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Abstract 

In today’s high-speed packet networks that support various applications 

with different service requirements, congestion control is an important 

issue. One of the methods for preventing congestion is packet 

scheduling [14]. Packet scheduling in network routers can provide 

guaranteed performance in terms of delay, delay jitter, packet loss, and 

throughput. 

 

The main objective of this thesis is to implement a model for the 

VirtualClock scheduling mechanism, perform a simulation based 

performance analysis of the VirtualClock algorithm, and compare it to 

three commonly used scheduling mechanisms: WFQ, Custom Queuing, 

and Priority Queuing. The VirtualClock algorithm monitors the average 

transmission rate of packet data flows. It also provides each flow with a 

guaranteed throughput and a low queuing delay. 

 

We implement a scheduler model for VirtualClock and incorporate it into 

the IP layer output queues of an IP router using OPNET simulation tool. 

We measure the performance of the algorithms in terms of fairness, end-

to-end delay, and amount of packet loss from different traffic flows 

during various time periods. We also simulate a network running several 

Internet applications: HTTP, FTP, IP Telephony, and videoconferencing 

and we observe the impact of scheduling algorithms on the performance 

of these applications. Our simulation results indicate similarities of 

VirtualClock to WFQ and to Custom Queuing. They also illustrate the 

differences between VirtualClock and Priority Queuing.  
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Chapter 1 

Introduction 

1.1 Introduction 

The development of communication networks enables users to transfer 

information in the form of voice, video, electronic mail, and computer 

files. The following networks illustrate the evolution steps of 

communication networks:  

� Telephone networks 

� Computer networks 

� Cable television networks, and 

� Wireless networks. 

 

Although these networks are quite different, they are now able to 

provide services that have previously been limited to specific networks. 

The tendency of different networks towards converging into a single 

network is achieved by using digital technology. This convergence 

tendency does not imply that a single network technology will emerge as 

a substitute for all the other technologies. Instead, the new converged 

network enables both traditional and new communication services to be 

delivered over various network infrastructures. Therefore, a major 

challenge for the practitioners and researchers is how to interconnect 

these network infrastructures in a way that is extensible and secure and 

that provides a wide range of quality of services needed to support a 

variety of information delivery [18, 34]. 
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1.2 Quality of Service (QoS) 

The concept of Quality of Service (QoS) has been dramatically changed 

during the development of communication networks. Starting from the 

early days of computer networks, transmitting packets from their 

sources to their destinations had been the most significant goal of a 

network. The reliable access to the network had been a major concern in 

terms of QoS. Today, the rapid evolution of networks has brought up the 

issue of ever increasing demand for bandwidth and of simultaneous 

support for different types of services in the same telecommunication 

network. Thus, QoS has become a key factor in the deployment of 

today’s networks and services. 

 

Although QoS has recently been a hot issue among networking 

researchers, there are still ambiguities in the way they understand and 

define it. In general, QoS means providing consistent and predictable 

data delivery service in order to satisfy different application requirements 

[28]. QoS can be observed from two different perspectives: network users 

and network providers. Each of them has different QoS objectives. What 

a network user requires is access to a large bandwidth with the lowest 

possible price. On the other hand, the goal of network providers is to 

maximize network efficiency while meeting the specific QoS 

requirements of network users at the same time [4, 21]. Our main focus 

is on the QoS from the network providers’ point of view. Common QoS 

parameters used for characterizing the network performance are: 
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� Bandwidth (throughput): number of bits or bytes transmitted over the 

network in a specific time period.  

� Delay: the time it takes for the data packet to traverse from its source 

to its destination. It consists of three components: propagation delay, 

transmission delay, and queuing delay.  

� Delay jitter: the variation in delay encountered by a data packet. This 

is the difference between the maximum and the minimum possible 

packet delay.  

� Loss probability: the chance of a packet being lost in the network. 

There are a number of situations that may result in the loss, such as 

buffer overflow in the network switching nodes or a call set-up 

request denial.  

� Utilization: the ratio of busy time to the total elapsed time in a given 

period. It can be measured in each of the network elements like 

sources, switches, and links.  

 

QoS is the ability of the network applications and elements like hosts or 

routers to give some level of assurance to their traffic, by satisfying their 

service requirements [28]. 

 

QoS requires the cooperation of all network layers from top-to-bottom, as 

well as every network element from end-to-end. QoS is not able to create 

more bandwidth than what is already provided by the network. However, 

it manages the existing network bandwidth according to network users’ 

service requirements.  

 

There are two technologies for providing QoS [28]: 
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� Resource reservation (integrated services): provides guaranteed 

service to network traffic. This is achieved by allocating network 

resources to user applications according to their requested QoS 

and network management policy. In this framework, resource 

requirements are signaled from the source node and the network 

reserves resources according to the signal. An example is the 

Resource Reservation Protocol (RSVP).  

