 0.3790.

e Model 2: (2,0,1) x (0,1,1)94 (rows A2, B2, C2, and D2) is the model with

24-hour seasonal period and moving average of order 1.

It exhibits similar
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prediction effectiveness as Model 1. It performs better in row C2 than model 1

in row C1.

e Model 3: (2,0,9) x (0,1,1)168 (rows A3, B3, C3, and D3) is the model with
a 168-hour period weekly cycle. It differs from Model 1 only in the seasonal
period, but provides much better prediction results than Model 1.

e Model 4: (2,0,1) x (0,1,1)16s (rows A4, B4, C4, and D4), differs from Model 2
in the seasonal period. It performs better than Model 2.

The comparisons of rows Al with A2, B1 with B2, and D1 with D2, indicate that
Model 1 leads to better prediction results than Model 2. However, the prediction C1 is
worse than C2. Furthermore, for all four groups of training data, Models 3 and 4 with
168-hour period always lead to better prediction results than Models 1 and 2 with 24-
hour period. The 24-hour period models assume that the traffic is relatively constant
for a weekday, while the 168-hour period models take into account traffic variations
between between weekdays. To predict traffic on a Wednesday based on Tuesday’s
data not as accurate as predicting Wednesday’s traffic based on the data of previous
Wednesdays. However, the computational cost of identifying and forecasting 168-hour
period models is much larger that for the 24-hour period models. Often, 168-hour
models require over 100 times the CPU needed for 24-hour models. A comparison
of the prediction results of the 24-hour model and the 168-hour model in predicting
one future week of traffic based on the 1,680 past hours is shown in Figure 5.9. It
is consistent with the nmse value. The 168-hour period model performs better than
the 24-hour period model. The continuous curve shows the observation data. Symbol
“o” indicate the predicted traffic based on the 168-hour season model. Symbol “*”
denotes the prediction of the 24-hour season model. Based on the nmse values, the
prediction of the 168-hour based model fits better the observations than the prediction
based on the 24-hour model.
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Figure 5.9: Predicting 168 hours of traffic data based on the 1,680 past data.

5.4 Cluster-based prediction approach

A key assumption of the prediction based on the aggregate traffic described in Sec-
tion 5.3 is the constant number of network users and constant behavior patterns.
However, this assumption does not hold in case of network expansions. Hence, it is
difficult to use traditional models to forecast traffic of such networks. We propose
here a cluster-based approach to predict the network traffic by aggregating traffic
predicted for individual clusters.

Network users are classified into clusters according to the similarity of their be-
havior. It is impractical to predict each individual user’s traffic and then aggregate
the predicted data. With user clusters, this task reduces to predicting and then ag-
gregating several clusters of users’ traffic. For each clusters produced by K-means
in Section 4.3, we predict network traffic using SARIMA models (2,0,1) x (0,1,1)9
and (2,0,1) x (0,1,1)16s. Results of the cluster-based prediction are compared to the
prediction based on aggregate traffic in Table 5.3.

In Table 5.3, rows marked A represent the prediction based on aggregate user



CHAPTER 5. DATA PREDICTION

Cluster | (p,d,q) (P,D,Q)| S m n | nmse
1 (201) (01,1) | 24 1680 48 | 1.1954
2 (201)  (0,1,1) | 24 1680 48 | 2.4519
3 (2,01) (0,1,1) | 24 1680 48 | 0.3701
A (2,0,1) (0,1,1) | 24 1680 48 | 0.6298
¥ (2,01) (01,1) | 24 1680 48 | 0.6256
0 (2,01) (01,1) | 24 1680 48 |0.4231
1 2,01) (01,1) | 168 1,920 24 | 0.2241
2 (2,01) (01,1) |168 1,920 24 | 0.3818
3 (2,01) (01,1) |168 1,920 24 | 0.1163
A (2,0,1) (0,1,1) | 168 1,920 24 | 0.0969
¥ (201)  (0,1,1) | 168 1,920 24 | 0.1175
1 (201) (0.L,1) | 24 1,020 24 | 0.2508
2 (2,01)  (01,1) | 24 1920 24 | 0.2697
3 (2,01)  (0,1,1) | 24 1,920 24 | 0.3020
A (2,01) (0.1,1) | 24 1,920 24 | 0.1941
¥ (2,01)  (01,1) | 24 1,920 24 | 0.2052
1 (2,01) (0.1,1) | 24 1,680 168 | 0.5477
2 (2,0,1) (0,1,1) | 24 1,680 168 | 0.6883
3 (2,0,1) (0,1,1) | 24 1,680 168 | 0.2852
A (2,0,1) (0,1,1) | 24 1,680 168 | 0.4079
* (2,0,1) (0,1,1) | 24 1,680 168 | 0.4093

Table 5.3: Summary of the results of cluster-based prediction.

58
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traffic (without clustering of users) using the model shown in rows A2, B2, C2, and
D2 in Table 5.2. Rows 1, 2, and 3 represent traffic prediction for user clusters 1, 2, and
3, respectively. Row * is the weighted aggregate prediction of network traffic based
on the prediction for three user clusters. Row O stands for the optimized weighted
aggregate prediction. Note that the nmse > 1.0 for clusters 1 and 2 implies that the
prediction results are worse than prediction based on the mean value of past data. A
better prediction shown in row O is obtained if the mean value prediction is adopted
for clusters 1 and 2. We named it the optimized cluster-based prediction. Even with
un-optimized clustered based prediction (row *), the prediction results are not worse
than results of prediction based on aggregate traffic (rows A).

The advantage of the cluster-based prediction is that we could predict traffic in
a network with variable number of users as long as the new user groups could be
classified into the existing user clusters. The computational cost of forecasting the
network traffic is reduced to the number of clusters times the prediction cost for one

cluster.

