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Abstract 
 
Recent research activities in the area of network traffic have demonstrated that 

traffic patterns in modern networks are statistically different from patterns 

generated by traditional traffic models. These new traffic patterns are long-range 

dependent. Researchers have shown that long-range dependency has 

considerable impacts on queueing performance, and that it is becoming a 

predominant factor in solving a number of packet traffic engineering problems. 

 

The main objective of this thesis is to investigate traffic patterns in wireless data 

networks. By performing measurements, simulations, and analysis, our results 

demonstrate that wireless data traffic exhibits long-range dependent behavior, 

and, therefore, is statistically different from patterns generated by traditional 

traffic models. To evaluate the performance of wireless Cellular Digital Packet 

Data (CDPD) networks, we use Opnet tool to simulate the Telus (formerly BCTel) 

CDPD network. In our simulations, we use genuine traffic traces from Telus 

network. Our simulation results indicate that genuine traffic traces produce longer 

queues and, thus, require larger buffers in the deployed network's switching 

elements. 
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Introduction 

In the past decade, a large number of traffic measurements from deployed 

packet networks have been collected and analyzed. They include Ethernet local 

area networks (LAN’s) [17], wide area networks (WAN’s) [11], common channel 

signaling networks CCSN/SS7 [5], World Wide Web (WWW) [4], and variable bit 

rate (VBR) video over asynchronous transfer mode (ATM) [6]. The results were 

twofold: 

• These studies demonstrated that it was possible to clearly distinguish 

between genuine packet network traffic and traffic generated by widely 

used mathematical models. 

• In contrast to the traditional packet traffic models, aggregate packet 

streams are statistically self-similar, or fractal in nature. That is, realistic 

network traffic looks the same when measured over time scales ranging 

from milliseconds to minutes and hours. 

Researchers have shown that long-range dependency has considerable impact 

on the queueing performance of wired networks [6, 11], and that it is a dominant 

characteristic for a number of packet traffic engineering problems. In this paper, 

we demonstrate the impacts of self-similarity on queueing performance in 

wireless data networks. An equivalent mathematical manifestation of the long-

range dependence (LRD) is its property that the underlying traffic process is self-

similar. A long-range dependent process is characterized by an autocorrelation 

function that decays as a power of the lag time, implying that the sum (over all 

lags) of the autocorrelations diverges [2]. This is why LRD is important for 
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network traffic analysis: even though the high-lag autocorrelations are individually 

small and negligible, their cumulative effect is important, and the traffic behavior 

is drastically different from that of traffic processes considered in past teletraffic 

research.  

 

Our measurements, simulations, and analysis results demonstrate that wireless 

data traffic exhibits long-range dependent behavior. Therefore, wireless traffic is 

statistically different from traffic generated by traditional traffic models. To 

evaluate the performance of wireless Cellular Digital Packet Data (CDPD) 

networks, we use the Opnet  (Opnet Technologies, formerly Mil. 3) to simulate 

the Telus (formerly BCTel) CDPD network. In our simulations, we use genuine 

traffic traces from Telus. Our simulation results indicate that genuine traffic 

produces longer queues and, thus, requires larger buffers in the network's 

switching elements than traffics generated by traditional models. 

 

The rest of this thesis is organized as follows. In Section 1, we briefly describe 

the structure of a Cellular Digital Packet Data Network. Section 2 gives a brief 

description of long-range dependency. In Section 3, we briefly describe how the 

genuine wireless data trace was obtained and present the analysis results. 

Section 4 gives a detailed description of the Simulation Model used for the 

queueing analysis. This includes the network, node, and process models. In 

Section 5, we discuss the resulting traffic engineering implications. We conclude 

with Section 6 and a summary of our work. 
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1. Overview of a CDPD network 
 
Cellular Digital Packet Data (CDPD) is a wireless technology that provides 

packet switched data transfer service using the radio equipment and spectrum 

available in the existing analog mobile phone system (AMPS) based analog 

cellular networks. The CDPD System Specification Release 1.0 was originally 

published in 1993 by several cellular carriers including Ameritech, GTE, and 

McCaw (later acquired by AT&T). Later, these and other cellular companies 

jointly formed the CDPD Forum in 1994, and issued Release 1.1 in 1995. The 

Specification covers the following major areas: 1) CDPD communications 

architecture; 2) Key interfaces; 3) Protocol stacks; 4) Radio resource control; 5) 

Mobility management; 6) Accounting management; 7) Support services, and 8) 

Network management. 

 

The following sub-sections provide a high-level discussion of the CDPD 

architecture, protocol stacks, and the Airlink Interface. The brief description of the 

communication architecture serves as background material for CDPD, while the 

sub-sections on protocol stack and Airlink Interface highlight the protocols and 

procedures that are the subject of our research. 
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1.1 CDPD communication architecture 

The CDPD communication architecture is based on the OSI Basic Reference 

Model and it is only concerned with the lower three OSI layers. Fig. 1.1 depicts 

the network elements as defined in CDPD [1]. 
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The purpose of the CDPD network is to allow data transmission between Mobile 

End Systems (M-ES) and Fixed End Systems (F-ES). As its name implies, an M-

ES is a subscriber's equipment that may move between administrative domains, 

or between network areas. On the other hand, an F-ES is a stationary system 

that either provides data application services outside the direct control of a CDPD 

Network Service Provider (NSP), or it provides network support services 

administered and maintained by a CDPD NSP. A typical application involving an 

F-ES of the first type (known as an external F-ES) and an M-ES is a terminal 

inside a police cruiser sending a request to a database system for a driver 

license validation. Every time a police officer logs on the terminal, a message will 

be sent to the so-called internal F-ES that provides authentication and 

authorization services. 

 

The Mobile Data Base Station (MDBS) communicates with a population of M-

ES's over the Airlink Interface, providing both data link layer and physical layer 

functions to a set of paired radio channels within its cell boundary. In CDPD 

terminology, the channel stream from M-ES to MDBS is called the reverse 

channel, and the channel stream in the opposite direction is called forward 

channel.  Data link layer functions include radio channel allocation, interoperation 

with cellular voice channel usage, and radio media access control. At the 

physical layer, the MDBS transmits and receives data modulated with the 

Gaussian Filtered Minimum Shift Keying (GMSK) scheme at a bit rate of 19.2 

kilobits per second. 
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The Mobile Data Intermediate System (MD-IS) is a network layer entity that 

serves a domain area consisting of multiple cells. Each cell is controlled by a 

MDBS. The MD-IS is the only entity in the CDPD network that keeps track of the 

location of an M-ES, and it is thus capable of routing data to that M-ES 

regardless in which cell it is currently located. Within a CDPD network that has 

more than one MD-IS, such location awareness is made possible by connections 

between the MD-IS's, therefore allowing routing of data to and from M-ES's that 

are roaming. 

 

Similar to the MD-IS, the Intermediate System (IS) is also a network layer entity 

that relays data to another MD-IS or IS. The major difference between the two is 

that the IS is not aware of the mobility of the M-ES's. IS's are normally off-the-

shelf routers that represent the backbone of the CDPD network. 
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1.2 Protocol stacks and Airlink Interface 
 

M-ES   MDBS           MD-IS 

 

 

 

 

 

 

 

 

 

 

FIG. 1.2. AIRLINK PROTOCOL PROFILE. 
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• Network Layer (IP/CLNP): The Sub-Network-Dependent Convergence 

Protocol (SNDCP) receives the network layer data packet. 

• SNDCP: With SNDCP, optional header compression is implemented on 

the header portion of the IP or CLNP packet, and optional V.42 bit data 

compression is implemented on the data and header portion of the packet. 

The packet is segmented based on the maximum frame size handled by 

the link layer entity and an SNDCP header is added to each segment. 

Encryption is performed on the data portion (not on the SNDCP header) 

and the segmented packet is forwarded to the MDLP entity. 

• MDLP: The MDLP layer adds the MDLP header and forwards the frame to 

the MAC layer entity. 

• MAC: With MAC, a sequence of frames is converted into a bit stream by 

inserting at least a single frame flag in between. The bit stream is blocked 

into consecutive sets of bits and the Reed Solomon encoding is 

performed. The Reed Solomon code used in CDPD MAC layer is 

RS(63,47) , with symbol size 6 bits. 

• Forward Channel: The data and RS code bits (378 bits) are interleaved 

with an additional 42 bits containing forward synchronization word, decode 

status, and busy/idle flags to make up a 420-bit block. 