� Prioritization (differentiated services): network traffic is classified to 

various categories, marked and prioritized. This enables the 

network to give preferential treatment to the applications with 

more stringent QoS requirements. Network resources are allocated 

according to network management policy and the class the traffic 

belongs to.  

 

QoS is implemented in the networks through three mechanisms. A QoS–

enabled network does not need all these mechanisms together. However, 

they can be combined in such a way to provide the requested service.   

1.2.1 End-to-end mechanisms  

These mechanisms operate on both ends of a connection. They can 

either control or adapt the behavior of a certain connection. The control 

mechanisms are able to control the quality of the connection. An 

example of control mechanisms is Call Admission Control (CAC). A 

network using CAC has a lower congestion probability, because this 

mechanism preserves the integrity of the traffic already in the network 

by avoiding the admission of other traffics. 
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The adaptation mechanisms adapt the behavior of a selected session in a 

connection based on certain parameters, such as congestion control 

mechanisms.  These mechanisms reduce the traffic rate of the session in 

reaction to packet loss.  

1.2.2 Edge mechanisms 

These mechanisms operate on the user-network interface and are 

divided into two categories: policing and shaping mechanisms. These two 

categories are similar, except that the shaping mechanisms work at the 

network side, while policing mechanisms work on the user side.  
 

Shaping: These mechanisms adapt the user traffic generation rate to the 

traffic rate parameter that has previously been negotiated between the 

user and the network. If a source starts generating traffic with a rate 

more than what it has specified in its contract, the shaper stores the 

incoming traffic and sends it to the network in such a way to follow the 

specified values in the traffic contract. These functions do not discard 

any packets that are conforming to the traffic contract.  
 

Policing: These mechanisms, which operate on the user side of a user-

network interface, check if the traffic generated by the user conforms to 

its contract with the network. If the traffic is nonconforming, the 

mechanism acts in such a way to make the traffic conformant. Two 

actions are done by the mechanism when source traffic exceeds its 

negotiated traffic rate:  

� Packet dropping: in which the nonconforming packets are 

dropped.  
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� Packet marking: in which the nonconforming packets are marked 

by the network, so that in case of congestion they will be the first 

packets to be dropped.  

1.2.3 Core mechanisms 

These mechanisms operate on the network switching nodes like 

switches and routers and are classified into the following categories: 
 

Buffering: When the incoming traffic to the switching nodes is larger than 

the output link capacity, packets are temporarily stored in a storage 

called buffer. There are two architectures for buffering: shared buffer 

and per-flow buffer. In shared buffer architecture, a common physical 

memory is shared by the packets being buffered. As soon as the output 

link becomes free, they are removed from the buffer by scheduler.  A 

per-flow architecture allocates a specific portion of memory to incoming 

packets from each flow. These memory portions in the network switching 

elements are often called queues. A flow can be identified in different 

ways. In this document there are six criteria for identifying a single flow, 

which will be explained later on. The advantage of per-flow architecture 

is that it prevents greedy sources from affecting the other sources in the 

network. On the other hand a shared buffer architecture is very simple 

to be implemented. An advantage of buffering is that it increases the 

network throughput, because logically the larger the buffer, the higher 

the amount of data carried by the network. 
 

Queue management: Queue managements are the mechanisms that choose 

which packet has to be dropped in case of buffer overflow. Each queue in 

a network switching node has a queue management mechanism 

associated with it.  If a node has more than one queue there will be 
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several instances of the queue management that operate independently 

on each queue [29]. Drop tail, Random Early Detection (RED), and 

Weighted Random Early Detection (WRED) are examples of queue 

management mechanisms [5].  

� Drop-tail: is the simplest queue management technique. As shown 

in Fig. 1.1, this scheme, packets are dropped from the end of the 

queue when there is no more space in the queue buffer. Drop Tail 

operates on each queue independently.  

 

 

 

 

 

 

 

 

Fig. 1.1  Drop-tail queue management. 

 

� RED: is an advanced queue management technique. As shown in 

Fig. 1.2, his scheme starts dropping packets when the number of 

stored packets in the queue buffer exceeds a certain threshold. 

The probability of loss increases with the increase of number of 

queued packets. When the number of queued packets reaches the 

maximum queue size, RED behaves like Drop-tail and discards all 

the incoming packets [5]. By dropping packets before the queue 

buffer gets full and congestion happens, RED indicates to the 

source to decrease its transmission rate. RED takes advantage of 

Input traffic 

Scheduler 

Traffic from the 

incoming interface 

Traffic to the 

outgoing interface 

Drop-tail 
queue manager 
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the TCP congestion control mechanism. Assuming the packet 

source is using TCP, it will decrease its transmission rate until all 

the packets reach their destinations. Thus, RED can be used as a 

way to cause sources to back off traffic using TCP [5, 13].  