5.5 Additional prediction results

Additional prediction results are presented in Tables 5.4 — 5.7. The experimental
results show that 57% of the cluster-based prediction models perform better than the
prediction models based on aggregate traffic when the seasonal period is 168 hours.
Furthermore, 7 out of 8 optimized models give better prediction results when the

model seasonal period is 24 hours.

5.5.1 Comparison of predictions with the (2,0,1) x (0,1,1)oy
model

The results of cluster-based prediction and the prediction based on aggregate traffic

are compared in Tables 5.4 and 5.5. In the tables, pdq, PDQ, and S are SARIMA

model orders, seasonal orders, and season period, respectively. m is the number of

model training data and n is the number of predicted data. Tables 5.4 and 5.5 also
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show the nmse for prediction of each cluster, nmse for prediction based on aggregate
user traffic, nmse for cluster-based prediction, and nmse for optimized cluster-based
prediction, if any. Note that we use the same optimization method as used in Table 5.3:
we use the mean value of training data m to replace the “bad” cluster predictions when
nmse > 1.0. Rows marked “()” indicate that the cluster-based predictions perform
better than the predictions based on aggregate traffic (8 out of 56). Rows marked “[]”
show that the optimized cluster-based prediction performs better than the prediction
based on aggregate traffic (7 out of 56). 7 out of 8 optimized predictions perform
better than the aggregate-traffic-based predictions, which proves the effectiveness of

the proposed optimization method.

5.5.2 Comparison of predictions with the (2,0,1) x (0,1, 1)6s

model

The results of cluster-based prediction and the prediction based on aggregate traffic
using SARIMA model (2,0,1) x (0,1, 1);6s are compared in Tables 5.6 and 5.7. In
the tables, pdq, PDQ, and S are SARIMA model orders, seasonal orders, and season
period, respectively. m is the number of model training data and n is the number of
data predicted. Tables 5.6 and 5.7 also show the nmse for prediction of each cluster,
nmse for prediction based on aggregate user traffic, nmse for cluster-based prediction,
and nmse for optimized cluster-based prediction, if any. Note that we also applied
the same optimization method as used in Table 5.3, which replaces “bad” prediction
results (nmse > 1.0) with the mean value of training data m. None of the optimized
cluster-based predictions performs better than the predictions based on aggregate user
traffic. However, more than 57% cluster-based predictions perform better than the

predictions based on aggregate traffic, which are shown in rows marked “()”.

5.6 Summary

In this Chapter, we described the analysis of time series data, emphasizing the
SARIMA models. The SARIMA model was used to fit the aggregate network traffic



No |pdg PDQ S | m n | nmse nmse nmse nmse nmse nmse
clusterl cluster2 cluster3 | aggregate | clusters | optimized
(1) | 201 011 24 | 240 | 24 | 0.3237 0.5481 0.3084 0.2546 (0.2416 ) n/a
(2) | 201 011 24 | 240 | 48 | 0.3942 0.7123 0.4457 0.3431 (0.3324) n/a
(3) | 201 011 24 | 240 | 72 | 0.4367 0.6914 0.4596 0.3708 ( 0.3605 ) n/a
(4) | 201 011 24 | 240 | 96 | 0.4278 0.8055 0.3828 0.3559 ( 0.3456 ) n/a
(5) | 201 011 24 | 240 | 120 | 0.4992 0.8066 0.3556 0.3904 (0.381) n/a
(6) | 201 011 24 | 240 | 144 | 0.5073 0.7856 0.3316 0.3905 (0.3831) n/a
(7) | 201 011 24 | 240 | 168 | 0.4804 0.7793 0.3345 0.3806 (0.3748 ) n/a
(8) | 201 011 24 | 480 | 24 | 0.4249 0.322 0.1071 0.1203 (0.1187) n/a
9 201 011 24 | 480 | 48 | 0.3189 0.3427 0.1661 0.1661 0.167 n/a
10 201 011 24 | 480 | 72 | 0.7208 0.5083 0.2042 0.3206 0.3419 n/a
11 201 011 24 | 480 | 96 | 0.712 0.5202 0.2449 0.3673 0.3933 n/a
12 201 011 24 | 480 | 120 | 0.5282 0.4922 0.3037 0.3422 0.3633 n/a
13 201 011 24 | 480 | 144 | 0.4408 0.4841 0.3116 0.3122 0.3223 n/a
14 201 011 24 | 480 | 168 | 0.3943 0.4817 0.3015 0.3016 0.3046 n/a
15 201 011 24 | 720 | 24 | 0.2699 2.029 0.3572 0.221 0.2535 0.2993
16 201 011 24 | 720 | 48 | 0.3063 0.6413 0.3788 0.2894 0.2986 n/a
17 201 011 24 | 720 | 72 | 0.3439 0.687 0.3901 0.3255 0.3321 n/a
18 201 011 24 | 720 | 96 | 0.3146 0.714 0.4147 0.3103 0.3151 n/a
19 201 011 24 | 720 | 120 | 0.3055 0.7431 0.3585 0.3081 0.3107 n/a
20 201 011 24 | 720 | 144 | 0.3482 0.7229 0.3551 0.334 0.3352 n/a
21 201 011 24 | 720 | 168 | 0.4586 0.7054 0.4089 0.4105 0.4117 n/a
22 201 011 24 | 960 | 24 | 0.1621 0.2336 0.1112 0.08545 0.09052 n/a
23 201 011 24 | 960 | 48 | 0.1636 0.3572 0.1209 0.09983 0.103 n/a
24 201 011 24 | 960 | 72 | 0.2262 0.4515 0.3382 0.2409 0.2449 n/a
25 201 011 24 | 960 | 96 | 0.3613 0.5711 0.4261 0.3387 0.3429 n/a
26 201 011 24 | 960 | 120 | 0.4374 0.6528 0.3934 0.3703 0.3738 n/a
27 201 011 24 | 960 | 144 | 0.4408 0.6533 0.3629 0.3469 0.3504 n/a
28 201 011 24 | 960 | 168 | 0.4625 0.6376 0.3332 0.3378 0.3414 n/a