• Reverse Channel: The data and RS code bits (378 bits) are interleaved 

with 7 continuity indicator bits to form 385-bit blocks. Multiple blocks (full-

duplex M-ES) or a single block (half-duplex M-ES) is prefixed with a 
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dotting sequence and a reverse synchronization word to form the reverse 

burst. Each bit is modulated as a symbol of a Gaussian Minimum Shift 

Keying (GMSK) waveform. 

1.3 Medium access control layer 

The medium access control (MAC) layer is responsible for the frame transfer 

between the M-ES and the MDBS. The protocol defined in the MAC layer 

performs the following three functions: (i) data encapsulation, (ii) medium access 

management on the reverse channel, and (iii) channel stream timing and 

synchronization. Tasks associated with data encapsulation include frame 

boundary delimitation, data transparency, frame synchronization, and error 

detection and correction  (Reed-Solomon encoding). Medium access 

management on the reverse channel is accomplished by using the slotted non-

persistent Digital Sense Multiple Access with Collision Detection (DSMA/CD) 

scheme. Finally, the last function is provided by transmitting synchronization and 

timing indicators in the forward channel to allow M-ES's to synchronize to a 

master microslot clock before starting a transmission. 

 

1.4 Digital sense multiple access with collision detection 
 

In CDPD, the forward channel is contentionless and, therefore, it is always 

available for the MDBS to broadcast data to a population of M-ES's. In contrast, 

multiple M-ES's have to compete with each other to access the reverse channel 

for data transmission to the MDBS. Therefore, the Carrier Sense Multiple Access 
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with Collision Detection (CSMA/CD) scheme is employed to control the reverse 

channel access by notifying the M-ES's when the channel is available. Such 

notification is provided periodically in the forward channel with two types of status 

flags: Channel Busy/Idle Status and Block Decode Status. The Channel 

Busy/Idle Status indicates whether the reverse channel is busy or idle. When the 

channel is busy, an M-ES attempting to transmit has to defer until the channel 

becomes idle again. This status flag thus provides a mechanism for collision 

avoidance. The other status flag, the Block Decode Status, indicates if the 

previous FEC block transmitted by an M-ES was successfully decoded by the 

MDBS. As a result, this status flag serves to provide collision detection. This 

scheme is called Digital Sense Multiple Access with Collision Detection 

(DSMA/CD). 
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2. Overview of self-similarity 

 

2.1 Introduction to self-similarity 

Kolmogorov first introduced self-similar processes in 1941 within a theoretical 

context. Statisticians do not seem to have been aware of the existence or 

statistical relevance of such processes, until Mandelbrot and his co-workers 

introduced them into statistics. The basic idea of self-similarity is much older. 

Mandelbrot referred to, for example, Leonardo da Vinci’s drawings of turbulent 

flows that exhibit coexistent “eddies” of all sizes and thus possess self-similarity. 

A geometric shape is called self-similar in a deterministic way, if the same 

geometric structures are observed, independently of the distance from which one 

looks at the shape. In the context of stochastic processes, self-similarity is 

defined in terms of the distribution of the process [2]: 

 

Definition 1 Let tY be a stochastic process with continuous time parameter t. tY is 

called self-similar with self-similarity parameter H, if for any positive stretching 

factor c, the rescaled process with time scale ct, ,ct
HYc −  is equal in distribution to 

the original process tY . 

 

This means that, for any sequence of time points ,1t ,..., kt  and any positive 

constant c , ),...,,(
21 kctctct

H YYYc − has the same distribution as ),...,,(
21 kttt YYY . Thus, 

typical sample paths of a self-similar process look qualitatively the same, 
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irrespective of the distance from which we look at them. In contrast to 

deterministic self-similarity, it does not mean that the same picture repeats itself 

exactly as we get closer. It is, rather, the general impression that remains the 

same. 

2.2 Self-similarity in teletraffic engineering 

Interest in self-similar arrival processes was stimulated by measurements of 

Ethernet traffic in Bellcore [8, 9]. The measurements indicate that the Ethernet 

traffic seems to look the same over the larger time scales (minutes, hours) and 

over the smaller time scales (seconds, milliseconds); hence the term self-similar 

traffic. Since then, this feature has been observed in several experiments, for 

example, in TCP [11], Motion Pictures Experts Group (MPEG) video traffic [6], 

and WWW traffic [4]. 
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FIG. 2.1. PICTORIAL “PROOF” OF SELF-SIMILARITY. 
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Velibor Markovski). Scenes (a)-(d) depict a sequence of simple plots of the 

packet numbers for four different choices of time units for the MPEG traffic trace 

captured by compressing the Star Wars movie. Starting with a time unit of 64 

frames (Fig. 2.1(a)), each subsequent plot is derived from the previous one by 

increasing the time resolution by a factor of 4 and by concentrating on a 

randomly chosen subinterval (indicated by different shades of gray). The finest 

time scale is 1 frame. From Fig. 2.1, we can see that all plots in the left column 

are “similar”, that is, MPEG traffic seems to look the same over the whole 

spectrum of time scales. More importantly, notice the absence of a fixed length of 

a “burst”. We can observe different burst lengths on different time scales. This 

time scale-invariant feature of the MPEG video traffic differs from both 

conventional telephone traffic and from stochastic models for packet traffic.  For 

comparison, the synthetic traffic generated from a comparable (same average 

packet size and same arrival rate) Poisson process was depicted by the 

sequence of plots (a’)-(d’) in Fig. 2.1. This sequence was obtained in the same 

way as the sequence on Fig. 2.1 (a)-(d). Fig. 2.1 provides a simple method for 

distinguishing clearly between the measured MPEG traffic data and the traffic 

generated by the Poisson  traffic model. It suggests that more sophisticated 

traffic models that can capture self-similar characteristic of real network traffic 

need be used in the prediction of network performance. 

 

The following definition of self-similarity for stochastic processes is widely 

adopted in teletraffic engineering [11]: 
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Definition 2. Assume kX  to be a wide-sense stationary process with mean 

( ) XXE k =  and autocorrelation function ( ) ( )
( )kXVar

iCir = . Where C(i) is the 

covariance of kX . Consider next processes ,...)2,1()( =mX m
k  that are constructed 

from kX  by averaging over non-overlapping blocks of size m , i.e., 

( ) mXX
m

n nkm
m

k /
1

0
)( ∑ −

= += . The processes )(m
kX are also wide-sense stationary, with 

mean X  and autocorrelation function ( ).)( ir m  The process kX  is called 

(asymptotically) second-order self-similar if ( ) ( )irir m =)( ,  (for ∞→im, ).  

 

Self-similarity manifests itself in a number of equivalent ways: 

• Slowly decaying variances: { } β−mXVar m
k ~)(  if ,∞→m  where 10 << β  

• A slowly decaying autocorrelation function: ( ) β−iir ~  for ∞→i . 

Such a process differs from the traffic generated by traditional Poisson models 

used for modeling voice traffic that has: 

• The variance { } 1)( ~ −mXVar m
k  

• ( )ir  decays exponentially fast, i.e., ( ) iir −γ~  for large i and 1<γ  

• The process behaves like (second-order) pure noise for large m , i.e., 

( ) 0( )( →ir m )0( ≠i  if ∞→m ). 

 

An important parameter of self-similarity is the Hurst parameter 2/1 β−=H .  

Self-similarity is implied by .15.0 << H  
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2.3 Tools used to access the self-similar nature of a given trace [15, 17] 

• Visual inspection: plots of samples from processes )(m
kX for a wide range of 

values of m  look similar for fractal traffic, while those for short-range-

dependent traffic “flatten out” when m  gets large; 

• The SR /  plot or pox plot: plotting ( ) ( )[ ]nSnR /log  versus )log( n  for various 

subsets of the available data allows one to determine, by linear regression, 

the Hurst parameter H . Here R(n) is the adjusted range of X in the time 

interval 0 to n, S is the sample standard deviation. 

• The variance-time plot: of { })log(var )(m
kX  versus )log( m allows estimation of 

)1(2 H−=β ; 

• Whittle’s estimator: An estimator based on a maximum likelihood technique 

due to Whittle, given by Beran [3]. Let );( Hf λ  denote the power spectrum of 

X  when normalized to have variance 1, and ( )λI  the periodogram (i.e., 

power spectrum estimated using a Fourier transform) of tx . To estimate H , 

find Ĥ  that minimizes: 

( ) ( )
( )∫

−

=
π

π

λ
λ
λ

d
Hf

I
Hg

;
ˆ  

If { }tx  has length n , then the above integral is readily converted to a discrete 

summation over the frequencies π
ππ

λ 2,...,
4

,
2

nn
= . 
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• Wavelet analysis (courtesy of Dr. Fred Xue):  A property of an LRD 

process that the spectrum )(vΓ  takes the following form for a range of 

frequencies υ  close to 0: 

H
f vcv

21
~)(

−
Γ , 0→v ,                           

where 0>fc  and 15.0 << H . 

Wavelet analysis is a useful tool for analyzing the scale-dependent 

properties of data via the coefficients of wavelet decomposition. Since 

self-similar processes possess similar statistical properties over a large 

range of scales, the wavelet analysis appears to be a natural analysis tool 

to test the fractal behavior of a long-range dependent process. 

 

A wavelet-based estimator suggested in [14] is based on a spectral 

estimator designed by performing a time average of the 
2

),( kjdx  at a 

given scale: 

∑=Γ −

k
x

j

j
x kjd

n
v 2

0 ),(
1

)2(ˆ ,                  

where jn  is the number of wavelet coefficients at octave j. The coefficient 

( ) 2
, kjd x  measures the amount of energy in the analyzed signal about the 

time instant kj2  and frequency 02 νj− . An estimator for the Hurst 

parameter H can be found from a simple linear regression of 

))2(ˆ(log 02 vj−Γ on the scale level j: 

cjHvj
x ˆ)1ˆ2())2(ˆ(log 02 +−=Γ − . 
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In this project, we will use the R/S and variance-time plots to analyze the wireless 

data network traffic trace. These two methods will be discussed in detail in 

Section 3.3. 

2.4 Impacts of self-similarity on teletraffic engineering 

Experimental evidence for self-similarity in various types of data network traffic is 

already overwhelming and continues to grow. Clearly, the phenomenon can no 

longer be ignored in teletraffic engineering. So far, simulations and analytical 

studies have shown that it may have a considerable impact on network 

performance that could not be predicted by the traditional short-range-dependent 

models. However, its implications on, for example, connection admission policies 

or network dimensioning are still not well understood. In particular, a very 

practical question is how queueing and traffic shaping (such as leaky bucket 

used for policing in an ATM node) affect self-similarity [9, 11, 12, 13, 17, and 18]. 
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3. Traffic measurements 

3.1 The traffic monitor 

The monitoring system used to collect data for the present study was built by 

AirLink Communications, Inc. The AirLink CDPD Protocol Analyzer is an effective 

tool used to isolate problems and to measure the performance of the Airlink 

Interface. It monitors the CDPD traffic between a base station and mobile end 

systems, allowing users to quickly diagnose problems. For each packet seen on 

the RF channel, the Analyzer records a timestamp (accurate to within 10 ms), the 

packet length, the status of the Airlink Interface, and the encrypted data in each 

packet. The accuracy of our timestamps is lower than the time stamp achieved in 

measuring the Ethernet traffic trace from Bellcore (100 µs). This is due to the 

limitations of the CDPD Protocol Analyzer. Nevertheless, as we will show in 

Section 3.3, the impact of the lower-accuracy on the statistic analysis of the data 

is tolerable, even though taking the measurements over larger time-scales (10 

ms) has imposed some smoothing.  

3.2 The network environment of BCTel’s CDPD network 

BCTel’s mobile data network is a typical commercial CDPD network, where base 

stations are located on top of high-rise buildings, and the users are mostly police 

and fire departments. The traffic used for our analysis was collected on the 

reverse channel in a CDPD cell.  

A snapshot of the network configuration at the time the data set was collected is 

given in Fig. 3.1. During our measurement, there were about 10 mobile end 
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systems registered in that cell. This network cell consisted of one MDBS 

connected to the CDPD backbone network, implying that almost all the traffic on 

the Airlink in this cell was visible from our monitoring point, except the traffic 

generated by the hidden terminals. 

 

 

 

 

 

 

 

 

FIG. 3.1. CDPD NETWORK ENVIRONMENT FOR OUR MEASUREMENT. 
 

We obtained three sets of data from BCTel. Due to the limitation of the 

resources, only one set of traffic data was long enough for statistical analysis. 

Table 3.1 gives a summary description of the traffic data analyzed in Section 3.3. 

Table 1. BCTel’s CDPD network traffic Trace. 
 
 

BCTel’s CDPD network traffic Trace  

Measurement period 
Total number 

of bytes 
Total number of 
MAC packets 

Network 
utilization 

Traffic 
load 

Start of Trace: 14:56:37.56, 06-12-98 
Start of Trace: 15:24:46.88, 06-12-98 

152439 1281 5.29% 1016bps 

 

M-ES 

M-ES 

M-ES 

MDBS 

Background 
CDPD network 

Airlink Interface 
Dedicated Channel 19.2k bps 

Monitor 
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FIG. 3.2. MEASURED CDPD NETWORK TRAFFIC TRACES. 
 

Traffic data were collected on the BCTel’s CDPD network in downtown 

Vancouver area from 14:56:37.66 to 15:24:46.88 on June 12, 1998. Fig. 3.2 

shows the packet arrival process. During the period this data was collected on 10 

M-ES's appeared in this cell, some M-ES's were more and some were less 

active. The M-ES with Terminal Equipment Identification (TEI) number 16 is an 

example of an active system. The M-ES with TEI = 17 is less active. In Section 

3.3, we will use the aggregated traffic for the statistical analysis. From the 

viewpoint of the MDBS, the aggregated traffic is the total input traffic. 

 

Arrival time (10ms) Arrival time (10ms) 

Control packets Packets from TEI=16  

Packets from TEI=17  Aggregated traffic  
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3.3. Statistical analysis of the measured data 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 3.3. GRAPHICAL METHODS FOR CHECKING THE SELF-SIMILARITY. 
 

In this project, we used two graphical methods to test the self-similarity of the 

wireless data traffic trace: R/S and variance-time plots. We now give an overview 

of these two methods [2, 9].  

 

Graphical R/S analysis consists of taking logarithmically spaced values of n  

(starting with 10≈n ), and plotting ))(/)(log( nSnR  versus )log( n  results in the 

 
R/S plot 

Variance plot 
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rescaled adjusted range plot (also called the pox diagram of R/S [8]). When the 

Hurst parameter H is well defined, a typical rescaled adjusted range plot starts 

with a transient zone representing the nature of short-range dependence in the 

sample, but eventually settles down and fluctuates in a straight zone of a certain 

slope. Graphical R/S analysis is used to determine whether such asymptotic 

behavior appears in the data. To affirm self-similarity, the zone should be located 

between two lines with slopes ½ and 1, respectively.  For practical purpose, the 

most useful feature of the R/S analysis is its relative robustness against changes 

of the marginal distribution.  

 

As an illustration of the usefulness of the graphical tools for detecting self-

similarity in our measured trace, Fig. 3.3 depicts the plot of R/S and the variance-

time curve. The Hurst parameter can be estimated directly from the 

corresponding R/S plot. One can see that the value of the asymptotic slope of the 

R/S plot is clearly between 0.5 and 1 (lower and upper dotted lines, respectively), 

with a simple least-squares fit giving 80.0ˆ ≈H . 

 

The so-called variance-time plots are obtained by plotting ))log(var( mX  vs. 

)log( m  ("time") and by fitting a simple least squares line through the points in the 

plane, while ignoring the small values for m. If the estimate β̂ of the asymptotic 

slope is between  –1 and 0, the process is self-similar. The estimate for the 

degree of self-similarity is given by 2/ˆ1ˆ β−=H . 
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In Fig. 3.3, the variance-time curve, which has been normalized by the 

corresponding sample variance, shows an asymptotic slope that is distinctly 

different from –1 (dotted line) and is estimated to be about – 0.2, resulting in an 

estimate Ĥ of the Hurst parameter H  of 90.0ˆ ≈H .  

 

These two graphical methods suggest that the traffic sequence is self-similar with 

self-similarity parameter 80.0ˆ ≥H . According to M. Roughan and D. Veitch [15], 

if 6.0≥H , the data trace can be affirmed as self-similar even if the trace has 

some degree of non-stationarity. Thus, our estimate of H  demonstrates that 

wireless data traffic tends to have self-similar behavior, and, therefore, is 

statistically different from traffic generated by traditional traffic models.
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4. Simulation models 
 
While approaches described in Section 3 convincingly establish the presence of 

LRD in the genuine CDPD network traffic trace (see Fig. 3.3), its significance to 

queueing performance and traffic engineering for the CDPD network may not be 

obvious. For example, it has been argued by some that LRD has no practical 

impact and need not be incorporated into performance models.  