Table 5.4: Comparison of predictions with (2,0,1) x (0,1, 1)24 model: part 1.
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No | pdg PDQ S m n | nmse nmse nmse nmse nmse nmse
clusterl cluster2 cluster3 | aggregate | clusters | optimized

[29] | 201 011 24 | 1200 | 24 | 2.413 1.579 0.2961 0.5975 0.5794 [ 0.3952 |
[30] | 201 011 24 | 1200 | 48 | 5.716 2.808 0.2886 1.131 1.125 [ 0.8403 ]
[31] | 201 011 24 | 1200 | 72 | 1.774 1.976 0.2708 0.8846 0.886 [ 0.8463 |
[32] | 201 011 24| 1200 | 96 | 1.319 0.8667 0.2602 0.6112 0.6138 [ 0.6106 ]
33 201 011 24 | 1200 | 120 | 0.8409 0.7031 0.2457 0.4637 0.4672 n/a
34 201 011 24 | 1200 | 144 | 0.6657 0.6472 0.2367 0.3966 0.3997 n/a
35 201 011 24 | 1200 | 168 | 0.7114 0.6709 0.2384 0.3863 0.3877 n/a
36 201 011 24 | 1440 | 24 | 0.4070 0.5568 0.2421 0.3257 0.3363 n/a
37 201 011 24 | 1440 | 48 | 0.5247 0.6054 0.2556 0.3803 0.3917 n/a
38 201 011 24 | 1440 | 72 | 0.6247 0.6268 0.23 0.4209 0.4328 n/a
39 201 011 24 | 1440 | 96 | 0.5938 0.6044 0.2755 0.4236 0.4326 n/a
40 201 011 24 | 1440 | 120 | 0.5915 0.6317 0.2728 0.4264 0.4334 n/a
41 201 011 24 | 1440 | 144 | 0.5472 0.6506 0.2810 0.4093 0.4139 n/a
42 201 011 24 | 1440 | 168 | 0.5222 0.6306 0.2715 0.3896 0.3943 n/a
[43] | 201 011 24 | 1680 | 24 | 0.9441 1.522 0.4123 0.56372 0.5486 [ 0.4657 ]
[44] | 201 011 24| 1680 | 48 | 1.195 2.452 0.3701 0.6256 0.6298 [ 0.4231 ]
[45] | 201 011 24| 1680 | 72 | 0.9587 2.074 0.3459 0.5968 0.5968 [ 0.494 |
46 201 011 24| 1680 | 96 | 0.6411 0.9414 0.3347 0.4707 0.471 n/a
47 201 011 24 | 1680 | 120 | 0.5395 0.666 0.3172 0.4128 0.4139 n/a
48 201 011 24 | 1680 | 144 | 0.5155 0.6677 0.3011 0.4041 0.4057 n/a
49 201 011 24 | 1680 | 168 | 0.5477 0.6885 0.2853 0.4079 0.4093 n/a
50 201 011 24| 1920 | 24 | 0.2509 0.2696 0.3013 0.1942 0.2050 n/a
51 201 011 24| 1920 | 48 | 0.278 0.5794 0.3844 0.3227 0.3289 n/a
52 201 011 241920 | 72 | 0.2846 0.6823 0.3584 0.3761 0.3821 n/a
53 201 011 24| 1920 | 96 | 0.2690 0.676 0.3253 0.3513 0.3573 n/a
54 201 011 24| 1920 | 120 | 0.3312 0.6597 0.3935 0.3797 0.3848 n/a
55 201 011 24 | 1920 | 144 | 0.3696 0.6635 0.3944 0.3964 0.4005 n/a
56 201 011 24| 1920 | 168 | 0.3678 0.6753 0.3694 0.3927 0.3957 n/a

Table 5.5: Comparison of predictions with (2,0,1) x (0,1, 1)24 model: part 2.
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No | pdg PDQ S m n | nmse nmse nmse nmse nmse nmse
clusterl cluster2 cluster3 | aggregate | clusters | optimized
1 201 011 168 | 840 | 24 | 0.2540 1.033 0.1483 0.1014 0.103 0.1815
2 201 011 168 | 840 | 48 | 0.394 0.9021 0.2578 0.2408 0.2434 n/a
3 201 011 168 | 840 | 72 | 0.3337 0.9385 0.2478 0.2437 0.2471 n/a
4 201 011 168 | 840 | 96 | 0.2516 0.7673 0.25 0.2234 0.2246 n/a
5 201 011 168 | 840 | 120 | 0.2283 0.5695 0.2467 0.2022 0.2022 n/a
(6) 201 011 168 | 840 | 144 | 0.2486 0.5127 0.2358 0.1979 (0.1952) n/a
(7) 201 011 168 | 840 | 168 | 0.2407 0.5249 0.2231 0.1873 (0.1839) n/a
(8) 201 011 168 | 840 | 336 | 0.3393 0.5027 0.2191 0.2200 (0.2172) n/a
(9) 201 011 168 | 840 | 504 | 0.4443 0.4479 0.2022 0.2179 (0.2153) n/a
(10) | 201 011 168 | 1008 | 24 | 0.4441 0.3912 0.2593 0.2659 ( 0.2468 ) n/a
(11) | 201 011 168 | 1008 | 48 | 0.6772 0.5235 0.3384 0.4131 (0.3706 ) n/a
(12) | 201 011 168 | 1008 | 72 | 0.5758 0.6342 0.2783 0.3556 (0.3229) n/a
(13) | 201 011 168 | 1008 | 96 | 0.566 0.6592 0.2435 0.3220 (0.2869 ) n/a
(14) | 201 011 168 | 1008 | 120 | 0.4547 0.5026 0.2216 0.2805 (0.2578 ) n/a
(15) | 201 011 168 | 1008 | 144 | 0.4166 0.4694 0.2071 0.2567 (0.2357) n/a
(16) | 201 011 168 | 1008 | 168 | 0.4749 0.4955 0.2109 0.288 (10.2656 ) n/a
(17) | 201 011 168 | 1008 | 336 | 0.6163 0.466 0.1906 0.2855 ( 0.2605 ) n/a
(18) | 201 011 168 | 1008 | 504 | 0.4398 0.4468 0.1900 0.2379 (0.224) n/a
19 201 011 168 | 1176 | 24 | 3.401 0.7474 0.1688 0.3654 0.5072 0.4369
20 201 011 168 | 1176 | 48 | 2.292 0.8033 0.1279 0.2594 0.3225 0.3512
21 201 011 168 | 1176 | 72 | 3.302 0.8128 0.1615 0.3808 0.4249 0.4328
22 201 011 168 | 1176 | 96 | 1.566 0.9416 0.1529 0.3816 0.4087 0.4099
23 201 011 168 | 1176 | 120 | 1.555 0.5541 0.1549 0.3333 0.3505 0.3434
24 201 011 168 | 1176 | 144 | 1.007 0.4426 0.1438 0.2487 0.2607 0.3012
25 201 011 168 | 1176 | 168 | 0.8061 0.4015 0.1518 0.2237 0.2331 n/a
26 201 011 168 | 1176 | 336 | 0.4268 0.4028 0.1635 0.1905 0.1952 n/a
27 201 011 168 | 1176 | 504 | 0.3842 0.4013 0.1644 0.1871 0.1907 n/a