 

In this section, we give a detailed description of the network model we used to 

investigate the impact of LRD on CDPD network performance. At first, we 

introduce simulation tool used for simulations. In this project, we used OPNET 

Modeler for modeling and simulation of CDPD networks. Its object-oriented 

modeling approach and graphical editors mirror the structure of actual networks 

and network components, and, hence, our model intuitively maps to BCTel 

Mobility’s system.  

 

To provide useful data, network models must combine accurate descriptions of 

topology, data flow, and control flow. OPNET utilizes separate model formats for 

each of these three model types.  
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FIG. 4.1. HIERARCHICAL STRUCTURE OF AN OPNET MODEL. 
 

Three layers form the hierarchical structure of an OPNET model: OPNET 

Network Layer Models define the position and interconnection of communicating 

entities, or nodes. Each node is described by OPNET Node Model, which 

typically depicts the interrelation of processes, protocols, and subsystems. The 

functionality of each Node is defined by an OPNET Process Model. The following 

are the phases of the modeling and simulation cycle of OPNET:  

Network 

Node  

Process 
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FIG. 4.2. OPNET MODELING AND SIMULATION CYCLE. 
 

• Model Building and Configuration 

o Network Editor: defines or changes network topology models  

o Node Editor: defines or changes data flow (systems architecture) 
models  

o Process Editor: defines or changes control flow (behavioral logic) 
models. 

• Running Simulations  

o Simulation Tool: defines and runs simulation studies using models 
constructed with OPNET Editors  

o Interactive Debugging Tool: interacts with running simulations. 

• Analyzing Results  

o Analysis Tool: displays and compares statistical results. 

  

The topology of our CDPD network is shown in Fig. 4.3. Only the Media Access 

Control (MAC) layer of the CDPD protocol is simulated.  
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4.1 CDPD network model 
 

 

FIG. 4.3. CDPD NETWORK MODEL.  
 
 

 

FIG. 4.4. NETWORK MODEL FOR THE AIRLINK INTERFACE. 
 

The two M-ES’s send packets to the MDBS via the reverse channel at a center 

frequency of 825 MHz. They receive packets from the MDBS via the forward 

channel at a center frequency of 870 MHz. 

 

In the network model of the Airlink Interface shown in Fig. 4.4, the two M-ES 

compete for the bandwidth (825 MHz ~ 825 MHz + 30 KHz). Each M-ES 

generates data packets according to the genuine trace collected from the 
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operational CDPD network. Other traditional traffic models are also available 

from the OPNET libraries, such as Poisson and Gaussian models. The MDBS 

arbitrates activities on the channels it hosts at the MAC sub-layer, much like an 

Ethernet hub.  

4.2 Node models 
 

The M-ES node model shown in Fig. 4.5 is composed of a radio receiver and a 

radio transmitter, both working at 19.2 Kbps. The center frequency of the receiver 

(forward channel) is 870 MHz, with a bandwidth of 30 KHz. The center frequency 

of the transmitter (reverse channel) is 825 MHz, with a bandwidth of 30 KHz. 

 

FIG. 4.5. NODE MODEL FOR M-ES. 
 

The radio transmitter is operating at a center frequency of 825 MHz. The radio 

receiver is operating at a center frequency of 870 MHz. Both have bandwidth of 

30 KHz. 
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The processor (mac) includes the digital sense multiple access (DSMA) logic. It 

retrieves the information about the reverse channel from the forward channel 

(busy/idle and decode status flags). If the reverse channel is busy or a collision 

occurs, the M-ES will back off for a random time period and will try to retransmit 

again. The generator generates packets according to our genuine traffic trace. It 

can also use the traditional traffic models supported by OPNET libraries. The M-

ES model also destroys the packets it has received. 

 

The MDBS model shown in Fig. 4.6 is more complex. It is connected to the 

external network (the wired part of a CDPD network) with a pair of transmitter 

and receiver. It receives packets from the M-ES via a radio receiver operating at 

a center frequency of 825 MHz (reverse channel), and transmits packets via a 

radio transmitters at a center frequency of 870 MHz (forward channel). 
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FIG. 4.6. MOBILE DATA BASE STATION (MDBS) NODE MODEL. 
 

This is the interface between the wireless part and the wired part of a CDPD 

network. The MDBS model also includes a processor (mdbs_mac) that 

implements the DSMA logic for the MDBS. It sets the busy/idle and decodes 

status flags on the forward channel according to the status of the reverse 

channel. The MDBS also receives the packets and measures certain statistics 

such as BER, the RF power level, the signal-to-noise ratio, and the end-to-end 

delay.  

 

The model is highly parameterized. In each M-ES, users may modify parameters 

such as transmission rates, packet length (which can be fixed, read in from a 
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trace, or described stochastically), and the radio transmission modulation 

method. Where applicable, parameters are set to the default values specified by 

the CDPD standard. 

 

We improved the initial model by incorporating a Rayleigh fading model into the 

radio transceiver pipeline to induce bursts of bit errors in the transmitted packets. 

This type of bit error model allows a direct specification of the BER and the 

burstiness of the errors in the channel [7]. 
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4.3 Process models 

4.3.1 Cdpd_mes_mac Process Model 

The cdpd_mes_mac process model performs media access control for the CDPD 

MAC interface in an M-ES. The role of cdpd_mes_mac is to accept data packets 

from higher layer protocols (MDLP), to encapsulate this data into MAC frames, 

and to transmitted these frames through the reverse channel to the MDBS using 

the first-in-first-out scheduling scheme. 

 
 
 

 
 

FIG. 4.7. FSM OF CDPD_MES_MAC. 
 
 
 

cdpd_mes_mac 
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After initializing the state variables, the process waits in the state “idle” for a 

packet arriving from the upper layer protocol. Once a packet arrives, the packet 

will be encapsulated to a sequence of blocks (with fixed length 378 bits) and the 

FSM transitions to the state “bis_check”. In this state, the FSM will check the 

‘bis_flag’ on the forward channel. Flag = 0 indicates that the reverse channel is 

idle. Data transmission can begin by a transition to the state “wait, and by waiting 

a MIN_WAIT_TIME before sending out the block. MIN_WAIT_TIME is a 

configurable system parameter with a default value of 0. If the ‘bis_flag’ indicates 

that the reverse channel is busy, the FSM will transition to the “defer” state. In the 

“defer” state, the M-ES performs a random backoff and tests the ‘bis_flag’ again. 

The M-ES FSM will be in the “backoff” state when attempting to retransmit one or 

more blocks that have been marked as a decode failure by the MDBS. When the 

M-ES enters the “send” state, it transmits a block through the reverse channel. 

“Decode_wait” state is a temporary state in which the M-ES waits a brief duration 

of time to determine whether the last block of its last transmission was 

successfully received by the MDBS or not. Time allocated for ”decode_check” is 

7 microslots (21.875 ms). 

 

Detailed description of the transition conditions, state variables, and functions of 

each state, are given in TABLES 2 - 4. 

 
 
 

 
 
 



 35

TABLE 2. cdpd_mes_mac Transition Condition Descriptions. 
 
 

 
 
 
 

TABLE 3. cdpd_mes_mac State Variables. 
 

cdpd_mes_mac State Variables 
Bis Flag used to indicate the busy/idle 

status of the reverse channel. 
access_attempts Number of transmission attempts for 

the current frame being transmitted. 
delay_dist_ptr A pointer to the distribution function 

which controls the random back off 
time. 

Monitor_id The ID of the monitor object in this 
node. 

node_id The object ID of the parent node 
model. 

blk_counter A counter for how many times the 
current frame was blocked from 
transmission. 

Pkptr Pointer to the packet currently being 
transmitted. 

cdpd_mes_mac Transitions 
Condition Details 

!SUBQ_EMPTY&&!END_SIMULATION A packet waits to be transmitted at the 
MAC module 

END_SIMULATION The simulation has completed. 
CALL_BLOCKED A packet failed to be transmitted. 
DECODE_SUCCESS A packet was received successfully. 
IDLE No packet is being transmitted over 

the reverse channel. 
BUSY A packet is being transmitted over the 

reverse channel. 
DC_CHECK A packet was sent out. It is time to 

check the decode status. 
WAIT A packet is being transmitted over the 

reverse channel. 
SEND No packet is being transmitted over 

the reverse channel. It’s time to 
transmit a new packet. 

BLOCKED_WAIT The last packet transmitted was 
blocked. 



 36

 
 

TABLE 4. cdpd_mes_mac Process State Definitions. 
 

cdpd_mes_mac Process State Definitions 
Init This is the first state entered by the process model and the initial 

interrupt should be the begin simulation interrupt. The 
activities performed in this state include: 
1. Initializing the bis state variable. 
2. Determine the object ID of the MAC’s node module, as well 

as that of the attached channel_monitor. 
3. Load the appropriate PDF’s for the random back off time. 