Table 5.6: Comparison of predictions with (2,0,1) x (0,1, 1);6s model: part 1.
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No | pdg PDQ S m n | nmse nmse nmse nmse nmse nmse
clusterl cluster2 cluster3 | aggregate | clusters | optimized
(28) | 201 011 168 | 1344 | 24 | 0.9896 0.5187 0.1794 0.1357 (0.1226 ) n/a
(29) | 201 011 168 | 1344 | 48 | 0.9125 0.4876 0.1836 0.1537 (0.1491) n/a
(30) | 201 011 168 | 1344 | 72 | 0.3931 0.5368 0.1684 0.1552 (0.1527) n/a
(31) | 201 011 168 | 1344 | 96 | 0.2521 0.4719 0.1551 0.1515 (0.1498) n/a
(32) | 201 011 168 | 1344 | 120 | 0.2002 0.4435 0.1651 0.1512 (0.1495) n/a
(33) | 201 011 168 | 1344 | 144 | 0.1996 0.4145 0.1717 0.1531 (0.1512) n/a
(34) | 201 011 168 | 1344 | 168 | 0.2695 0.3934 0.1746 0.1794 (0.1772) n/a
(35) | 201 011 168 | 1344 | 336 | 0.2752 0.3797 0.1711 0.1802 (0.1784 ) n/a
(36) | 201 011 168 | 1344 | 504 | 0.2890 0.3946 0.1559 0.1859 (0.1849) n/a
37 201 011 168 | 1512 | 24 | 0.4997 1.202 0.1069 0.2106 0.2196 0.2569
38 201 011 168 | 1512 | 48 | 0.5958 1.251 0.1157 0.2078 0.2094 0.2418
(39) | 201 011 168 | 1512 | 72 | 0.3954 1.072 0.1399 0.1910 ( 0.1909 ) 0.2535
(40) | 201 011 168 | 1512 | 96 | 0.3059 0.5117 0.1427 0.1742 (0.1729) n/a
(41) | 201 011 168 | 1512 | 120 | 0.2713 0.3971 0.1393 0.1527 (0.151) n/a
(42) | 201 011 168 | 1512 | 144 | 0.2762 0.3509 0.1636 0.1597 (0.1560 ) n/a
(43) | 201 011 168 | 1512 | 168 | 0.2790 0.3498 0.1566 0.1633 (0.1589) n/a
(44) | 201 011 168 | 1512 | 336 | 0.2938 0.3742 0.1424 0.1739 (0.1716 ) n/a
(45) | 201 011 168 | 1512 | 504 | 0.3486 0.3755 0.1555 0.1808 (0.1780) n/a
(46) | 201 011 168 | 1680 | 24 | 0.3677 0.4447 0.1156 0.1321 (0.1298 ) n/a
47 201 011 168 | 1680 | 48 | 0.3807 0.4671 0.095 0.1149 0.1168 n/a
48 201 011 168 | 1680 | 72 | 0.2827 0.4244 0.091 0.1068 0.1086 n/a
49 201 011 168 | 1680 | 96 | 0.2818 0.3341 0.1007 0.1094 0.1100 n/a
50 201 011 168 | 1680 | 120 | 0.2528 0.2676 0.1128 0.1236 0.1238 n/a
51 201 011 168 | 1680 | 144 | 0.2590 0.3575 0.1170 0.1627 0.1630 n/a
52 201 011 168 | 1680 | 168 | 0.3013 0.3779 0.1222 0.1745 0.1750 n/a
(53) | 201 011 168 | 1680 | 336 | 0.3775 0.3559 0.1517 0.1809 (0.1805) n/a
54 201 011 168 | 1680 | 504 | 0.3500 0.3455 0.1566 0.1645 0.1654 n/a

Table 5.7: Comparison of predictions with (2,0,1) x (0,1, 1);6s model: part 2.
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data and the traffic of user clusters. We compared the prediction based on aggre-
gate traffic with cluster-based prediction. Based on our tests, we noted that 57% of
the cluster-based prediction performed better than the aggregate traffic prediction
with SARIMA model (2,0,1) x (0,1, 1)165. With SARIMA model (2,0, 1) x (0,1, 1)a4,
cluster-based prediction performs better than prediction based on aggregate traffic in
8 out of 56 tests and 7 optimized cluster-based predictions gave better results too.
The advantage of cluster-based traffic prediction is the flexibility of predicting variable

number of users and the reduction of the computational cost.