Idle This state serves as a waiting point for new transmission 
requests to arrive from the higher layer. It is entered after 
initialization or upon completion of processing for a transmission 
request. 

end_sim The simulation is completed. Release the resources. 
bis_check When the process model enters this state, processing of a new 

transmission request is about to begin. The higher layer data is 
already encapsulated into a CDPD MAC layer frame. 

Defer Computes the random number of slot times to defer according to 
the truncated binary exponential defer procedure. A timer in the 
form of a self interrupt is set to mark the end of the back off 
period. After the defer period elapses, the process model can 
move to the Wait state or to the Block state depending on the 
values of the blk_counter variable. 

Wait This state is essentially empty and serves as a waiting point for 
new transmission requests to arrive from the higher layer 

Send When the process model enters this state, processing of a new 
transmission request is about to begin. The higher layer data is 
already encapsulated into a CDPD MAC packet, and this packet 
is taken from the head of the request queue and sent out 
through the output line. After completing these actions, the 
process model will go back to the Wait state and wait for the 
response of the MDBS to check if the packet was received 
successfully. When DC_CHECK is high, the process model will 
enter decode_check state and will check the status of the 
decode flag on the forward channel. 

Backoff Computes the random number of time slots to backoff according 
to the truncated binary exponential backoff procedure. A timer in 
the form of a self interrupt is set to mark the end of the back off 
period. After the backoff period elapses, the process model can 
move to the Wait state or to the Block state depending on the 
values of the blk_counter variable. 

decode_check In this state, the process model will retrieve the decode flag from 
the forward channel. If decode flag is 1, the last packet 
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transmitted was received successfully and the process model 
will enter Idle state again and wait for the request for the next 
transmission. If the decode flag is 0, the process model will enter 
the backoff state, and blk_counter will increase by 1. 

Block A collision has occurred. Transmission is continued for the jam 
time, after which the transmission will be aborted. Any physical 
layer events are ignored during the jam period and all the 
parameters will be reset to the default values. 

 
 

4.3.2 Cdpd_trc_gen model 
 
 
 

 

 
 

FIG. 4.8. FSM OF CDPD_TRC_GEN. 
 
To run a “trace driven” simulation, we need to input measured CDPD network 

traffic trace into the network model. This is done by the cdpd_trc_gen process 

model. The state “Init” initializes the variables and loads the genuine traffic data 

into a structure called ‘list’. It will examine the first line of the list to obtain the 

arrival time and packet size for the first frame. It will create a frame with the 

packet size and set up a self-interrupt at the arrival time. Then, the FSM will 

transition to the state “Idle”. In the “Idle” state, M-ES first transmits the first frame 

cdpd_trc_gen 
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generated by the “Init” state to the cdpd_mes_mac when a self-interrupt 

happens.  Then, the packet data length and the arrival time are generated 

according to the values on the next line of the list. The generated packet is then 

forwarded to cdpd_mes_mac, and “Idle” schedules another packet arrival (i.e., 

self interrupt) before going back to sleep again. 

 

Detailed description of the transition conditions, state variables, and functions of 

each state, are given in TABLE 5 and TABLE 6. 

TABLE 5. cdpd_trc_gen State Variables. 

 
TABLE 6. cdpd_trc_gen Process State Definitions. 

 
cdpd_trc_gen Process State Definitions 

Name Description 
Init This is the first state entered by the process model and the 

initial interrupt should be a begin simulation interrupt. The 
activities performed in this state include: 

1. Initializing the line_index state variable. 
2. Loading the script file into a list structure. Initialize the 

pointer to this list. 
3. Decompose the first line of the list into a field structure. 

Also initialize the field pointer.  
 

Idle In this state, when a self interrupt happens, the process 
model will generate a packet and schedule a self interrupt at 
the generation time of the next packet. 

 

cdpd_trc_gen State Variables 

Name Description 

line_index Indicates which line has been read from the script file. 

line_list_ptr A pointer to the list read in from the script file. 

list_size Number of lines in the file. 

field_list_ptr Pointer to the fields obtained by decomposing the list. 
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4.3.3 Mdbs_mac process model 
 
Mdbs_mac is the peer part of cdpd_mes_mac inside the MDBS. The MDBS has 

continuous access to the reverse channel stream. The MDBS notifies the 

listening M-ES’s of the presence of data on the reverse channel and of the 

decode status of the incoming data blocks from the reverse channel, by using the 

busy/idle flag and the decode status flag in the forward channel stream. 

 
 
 

 
FIG. 4.9. FSM OF MDBS_MAC. 

 
 

The implementation of the detection of data on the reverse channel must be such 

that M-ES transmissions within 8 bit times (0 in our model) of the last bit of an 

idle flag should result in setting the next busy/idle flag. MDBS, after receiving the 

block from the reverse channel, decodes the data block within two microslots and 

mdbs_mac 



 40

sets the next decode status flag with the result. Once the flag is set to indicate 

decode success, it remains in that state until a decode failure occurs. 

 

In the FSM of mdbs_mac process model, “init” state initializes the variables and 

then transitions to the “idle” state. In the “idle” state, the MDBS monitors the 

status of the reverse channel and the decode status of the incoming data blocks 

from the reverse channel. According to the status, the MDBS sets the busy/idle 

flag and decodes status flag on the forward channel in the ”bis_set” and  

“decode_set” state, respectively. In the “Xmit” state, the MDBS sends the packet 

on the forward channel and discards the packet received from the reverse 

channel. For the detailed description of the transition conditions, state variables, 

and functions of each state, please refer to TABLE 7 and TABLE 8. 

 
TABLE 7. mdbs_mac Transitions. 

mdbs_mac Transitions 
Condition Details 

GEN_PKT_ARV A packet arrived from the idle generator. 
RVS_PKT_ARV A packet arrived from the reverse channel. 
 

 
TABLE 8. mdbs_mac Process State Definitions. 

mdbs_mac Process State Definitions 
Name Description 

Init Performs all necessary initializations. 
Idle Used to wait for incoming packets. 
bis_set Set the busy_idle flag according to the status of the 

reverse channel. 
decode_set No collision has occurred, and the packet can be sent to 

its destination. (In this simulation model, the incoming 
packet is simply destroyed.) 
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TABLE 9. Configurable M-ES MAC Parameters. 
 

Parameter Default Value Description 
Max_TX_Attempts 13 The number of times an M-ES will 

observe Busy/Idle flags in order to 
gain access to a CDPD channel 
before declaring the channel 
congested. 

Min_Wait_Time 0 The minimum amount of “microslots” 
an M-ES must remain in an Idle state 
before transmitting blocks.  
A microslot is the time between 
Busy/Idle flags, or 60 bits. 

Max_Blocks 64 The maximum amount of blocks in 
one continuous transmission burst. 

Max_Entrance_Delay 35 The maximum amount of microslots 
(60 bit times = 3.125 milliseconds) 
that the M-ES will wait when 
attempting to re-access a channel for 
an initial burst. 

Min_Count 4 Due to decode failures, an M-ES will 
attempt to retransmit in no less than 
[2 (to the 4th power)]-1 microslots time 
intervals. 

Max_Count 8 Due to decode failures, an M-ES will 
attempt to retransmit in no more than 
[2 (to the 8th power)]-1 microslots time 
intervals. 

 

In TABLE 9, the default values of the configurable parameters we used in our 

simulation are listed. The values were suggested by the CDPD Forum and can 

be found in [1]. 
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4.4 Cellular model custom pipeline stages 
 

For the radio links in OPNET, an open architecture is provided to allow 

developers to specify customized behavior for each individual link and on a per-

transmission basis. This architecture is referred to as the transceiver pipeline 

because it provides a conduit connecting a transmitter to one or more receivers. 

 

The simulation kernel manages the transfer of packets by implementing a series 

of computations that each models particular aspects of link behavior. The 

sequence of the computations and their interface are standardized for each type 

of a link. However, each computation, referred to as a pipeline stage, is 

performed outside the simulation kernel by a user-supplied procedure, called a 

pipeline procedure. In this manner, OPNET provides an open and modular 

architecture for implementing link behavior. 

 

A link’s underlying implementation can be thought of as a sequentially executed 

set of pipeline stages. The pipeline stage sequence of a link is executed once for 

each packet transmission that is submitted at the source of the link. In other 

words, when a packet is sent to a transmitter, the simulation kernel proceeds to 

call appropriate pipeline stages to process the packet. Certain pipeline stages 

are executed when the packet is transmitted, and others are executed later due 
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to the delay associated with the traversal of the link and transmission of the 

packet. 

4.4.1 Transceiver pipeline stages in OPNET 
 

The radio transceiver pipeline consists of fourteen stages: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 4.10. RADIO TRANSCEIVER PIPELINE STAGES. 
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In our work, we implemented a fading channel into our network model to simulate 

a bursty wireless channel.  The following is a brief introduction of the pipeline 

stages relative to our work: 

 

Stage 4: Transmitter antenna gain 

The purpose of this stage is to compute the gain provided by the transmitter’s 

associated antenna, based on the direction of the vector leading from the 

transmitter to the receiver.  This result is typically used in Stage 7 for receiver 

power computation. 

 

Stage 6: Receiver antenna gain 

The purpose of the receiver antenna gain stage is to compute the gain provided 

by the receiver’s associated antenna. 

 

Stage 7: Receiver power 

The receiver power stage is specified by the “power model” attribute of the radio 

receiver.  It is invoked immediately after the return of the receiver antenna gain 

model, with no simulation time elapsing in between. The purpose of this stage is 

to compute the received power of the arriving packet’s signal (in Watts). 

 

 

 

Stage 8: Background noise 
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By using this stage, OPNET is able to represent the effect of all noise sources, 

except for other concurrently arriving transmissions, since these are accounted 

for by the interference noise stage (Stage 9). 

 

Stage 10: Signal-to-noise ratio 

It is specified by the “snr model” attribute of the radio receiver. The purpose of 

SNR stage is to compute the current average power SNR statistics for the 

arriving packets. This calculation is usually based on values obtained during 

earlier stages, including received power, background noise, and interference 

noise. The SNR of the packet is an important performance measure that 

supports determination of the receiver’s ability to correctly receive the packet’s 

content. The result computed by this stage is used by the kernel to update 

standard output statistics of receiver channels and also by later stages of the 

pipeline. 

 

Stage 11: Bit error rate (BER) 

The BER stage is used to derive the probability of bit errors during the past 

interval of constant SNR. This is not the empirical rate of bit errors, but the 

expected rate usually based on the SNR. In general, the bit error rate provided 

by this stage is also a function of the type of modulation that is used for the 

transmitted signal. 

Stage 13: Error correction 
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This is the final stage of the OPNET radio transceiver pipeline. Based on the 

results of former stages, now is the time to determine whether or not the arriving 

packet can be accepted and forwarded via the channel’s corresponding output 

stream to one of the receiver’s neighboring modules in the destination node. This 

usually depends on the result computed in the error correction stage, and on the 

ability of the receiver to correct the errors affecting the packet. Based on the 

determination of this stage, the kernel will either drop the packet or allow it to 

proceed into the destination node. 

4.4.2. Uniqueness of mobile radio environment in a cellular system 

In most networks the data is transmitted on wire or via a fiber-optics cable. In 

mobile data networks, radio transmits data over the air. This so-called air-

interface, in contrast to wire or fiber optics, is prone to bit errors introduced into 

the transmitted data. For a radio link, the power loss of the transmitted signal is 

due to three factors: propagation attenuation, severe fading, and background 

noise. All three have severe impact on the signal-noise ratio (SNR) of the 

received frame arrived at the base station. For example, in a mobile radio 

environment, the bit error rate (BER) can be dynamic and can be as high as 210− , 

or even higher compared to the 10-10 observed in fiber optical networks [7]. Also, 

a fading signal will induce bursts of bit errors in the transmitted packets. This type 

of bit error model will allow a direct specification of the BER and the burstiness of 

the errors in the channel. The highly dynamic environment presents a unique 

challenge to the implementation of CDPD networks [1, 16]. An accurate 

simulation model for a wireless network should be able to reflect the propagation 
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attenuation, fading, and background noise of the wireless channel. In this 

section, we give a brief introduction to each. 

The propagation attenuation 

In general, the propagation path loss increases not only with frequency but also 

with distance. In free space, the propagation path loss would be 20 dB/decade 

[7]. Therefore,  

22 −− =∝ RRC α       (4.4.2-1) 

where  =C received carrier power 
  =R distance measured from the transmitter to the receiver 
  =α constant . 

 

The decibel expression of the difference in power reception at two different 

distances 1R  and 2R  is: 
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In the mobile radio environment, the propagation path loss is 40dB/dec. This 

means that a 40 dB loss at a signal receiver will be observed by the mobile unit 

as it moves form 1 to 10 km. Therefore,  

 44 −− =∝ RRC α     (4.4.2-3) 
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dBCCdBC ==−=∆  .  (4.4.2-4) 

In a real mobile radio environment, the propagation path-loss slope varies as 

 γγ α −− =∝ RRC .     (4.4.2-5) 

Usually, γ  lies in the interval (2, 5] depending on the actual conditions, and it 

cannot be lower than 2 (corresponding to the free-space condition) [7]. 
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Fading 

Since the antenna height of the mobile unit is lower than its typical surroundings, 

and the carrier frequency wavelength is much less than the sizes of the 

surrounding structures, multi-path waves are generated. At the mobile unit, the 

sum of the multi-path waves causes a signal-fading phenomenon. The signal 

fluctuates in a range of about 40 dB (10 dB above and 30 dB below the average 

signal) [1, 7]. The fading in a mobile radio environment consist of two parts: )(tm  

is called local mean, long-term fading, or log-normal fading and its variation is 

due to the terrain contour between the base station and the mobile unit. Another 

factor )(0 tr is called multi-path fading, short-term fading, or Rayleigh fading and 

its variation is due to the waves reflected from the surrounding buildings and 

other structures. A fading signal )(tr can be characterized by )(tm and )(0 tr in this 

way 

)()()( 0 trtmtr =     (4.4.2-6) 

where )(tm is the contour of the fading signal and )(0 tr represents the detail of the 

signal. 

Noise level 

One type of noise that cannot be avoided is the thermal noise kTB  at a 

temperature T . At 290 K (170C) and a bandwidth B = 30 kHz, it is equal to –129 

dB. (k  is Boltzmann’s constant, and HzdBmkT /174−= at KT 290= ). If we 

assume that the received front-end noise is 9 dB, then the noise level is –120 dB. 

This is the lower bound on the noise level at the receiver end. Two other types of 
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man-made noise should also be considered: the ignition noise generated by the 

vehicles, and the noise generated by 800 MHz emissions. An amplifier will 

amplify a mobile radio signal received by a receiving antenna. The received 

signal is also affected by the amplifier noise. 

 

We incorporated all of the above mentioned factors into our wireless channel 

model. Our work was based on the analysis by William C.Y. Lee, "Mobile Cellular 

Telecommunications Systems” [7].  The mobile radio propagation is: 

mttr GGhhrPP ++++−−= 211 log10log20log40156    (4.4.2-7) 

where  =rP  received power 
  =tP  transmitted power 
  =1r  the distance from the mobile unit to base station 

  =1h  height of the base station antenna 
  =2h  height of the mobile unit antenna 
  =tG  base station antenna gain 
  =mG  mobile unit antenna gain. 

 

According to this general formula, we incorporated the propagation delay, fading, 

and background noise models into three OPNET pipeline stages. They are stage 

7 (receiver power), stage 8 (background noise) and stage 10 (snr stage). The 

code is listed in the Appendix, in files “cdpd_power.ps.c”, “cdpd_bkgnoise.ps.c”, 

and “cdpd_snr.ps.c”. The purpose of these custom pipeline stages is to model 

the physical environment in which a cellular system operates. The end result is to 

provide SNR calculations that take into account path loss in cellular 

environments and average fading effects.  
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4.5 Simulation results 
 

In this section, we will describe a series of simulation experiments that 

demonstrate the practical significance of LRD in the queueing performance of a 

CDPD network. We will also show that the use of standard queueing 

approximations to set CDPD operating parameters may lead to gross 

performance problems. 

 

In each M-ES node model in our simulation, we implemented a queueing system 

with the following characteristics: first in first out, infinite waiting room, and 

arrivals that can be taken either from an ideal packet generator built in OPNET or 

from an actual CDPD network traffic traces (trace driven simulation). The input 

traces consist of the measured inter-arrival times and packet sizes. The results 

shown below are obtained with a single 18-min long CDPD network traffic trace. 

Why an 18-min trace? The reason is that 18-min is the longest active time in our 

measured traces. The underlying assumption in engineering practice used in our 

research work is that the traffic environment is stationary over such time scales. 