Chapter 6
Conclusion

In this thesis, we proposed a new prediction approach by combining clustering tech-
niques with traditional time series prediction modeling. The new approach has been
tested to predict the network traffic from an operational trunked radio system. We an-
alyzed the network traffic data and extracted useful data from the E-Comm network.
We explored the effectiveness and usefulness of clustering techniques by applying
AutoClass tool and K-means algorithm to classify network talk groups into various
clusters based on the users’ behavior patterns. To solve the computational cost prob-
lem of “bottom-up” approach and the inflexibleness problem of “top-down” approach,
we proposed a cluster-based traffic prediction method. We applied the cluster-based
SARIMA models and aggregate-traffic-based models to predict the network traffic.
The cluster-based prediction method produced comparable prediction results as the
prediction based on aggregate network traffic. In our tests with the 168-hour SARIMA
model, the cluster-based prediction performs better than the aggregate-traffic-based
prediction. With the 24-hour SARIMA model, cluster-based predictions (8 out of
56 tests) and optimized cluster-based prediction (7 out of 56 tests) perform better
the aggregate-traffic-based predictions. Furthermore, the cluster-based prediction ap-
proach is applicable to networks with variable number of users where the prediction
based on aggregate-traffic-based could not be applied. Utilizing the network user
clusters indicates a possible prediction approach for operational networks. Our ap-

proach may also enable network operators to predict network traffic and may provide
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guidance for future network expansion. Another contribution of this research project
is the illustration how data mining techniques may be used to help solve practical
real-world problems.

We developed database processing and analysis skills while dealing with the 6
Gbyte database. By applying unsupervised classification method on the traffic data,
we learned that it is rarely possible to produce useful results without having the
domain knowledge. The discovery of important clusters is a process of finding classes,
interpreting the results, transforming and/or augmenting the data, and repeating the
cycle. The cluster-based prediction model illustrates the application of clustering

techniques to traditional network traffic analysis.

6.1 Related and future work

Prior analysis of traffic from a metropolitan-area wireless network and a local-area
wireless network indicated the recurring daily user behavior and mobility patterns [6],
[7]. Analysis of billing records from a CDPD mobile wireless network also revealed
daily and weekly cyclic patterns [8]. The analysis of traffic from a trunked radio net-
work traffic showed that the call holding time distribution is approximately lognormal,
while the call inter-arrival time is close to an exponential distribution [11]. Channel
utilization and the multi-system call behavior of trunked radio network have been
also simulated using OPNET [30] and a customized simulation tool (WarnSim) [31].

We also experimented with a Bayesian network based approach to explore the
causal and conditional relationships among the different characteristics of user behav-
ior, such as call duration, number of systems in a call, caller id, and callee id. We
used B-course [32], [33] and Tetrad [34], [35] and constructed Bayesian network from
the user calling behavior data. Analysis results are presented in Appendix C.

Since we only have three months of traffic data, we were able to extract only
the daily and weekly patterns of the user calling behavior. A larger volume of data
may enable identifying the monthly behavior patterns. Traffic models could also be

compared using simulation tools. This would help verify the prediction results.



Appendix A

Data table, SQL, and R scripts

A.1 Call_Type table

=
o

Call_type

Group call
Individual call
Emergency call
System call
Morse code
Test

Paging
Scramble

Group set

© 00 I O U ke W NN = O

System log

—_
e}

Start emergency

—_
—_

Cancel emergency
100 | N/A
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A.2 SQL scripts for statistical output

Script to compute the average resource consumption for each talk group, in descending

order of the number of calls during the 92 days.

SELECT callee, agency, sum(n_calls) AS sn,

TRUNCATE( SUM( n_calls * avgRes ) / SUM( n_calls ), 2 ) AS aR,
TRUNCATE( SUM( n_calls * avgDur ) / SUM( n_calls ), 2 ) AS aD,
TRUNCATE( SUM( avgSys * n_calls ) / SUM( n_calls ), 2 ) AS aSys
INTO OUTFILE ¢/tmp/dump/tg.res.stat’ FROM tgStat

GROUP BY callee ORDER BY sn desc;

A.3 R scripts for prediction test and result sum-

mary

A.3.1 R script for prediction test

pred.test.24<-function(data, p=2, d=0, g=1, P=0, D=1, Q=1,
start=240, end=1920, step=240, p.start=24, p.end=168, p.step=24, prefix)
{

result<-list();

counter<-0;

for (m in seq(start, end, step))

{

mm<-as.integer (m) ;

worked<-0;

for (n in seq(p.start, p.end, p.step))

{

f .name<-paste(prefix, "pred",mm,n,"(",p,d,q,P,D,Q,")-24",sep="_");
cat(counter,":checking file", f.name);

if (file.exists(paste("./pred.test.24/", f.name, sep=""))) {

cat(" ... ... tested already\n");
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worked<-1;

if (file.info(paste("./pred.test.24/", f.name, sep=""))$size != 0)
load(paste("./pred.test.24/",f.name,sep=""));
x.arima<-result$arima;

x.a.t<-result$m.t;

rm(result) ;

break;

}

}

}

if (worked == 0) {

cat("building model based on", mm, "data!\n");
X.a.t<-system.time(x.arima<-arima(datal[l:mm], order=c(p,d,q),
seasonal=list (order=c(P,D,Q), period=24)));

}

for (n in seq(p.start, p.end, p.step))

{

counter<-counter+1;

cat(counter,":predict",n,"based on",mm, "data !\n");
f.name<-paste(prefix, "pred",mm,n,"(",p,d,q,P,D,Q,")-24",sep="_");
if (file.exists(paste("./pred.test.24/", f.name, sep=""))) {
cat("tested already\n");

next;