While this assumption is not always satisfied in practice, it does appear to be a 

reasonable hypothesis for the traces we have measured. In our experiments, we 

also ran simulations using input traces with exponentially distributed inter-arrival 

time (Poisson arrival process) and traces from bursty ON/OFF traffic source 

models. Thus, we will be able to compare the queueing performance of the 

CDPD network with different input traffic: actual trace, Poisson arrival traffic, and 

a trace generated by ON/OFF models. 
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4.5.1. Queueing delay analysis 
 

We begin our investigation with one single simulation and observe the queueing 

performance of the network. The network scenario is similar to the genuine 

BCTel’s CDPD network environment, with the channel bandwidth of 19.2 kbps. 

 

 

FIG. 4.11. QUEUEING DELAY WITH ACTUAL TRACE. 
 

 

The result of a single simulation with genuine trace is shown in Fig. 4.11. It 

shows how many seconds a packet has to wait in the queue before it can be 

served.  From the presented graph, we can conclude that the queueing delay is 

fluctuating between 0.02 and 0.16 seconds. Notice that the network utilization is 

about only 5.5%. 
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For the sake of comparison, we reran the simulation with traffic trace whose 

inter-arrival times are exponentially distributed. The inter-arrival time has the 

same mean as the actual trace used in the first simulation: 0.94 sec.   

 

FIG. 4.12. QUEUEING DELAY WITH POISSON ARRIVAL TRACE. 
 

Fig. 4.12 shows the result of a single simulation. In contrast to the delay curve 

obtained with the actual trace, Fig. 4.12 predicts the queueing delay to be in the 

interval: 0.005 ~ 0.015 seconds, which is much smaller than the 0.02 ~ 0.15 

second interval observed in Fig. 4.11.  By keeping the network scenarios in the 

simulations identical, we are able to isolate the effects of the inter-arrival times on 

queueing and separate them from effects due to the changing environment of the 

underlying network.  
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Next, we investigated the effect of the network utilization on the queue delay 

performance. Graph (A) in Fig. 4.13 is the average delay versus utilization plot 

obtained with the original trace. From the viewpoint of teletraffic engineering, the 

“knee of the curve” is of particular interest. As shown in Fig. 4.13, there is a sharp 

rise in the average delay around 30 ~ 50% utilization. In contrast to the delay 

graph obtained with the actual trace, graph (B) predicts the sharp rise when 

utilization exceeds 80%.  

 
FIG. 4.13. AVERAGE DELAY VS UTILIZATION I 

 

In order to identify the features of the input trace that contribute to the sharp rise 

in delays at relatively low utilizations, we repeated the simulation experiments 

with the input trace generated by an ON/OFF traffic model [14]. The model has 

(A) 

(B) 
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the same traffic load to the CDPD network as the actual trace and the same 

exponential inter-arrival process as used in the last experiment.  

 

FIG. 4.14. ON/OFF OPNET TRAFFIC SOURCE MODEL. 
 

 

The structure of the ON/OFF traffic source model we used in our simulation is 

shown in Fig. 4.14. In this model, three parameters are essential for determining 

the level of the burstiness of the generated traffic. They are mean duration of the 

‘ON’ state, mean duration of the ‘OFF’ state, and the number of frames sent out 

during one ‘ON’ period. In our simulation, durations of the ON-period and the 

OFF-period are exponential with mean b and a, respectively.  In this ON/OFF 

traffic model, the packet size is fixed to 127 bytes based on the measurements.  
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FIG. 4.15. TRACE GENERATED BY ON/OFF TRAFFIC SOURCE MODEL. 
 

The relationship of the three parameters is shown in Fig. 4.15. Here, a is the 

average duration of the ON - period, b is the average duration of the OFF -

period, and N is the number of frames sent during the ON - period. In our first 

simulation run, we chose a = 0.01 and b = 9.99. This implies that ON - period << 

OFF - period. Thus, the generated traffic can be thought as very bursty [14]. On 

the other hand, to keep the same traffic load level to the network, N is set to be 

11.  

N 

b a 

N 
N 
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FIG. 4.16. AVERAGE DELAY VERSUS UTILIZATION II  
 

Fig. 4.16 shows the queueing performance of the simulated network with 

different input traffic types. As a function of the network bandwidth utilization, we 

plot the average delays for the actual traffic data (graph (A)), for the traffic trace 

generated by our ON/OFF source (graph (C)), and for a Poisson source (graph 

(B)). Graphs (A) and (B) are as shown in Fig. 4.13, and the difference between 

them is obvious. Comparing graphs (B) and (C), we conclude that the queueing 

performance of the traffic generated by an ON/OFF source is closer to the 

performance of our actual network traffic data. This is to be expected, since 

ON/OFF source reflects the bursty characteristic of the genuine network better 

than a Poisson source. Nevertheless, we still see that there is a discernible 

(B) 

(A) (C) 
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difference between the two cases. Such discrepancies (in this case around 10% 

on the utilization) may not be acceptable in practical traffic engineering. Thus, 

additional safety margins have to be incorporated into capacity estimates. 

 

In the next experiment, we repeated two simulation runs with an input trace 

generated by the ON/OFF source with a = 5, b = 5 and a = 8, b = 2, respectively. 

We keep the unit time (a + b = 10 sec) unchanged from the ON/OFF source we 

used in the last simulation. By changing the ratio of a to b, we can modify the 

burstiness of the generated traffic. Intuitively, we can say that the traffic 

generated by ON/OFF source with a/b = 1 is less bursty than traffic generated by 

ON/OFF source with a/b = 0.5.  

 

 

 

 

 

FIG. 4.17. ADJUST BURSTY LEVEL IN AN ON/OFF MODEL. 
 

Fig. 4.17 shows the relationship between a, b, and the time unit. One can choose 

b and a independently. 

 

The delay curves obtained with different input traffic traces are shown in Fig. 

4.18. The delay performance graphs corresponding to higher a and b ratio 

(graphs (D) and (E)) are somewhat different from the result of the ON/OFF 

N 

b 

1 time unit (10 sec) 

a 



 58

source with lower a and b ratio (graph (C)). They depart even further from the 

delay performance of the actual network traffic trace (graph (A)). 

 

 
FIG. 4.18. AVERAGE DELAY VERSUS UTILIZATION III. 

 
In Fig. 4.18, graph (A) is the result from Genuine traffic, (B) is from Poisson 

arrival traffic source, (C) is from ON/OFF source with a = 0.01, b = 9.99, (D) is 

from ON/OFF source with a = 8.00, b = 2.00, and (E) is from ON/OFF source 

with a = 5.00, b = 5.00. 

 
 

(A) (C) 

(D) (E) 

(B) 
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4.5.2. Queueing delay discussion 
 

As can be seen, the delay performance obtained with the actual trace is different 

from the delay predicted by Poisson arrival processes. More significantly, the 

disparity between graphs (A) and (B) indicates that the short-range dependent 

traffic source model will grossly underestimate queueing delays at moderate and 

high utilizations. On  the other hand, this experiment suggests that although 

bursty ON/OFF model can emulate the genuine network traffic trace better, a 

renewal arrival process with a single distribution cannot simply explain the 

burstiness of traffic. For example, the queueing performance graphs obtained by 

our ‘best model’ (graphs (A) and (C)) differ significantly. Such discrepancies 

(around 10% on the utilization axis) may not be acceptable in practical traffic 

engineering. Thus additional safety margins have to be incorporated into capacity 

estimates, given that this error estimate may be optimistic. These discrepancies 

arise because our ON/OFF source model assumes exponential distributions for 

its ON and OFF periods (or more generally, finite variance distributions). In 

recent years, it has been recognized that multiplexing a large number of these 

sources results in aggregate traffic that is inconsistent with traffic measurements 

from working networks. Thus, continuing this work and implementing more 

accurate traffic source models would be fruitful. 
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 4.5.3. Buffer overflow probability 
 

In the previous experiments, the buffer we chose was infinite. In this section, we 

investigate the relationship between buffer overflow probability, the size of the 

buffer, and the utilization of the network.  In our first experiment, the buffer size 

was fixed to 5 packets. We first investigate the relationship between buffer 

overflow probability and network utilization. Fig. 4.19 shows a plot of )(log xqP > , 

where q  is the length of queue.  

 

 

FIG. 4.19. BUFFER OVERFLOW PROBABILITY VS. UTILIZATION. 
 