}

X.p.t<-system.time(x.pred<-predict(x.arima, n.ahead=n));
x.nmse<-nmse (x.pred$pred[1:n], datal[(mm+1): (mm+n)]);
cat("nmse=",x.nmse,"for (",p,d,q,P,D,Q,")-24\n");
result.pred<-x.pred$pred[1:n];
result<-list(par=c(p,d,q,P,D,Q,24,mm,n), arima=x.arima,
pred=result.pred, nmse=x.nmse, m.t=x.a.t, p.t=x.p.t);

save (result, file=paste("./pred.test.24/", f.name, sep=""));
}

}
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pred.test.168<-function(data, p=2, d=0, g=1, P=0, D=1, Q=1,
start=840, end=1680, step=168, p.start=24, p.end=168, p.step=24, prefix)
{

result<-list();

counter<-0;

for (m in seq(start, end, step))

{

mm<-as.integer (m) ;

worked<-0;

for (n in seq(p.start, p.end, p.step))

{

f.name<-paste(prefix, "pred",mm,n,"(",p,d,q,P,D,Q,")-168",sep="_");
cat(counter,":checking file", f.name);

if (file.exists(paste("./pred.test.168/", f.name, sep=""))) {
cat(" ... ... tested already\n");

worked<-1;

if (file.info(paste("./pred.test.168/", f.name, sep=""))$size != 0) {
load(paste("./pred.test.168/",f .name,sep=""));
x.arima<-result$arima;

x.a.t<-result$m.t;

rm(result);

break;

}

}

}

if (worked == 0) {

cat("building model based on", mm, "data!\n");
X.a.t<-system.time(x.arima<-arima(datal[l:mm], order=c(p,d,q),
seasonal=1list (order=c(P,D,Q), period=168)));

}

for (n in seq(p.start, p.end, p.step))
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{

counter<-counter+i1;

cat(counter,":predict",n,"based on",mm, "data !\n");
f.name<-paste(prefix, "pred",mm,n,"(",p,d,q,P,D,Q,")-168",sep="_");
if (file.exists(paste("./pred.test.168/", f.name, sep=""))) {
cat("tested already\n");

next;

}

X.p.t<-system.time(x.pred<-predict(x.arima, n.ahead=n));
x.nmse<-nmse (x.pred$pred[1:n], datal[(mm+1): (mm+n)]);
cat("nmse=",x.nmse,"for (",p,d,q,P,D,Q,")-168\n");
result.pred<-x.pred$pred[1:n];
result<-list(par=c(p,d,q,P,D,Q,168,mm,n), arima=x.arima,
pred=result.pred, nmse=x.nmse, m.t=x.a.t, p.t=x.p.t);

save (result, file=paste("./pred.test.168/", f.name, sep=""));
}

for (n in 2:3%168)

{

counter<-counter+1;

cat(counter,":predict",n,"based on",mm, "data !\n");
f.name<-paste(prefix, "pred",mm,n,"(",p,d,q,P,D,Q,")-168",sep="_");
if (file.exists(paste("./pred.test.168/", f.name, sep=""))) {
cat("tested already\n");

next;

}

X.p.t<-system.time(x.pred<-predict(x.arima, n.ahead=n));
x.nmse<-nmse (x.pred$pred[1:n], datal[(mm+1) : (mm+n)]);
cat("nmse=",x.nmse,"for (",p,d,q,P,D,Q,")-168\n");
result.pred<-x.pred$pred[1:n];
result<-list(par=c(p,d,q,P,D,Q,168,mm,n), arima=x.arima,
pred=result.pred, nmse=x.nmse, m.t=x.a.t, p.t=x.p.t);

save (result, file=paste("./pred.test.168/", f.name, sep=""));
}
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A.3.2 R script used to summarize prediction results

pred.summary<-function(path, cluster=0) {

options(digits=8) ;

path.len<-nchar (path);

output<-file(paste("output/", path, ".summary", sep=""), open="wt");
files<-list.files(path, full.names=TRUE);

cat(file=output, "no", "(p,d,q)x(P,D,Q)-s", "m", "n",

"nmse", "m. time", "p. time\n", sep="\t");

for (i in 1:length(files))

{

cat("loading", files[i], "\n", sep="..");

load(files[i]);

f.par<-result$par;

f.arima<-result$arima;

f.m.t<-result$m.t;

f.p.t<-result$p.t;

f.nmse<-result$nmse;

rm(result) ;

if (cluster) {

cat(file=output, substr(files[i], path.len+2, path.len+3),
sep="");

} else {

cat(file=output, i, sep="");

}

cat(file=output, "\t(", f.par(1], ",", f.par[2], ",", f.par([3],
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"yx(", f.par(4], ",", f.par(5], f.par[6], ")-", f.par([7],
"\t", f.par[8], "\t", f.par[9], "\t", f.nmse, "\t", f.m.t[3],
ll\tll, f.p.t[sj, ||\n||’ Sep="");

cat("finished", files[i], "\n", sep="..");
}

flush(output) ;

close(output) ;

}

db.output<-function(dir) {
files<-list.files(dir);
output<-file("db.out", open="at");
type<-c("\’centroid\’", "\’medioid\’");

for (i in 1:length(files)) {

cat("working on", files[i], "\n");

file<-paste(dir, "/", files[i], sep="");
cluster<-length(grep("kc3", files[i]));

pdg<-substr(files[i], nchar(files[i]) - 10, nchar(files[i])-8);
season<-substr(files[i], 11, regexpr("-", files[i])[1]-1);
med<-type [length(grep("med", files[i]))+1];

cat("pdq:", pdq, "season:", season, "med:", med, "\n");

if (cluster) {

input<-scan(file, what=list(’character’, ’character’, ’integer’,

’integer’, ’numeric’, ’numeric’, ’numeric’), skip=1);

} else {

input<-scan(file, what=list(’integer’, ’character’, ’integer’,
’integer’, ’numeric’, ’numeric’, ’numeric’), skip=1);

}

for (i in 1:length(input[[1]])) {
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if (cluster) {

cat(file=output, "INSERT INTO prediction (cluster, type, pdq,
season, m, n,

nmse, m_time, p_time) VALUES (",

paste(substr(input[[1]][i], 2, 2), med, pdq, season,
input[[3]][i], input[[4]1][i], input[[5]][i], input[[6]][i],
input [[7]1][i], sep=", "), ");\n", sep=" ");

} else {

cat(file=output, "INSERT INTO prediction (pdq, season, m, n,
nmse, m_time, p_time) VALUES (", paste(pdq, season,
input[[3]][i], input[[4]1][i], input[[5]1][i], input[[6]][i],
input [[7]1] [i], sep=","), ");\n", sep=" ");

}

}

}

flush(output) ;
close(output) ;

¥
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AutoClass files

B.1 AutoClass model file

The first column of the data file is talk group id. It should be ignored in finding the cluters.
The remaining columns use single_normal_cn model.
#Leo Chen, 2003-Sep-15

#the model file for E-Comm data user clustering

model_index 0 2
ignore 0

single_normal_cn default

;; single_normal_cm

;; single_multinomial

B.2 AutoClass influence factor report

#DATA_CLSF_HEADER

#AutoClass CLASSIFICATION for the 617 cases in
#/e-comm/clustering/tg.h/2208/tg2208.db2
#/e-comm/clustering/tg.h/2208/tg2208.hd2
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#with log-A<X/H> (approximate marginal likelihood)

#from classification results file

#/e-comm/clustering/tg.h/2208/tg2208.results-bin

#and using models

#/e-comm/clustering/tg.h/2208/tg2208 .model - index

#DATA_SEARCH_

SUMMARY

#SEARCH SUMMARY 1110 tries over
#SUMMARY OF 10 BEST RESULTS

#PROBABILITY
#PROBABILITY
#PROBABILITY
#PROBABILITY
#PROBABILITY
#PROBABILITY
#PROBABILITY
#PROBABILITY
#PROBABILITY
#PROBABILITY

exp (-6548529.
exp(-6592578.
exp(-6619633.
exp (-6622783.
exp (-6626274.
exp (-6637269.
exp (-6657627.
exp (-6658596 .
exp (-6660040.
exp(-6671271.

DATA_POP_CLASSES
#CLASSIFICATION HAS 24 POPULATED CLASSES

230)
320)
090)
940)
570)
320)
910)
390)
920)
570)

(max global influence value = 1

#Class Log of class Re
#num  strength class
00 -8.23e+03 0
01 -2.16e+04 0
02 -7.69e+03 0
03 -7.54e+03 0
04 -7 .54e+03 0
05 -1.48e+04 0
06 -6.95e+03 1

19 hours 17 minutes

N_CLASSES
N_CLASSES
N_CLASSES
N_CLASSES
N_CLASSES
N_CLASSES
N_CLASSES
N_CLASSES
N_CLASSES
N_CLASSES

24
18
21
24
17
24
18
19
18
12

0.988)
lative Class
strength weight
.00e+00 144
.00e+00 67
.00e+00 66
.00e+00 31
.00e+00 25
.00e+00 23
.00e+00 22

FOUND
FOUND
FOUND
FOUND
FOUND
FOUND
FOUND
FOUND
FOUND
FOUND

ON
ON
ON
ON
ON
ON
ON
ON
ON
ON

-6548529.227

49 seconds

TRY
TRY
TRY
TRY
TRY
TRY
TRY
TRY
TRY
TRY

Normalized

class weight

0.233
0.109
.107
.050
.041
.037
.036

O O O O o

653 *SAVED* -1
930 *SAVED* -2
940

323

542

1084

677

918

528

385
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o7 -1.73e+04 0.00e+00 21 0.034
08 -7.20e+03 0.00e+00 20 0.032
09 -1.13e+04 0.00e+00 20 0.032
10 -7.47e+03 0.00e+00 19 0.031
11 -7.62e+03 0.00e+00 19 0.031
12 -1.65e+04 0.00e+00 18 0.029
13 -1.16e+04 0.00e+00 18 0.029
14 -7.60e+03 0.00e+00 18 0.029
15 -7.47e+03 0.00e+00 17 0.028
16 -1.17e+04 0.00e+00 15 0.024
17 -6.98e+03 2.22e-13 13 0.021
18 -8.23e+03 0.00e+00 12 0.019
19 -1.84e+04 0.00e+00 10 0.016
20 -7.14e+03 0.00e+00 9 0.015
21 -1.05e+04 0.00e+00 4 0.006
22 -8.68e+03 0.00e+00 3 0.005
23 -7.37e+03 0.00e+00 3 0.005

DATA_CLASS_DIVS
#CLASS DIVERGENCES
#Class (class cross entropy) Class Normalized

#num (w.r.t. global class) weight class weight

00 1.11e+04 144 0.233
01 5.58e+03 67 0.109
02 1.17e+04 66 0.107
03 1.19e+04 31 0.050
04 1.19e+04 25 0.041
05 5.03e+03 23 0.037
06 1.25e+04 22 0.036
07 2.87e+03 21 0.034
08 1.22e+04 20 0.032
09 8.31e+03 20 0.032
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10 1.20e+04 19 0.031
11 1.18e+04 19 0.031
12 3.88e+03 18 0.029
13 8.04e+03 18 0.029
14 1.19e+04 18 0.029
15 1.20e+04 17 0.028
16 8.03e+03 15 0.024
17 1.25e+04 13 0.021
18 1.13e+04 12 0.019
19 2.62e+03 10 0.016
20 1.24e+04 9 0.015
21 9.85e+03 4 0.006
22 1.18e+04 3 0.005
23 1.25e+04 3 0.005