(A) 

(B) 

(C) 
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Here, graph (A) is the buffer overflow probability for the actual trace, and graph 

(B) is for Poisson arrival source, and (graph C) is for the ON/OFF traffic source 

model with a = 5, b = 5. Even at relatively low network utilization (20 %), the 

buffer overflow probability obtained by a genuine traffic source is much larger 

than from a Poisson traffic source model. Furthermore, an ON/OFF model again 

predicts queueing performance more accurately than a Poisson traffic model. In 

our second experiment, the network utilization was kept fixed and we 

investigated the queue length distribution vs. buffer size. We have considered a 

utilization of 0.4, corresponding to the knee of graph (A) in Fig. 4.18. 

 

 
FIG. 4.20. QUEUE LENGTH DISTRIBUTION VS. BUFFER SIZE. 

 

(A) 

(B) 
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Graph Fig. 4.20 (A) shows the queue length distribution with genuine traffic. 

Graph (B) is the result when using a Poisson arrival traffic source.  It is easy to 

observe a range of queue lengths of an exponential type (i.e., linear region on 

the semi-log plot), with constant decay, which falls much faster than the result 

obtained by using the genuine traffic source. Thus, the simulation results indicate 

that the tails of the queue length distributions decay more slowly than the 

exponential rate predicted by a Poisson model. This property can be expected to 

have considerable impact in engineering. For example, buffers sized on the basis 

of conventional model may result in under-provisioning. A combination of 

increased buffers and reduced utilizations may be necessary to achieve 

acceptable loss rates. The under-provision may introduce additional errors in 

admission strategies that are based on equivalent bandwidth schemes. Once 

again, the slow decaying behavior is not existent in short-range dependent 

models with constant or exponential service times, and shows that the use of 

standard queueing approximations to set CDPD operating parameters may lead 

to gross performance problems. 

4.5.4. Self-Similar traffic modeling 
 
Collectively, the results obtained from our simulation on how self-similarity 

impacts performance of wireless data networks leads to the next question: how 

to actually model network traffic accurately and realistically? In other words, what 

are traffic models that capture the characteristics observed in measured network 

traffic? Does this mean “the end of simple traffic models”? 
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To answer these questions, recall that by a traffic characteristic, we mean a 

property that has been uncovered by a rigorous statistical analysis of measured 

traffic data and  

(i) Can be estimated, 

(ii) Can be given a meaningful physical interpretation in the context of 

the network where the data was collected, 

(iii) Has been demonstrated to have a dominant impact on problems 

related to network engineering. 

 

With 10 or more parameters, traditional traffic modeling yields little insight into 

the true nature of the traffic, stands no chance of satisfying the three 

requirements mentioned above, and is of limited practical use (with the possible 

exception for obtaining numerical results). It turns out hat there exist long-rang 

dependent processes where on parameter (the Hurst parameter) suffices to 

capture the self-similarity observed in measured traffic data. These processes 

are known as Fractional Gaussian Noise (FGN) and Fractional ARIMA Models. 

For example, LAN traffic can be successfully modeled using a FGN process with 

three parameters: mean, variance, and Hurst parameter [17]; fractional ARIMA 

processes with 4 or 5 parameters seems to describe VBR video traffic 

reasonably accurately [6]. 
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5. Conclusions 
 

In this thesis, by measurements, simulations, and analysis, we demonstrated that 

CDPD network traffic exhibits long-range dependent (LRD) behavior. By 

simulating the wireless data network using actual traffic traces, we concluded 

that genuine traffic produces longer queues and thus requires larger buffers in 

the network's switching elements. 

 

We used two graphical methods for testing for the long-range dependency of the 

wireless data traffic trace: R/S plot and variance-time plot.  R/S plot shows 

that 80.0ˆ ≈H . Variance-time plot indicates that 90.0ˆ ≈H . Thus, our results 

suggest that the wireless data traffic tends to have self-similar behavior, and is 

statistically different from traffic generated by traditional traffic models. 

 

In this thesis, we used trace-driven simulation experiments to demonstrate that 

long-range dependence is an important traffic characteristic, and, if ignored, 

typically results in overly optimistic performance predictions and inadequate 

network resource allocations. As can be seen from our simulation results, the 

delay performance obtained with the genuine trace is different from that predicted 

by Poisson arrival processes. In the circumstance of moderate and high network 

utilizations, short-range dependent traffic sources (Poisson sources) model 

underestimated queueing delays grossly.  
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Another outcome of this work is that, even though ON/OFF model was proposed 

to be more accurate for capturing the burstiness of network traffics, the difference 

of network performance between the simulation results we obtained with traffic 

generated by ON/OFF models and genuine traffic are still obvious. Thus, 

implementing more accurate traffic source models would be very fruitful in further 

research. The new traffic models should be able to capture the long-range 

dependence characteristic of measured network traffic. 

 



 66

 

References 
 
 
1. J. Agosta and T. Russell, CDPD: Cellular Digital Packet Data Standards 

and Technology. Reading, MA: McGraw-Hill, 1996. 
 
2. J. Beran, Statistics for Long-Memory Processes (Monographs on Statistics 

and Applied Probability). London: Chapman and Hall, 1994. 
 
3. J. Beran, “Statistical methods for data with long-range dependence,” 

Statistical Science, vol. 7, no. 4, pp. 404 - 427, 1992. 
 
4. M. E. Crovella and A. Bestavros, “Self-similarity in World Wide Web traffic: 

evidence and possible causes,” IEEE/ACM Trans. Networking, vol. 5, no. 
6, pp. 446 - 456, Dec. 1997. 

 
5. D. E. Duffy, A. A. McIntosh, M. Rosenstein and W. Willinger, “Statistical 

analysis of CCSN/SS7 traffic data from working CCS subnetworks,” IEEE 
J. Select. Areas Commun., vol. 12, no. 3, pp. 544 - 551, April 1994. 

 
6. M. Garrett and W. Willinger, “Analysis, modeling and generation of self-

similar VBR video traffic,” in Proc. ACM SIGCOMM’94, London, U.K., Aug. 
1994, pp. 14 - 26. 

 
7. W. C.Y. Lee, Mobile Cellular Telecommunications Systems. New York, 

NY: McGraw-Hill, 1989. 
 
8. W. Leland and D. V. Wilson, “High time-resolution measurement and 

analysis of LAN traffic: Implications for LAN interconnection,” in Proc. 
IEEE INFOCOM’91, Bal Harbour, FL, 1991, pp. 1360 - 1366. 

  
9. W. Leland, M. Taqqu, W. Willinger, and D. Wilson, “On the self-similar 

nature of Ethernet traffic (extended version),” IEEE/ACM Trans. 
Networking, vol. 2, no. 1, pp. 1 - 15, Feb. 1994. 

 
10. K. Park, G. T. Kim, and M. E. Crovella, “On the relationship between file 

sizes, transport protocols, and self-similar network traffic,” in Proc. 4th Int. 
Conf. Network Protocols (ICNP’96), Oct. 1996, pp. 171 - 180. 

 
11. V. Paxson, “Empirically-derived analytic models of wide-area TCP 

connections,” IEEE/ACM Trans. Networking, vol. 2, pp. 316 - 336, Aug. 
1994. 

 



 67

12. V. Paxson, “Growth trends in wide-area TCP connections,” IEEE Network, 
vol. 8, no. 1, pp. 8 - 17, 1994. 

 
13. V. Paxson and S. Floyd, “Wide-area traffic: the failure of Poisson 

modeling,” in Proc. ACM SIGCOMM ’94, London, U.K., Sep. 1994, pp 45 -
56. 

 
14. K. Sohraby, “On the theory of general ON/OFF sources with applications  

in high speed networks,” in Proc. IEEE INFOCOM’93, San Francisco, CA, 
Apr. 1993, pp. 401 - 410. 

 
15. M. Roughan and D. Veitch, “Measuring long-range dependence under 

changing traffic conditions,” in Proc. IEEE INFOCOM’99, New York, NY, 
Mar. 1999, pp. 338 - 341. 

 
16. M. Sreetharan and R. Kumar, Cellular Digital Packet Data. Norwood, MA: 

Artech House, 1996. 
 
17. W. Willinger, M. S. Taqqu, W. E. Leland, and D. V. Wilson, “Self-similarity 

in high-speed packet traffic: analysis and modeling of Ethernet traffic 
measurements,” Statist. Sci., vol. 10, no. 1, pp. 67 - 85. 1995. 

 
18. W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson. “Self-similarity 

through high-variability: statistical analysis of Ethernet LAN traffic at the 
source level,” IEEE/ACM Trans. Networking, vol. 5, pp. 71 - 86, Feb. 
1997. 

 
19. C. Partridge, “The end of simple traffic models,” IEEE Network, pp. 3 – 24, 

Sep. 1993. 
 