DATA_NORM_INF_VALS
#ORDERED LIST OF NORMALIZED ATTRIBUTE INFLUENCE
VALUES SUMMED OVER ALL CLASSES

# num description I-xk
4335 Log NC[81] 1.000
2490 Log NC[1926] 0.999
2986 Log NC[1430] 0.998
4039 Log NC[377] 0.998
3732 Log NC[684] 0.998
3832 Log NC[584] 0.996
3184 Log NC[1232] 0.996
3831 Log NC[585] 0.995
4043 Log NC[373] 0.992
3927 Log NC[489] 0.992
2487 Log NC[1929] 0.992
4209 Log NC[207] 0.991
2506 Log NC[1910] 0.991
3804 Log NC[612] 0.990
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2485 Log NC[1931]
3829 Log NC[587]
3948 Log NC[468]
3588 Log NC[828]
3013 Log NC[1403]
3158 Log NC[1258]
2700 Log NC[1716]
3949 Log NC[467]
2699 Log NC[1717]

O O O O O O O o o

.990
.990
.988
.987
.987
.987
.986
.986
.985

B.3 AutoClass class membership report

# CROSS REFERENCE CLASS => CASE NUMBER MEMBERSHIP

#DATA_CLSF_HEADER

/e-comm/clustering/tg.h/2208/tg2208.db2
/e-comm/clustering/tg.h/2208/tg2208.hd2

from classification results file

and using models

H OH OH OH O H H OH O OH

DATA_CLASS 0
# CLASS = O

#Case talkgroup NC[O] NC[1] NC[2] NC[3] NC[4] NC[5]

NC[8] NC[9] NC[10] NC[11] (Cls Prob)

AutoClass CLASSIFICATION for the 617 cases in

with log-A<X/H> (approximate marginal likelihood)

/e-comm/clustering/tg.h/2208/tg2208.results-bin

/e-comm/clustering/tg.h/2208/tg2208.model - index

008 1099.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000
009 1100.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000
015 1129.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000
016 112.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

-6548529.227

I
o

NC[6] NC[7]
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DATA_CLASS 1

# CLASS =1

#Case talkgroup NC[0] NC[1] NC[2] NC[3] NC[4] NC[5] NC[6] NC[7]
NC[8] NC[9] NC[10] NC[11] (Cls Prob)

001 O.hour.nc 26 25 24 24 24 25 25 26 26 25 25 23 1.000

003 1089.hour.nc 6 29 0 0 0 8 0 0 2 80 0 0 1.000

098 1429.hour.nc 0 0 0 0 0 000 0 0 0 0 1.000

102 1441 .hour.nc 41 9 13 8 15 44 88 9 26 25 21 25 1.000

109 1474 .hour.nc 31 13 34 35 10 19 30 8 17 7 4 14 1.000

DATA_CLASS 2

# CLASS = 2

#Case talkgroup NC[0] NC[1] NC[2] NC[3] NC[4] NC[5] NC[6] NC[7]
NC[8] NC[9] NC[10] NC[11] (Cls Prob)

033 12118.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000
039 12252 .hour.nc 0 0 0 0 0 0 0 00 0 0 0 1.000
066 12858 .hour.nc 0 0 0 0 0 0 0 00 0 0 0 1.000
069 12872.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000
080 13405.hour.nc 0 0 0 0 0 00 00 00 0 1.000
087 13905.hour.nc 0 0 0 0 0 0 0 00 0 0 0 1.000
094 13931.hour.nc 0 0 0 0 00 0 00 00 0 1.000

DATA_CLASS 3

# CLASS = 3

#Case talkgroup NC[0] NC[1] NC[2] NC[3] NC[4] NC[5] NC[6] NC[7]
NC[8] NC[9] NC[10] NC[11] (Cls Prob)

014 1123.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

059 12708.hour.nc 0 0 00 00O 0 00 00 0 1.000

073 12913.hour.nc 0 0 0 0 0 0 0 00 0 0 0 1.000
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081 13427 .hour.nc 0 0 0 0 00 0 00 0 0 0 1.000

082 13473.hour.nc 0 0 0 0 0 00 00 00 0 1.000

096 139.hour.nc 0 0 0 0 000 000 00 1.000

116 1480.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

118 1491 .hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

11 7076 .hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

522 8013.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

524 8021 .hour.nc 0 0 0 0 00 0 0 00 0 0 1.000

580 8705.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 0.964 4 0.036

DATA_CLASS 4

# CLASS =4

#Case talkgroup NC[0] NC[1] NC[2] NC[3] NC[4] NC[5] NC[6] NC[7]
NC[8] NC[9] NC[10] NC[11] (Cls Prob)

006 1097 .hour.nc 0 0 0 0O OO0 O0O0O0O0O0 1.000

022 1145.hour.nc 0 0 0 0 0 0 0 0 O O O 0 1.000

023 1146.hour.nc 0 0 0 0 00O 00O 000 0 1.000

058 126.hour.nc 0 0 0 000 000O0O0O0 1.000

074 13186.hour.nc 0 0 0 0 0 0 0 0 0 0 0 0 1.000

DATA_CLASS 5

# CLASS =5

#Case talkgroup NC[0] NC[1] NC[2] NC[3] NC[4] NC[5] NC[6] NC[7]
NC[8] NC[9] NC[10] NC[11] (Cls Prob)

005 1091 .hour.nc 0 0 0 04 0 0 0 0 0 00 1.000

020 113.hour.nc 3 0 0 00000 00 0 0 1.000

108 146 .hour.nc 0 0 0 0 0 0 0 0 0 0 0 O 1.000

232 163.hour.nc 0 0 0 000 000O0O0O0 1.000



Appendix C

Bayesian network analysis

C.1 B-Course analysis

Conditional dependency analysis results from B-Course are shown in Figures C.1 and C.2.

C.2 Tetrad analysis

Bayesian network analysis results from Tetrad are shown in Figures C.3 and C.4.
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Figure C.1: B-Course analysis: result 1.
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Figure C.2: B-Course analysis: result 2.
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Figure C.3: Tetrad analysis: result 1.
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Figure C.4: Tetrad analysis: result 2.
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