 

 

 

 

 

 

 

 

Fig 1.2  RED queue management. 

 

� WRED: this scheme is a special form of RED. It combines the 

capabilities of RED together with the ability to differentiate the 

drop probability among various traffic flows stored in the same 

queue. The queue threshold in this scheme is different for 

different traffic classes. When the number of packets in a queue 

exceeds this threshold, incoming packets to the queue are 

dropped according to the drop probability of their classes.  
 

Scheduling: The scheduler selects the next packet among the packets 

waiting in the switch buffers and sends it to the output link. The 

scheduler’s task is easy in a shared buffer architecture, since the 

scheduler only selects the packet with the largest queue waiting time.  

 

Input traffic 

Scheduler 

Traffic to the 

outgoing interface 
Traffic from the 
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RED 
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FIFO is the most common scheduling algorithm used for shared buffer 

architecture. However, this task becomes more complicated in a per-flow 

architecture [29]. The scheduler can use a variety of algorithms in order 

to select the next eligible packet from different queues. Since the focus 

of this thesis is on scheduling algorithms, they will be discussed in more 

detail in the next chapter. 

1.2.4 Combination of QoS mechanism 

In order to provide certain QoS to network applications, any combination 

of the above mentioned mechanisms can be deployed in networks. What 

should be taken into consideration is that although not all mechanisms 

have to be present to provide a certain level of QoS, these mechanisms 

are not independent. For example using a certain mechanism like “per-

flow buffering” might prevent the usage of a mechanism like “FIFO 

scheduling”. Moreover, it is possible for the network to provide the same 

service using a different combination of above mechanisms. How the 

users’ required services are provided by the network is usually 

transparent to the users.  

1.3 The Internet and its architecture 

Internet that is based on a packet switched networking technology with 

layered infrastructure started in 1969 as a research project called 

“ARPANET” [33]. At the beginning, it only connected four computers 

while today over tens of billions of computers around the word are 

connected, exchanging messages and resources through the Internet. 

1.3.1 Internet architecture 

Fig. 1.3 shows a simplified network hierarchy for Internet architecture.  
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Fig 1.3  Internet architecture. 

 

The Internet protocol (IP) at the network layer enables the Internet to 

interconnect heterogeneous sub-networks running on different 

technologies such as Ethernet, Asynchronous Transfer Mode (ATM), and 

Token Ring, in order to form a network of networks [10].  IP hides the 

heterogeneity of the underlying layers, thus it can support different 

applications through a common transport layer. There are two standard 

interfaces to the transport layer: Transmission Control Protocol (TCP) 

and User Datagram Protocol (UDP). IP relies on TCP/UDP to provide 

reliable data delivery. This "reliability" can only assure data delivery. 

Neither IP nor its high-level protocols can ensure delivery time or provide 

any guarantees for data throughput. Consequently, they can make no 

guarantees about when data will arrive, or how much it can deliver [28].  

 

Current network applications such as Hypertext Transfer Protocol 

(HTTP), File Transfer Protocol (FTP), remote terminal (Telnet), remote 

TCP        UDP

IP

Satellite
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login (rlogin), Simple Network Management Protocol (SNMP), and e-mail 

are now running over TCP/UDP. More and more multimedia applications 

which are emerging everyday are using TCP/UDP protocols to achieve 

end-to-end packet delivery.  

1.3.2 Next generation of the Internet 

Today’s Internet only provides best-effort service, in which traffic is 

processed as quickly as possible with no guarantees for the traffic 

delivery time [35]. With the increase of multimedia applications running 

on the Internet with stringent performance guarantee requirements, 

such as bounded delay and minimum throughput, the Internet traffic is 

changing from best-effort to QoS sensitive. Since the Internet is still not 

ready for this change, supporting the wide range of QoS for current and 

future Internet applications is a major challenge. A key issue in QoS is 

how to manage or control the network’s shared resources in terms of 

bandwidth on the links or buffers in the switching nodes. 

1.4 Thesis organization 

The thesis is organized as follows. Chapter 2 provides background on 

packet scheduling. It introduces a general scheduler model, discusses 

the packet scheduling requirements and represents the two main 

categories of packet scheduling algorithms. Some of the scheduling 

algorithms from both categories are explained in this chapter with more 

focus on the VirtualClock scheduling mechanism. In Chapter 3 we 

describe the implementation of the VirtualClock scheduling algorithm in 

OPNET simulation tool. We introduce the OPNET software environments 

and VirtualClock implementation embedded in each of these 

environments. Chapter 4 shows the validity and functionality of the 
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implemented VirtualClock model through OPNET simulation of two 

network scenarios. In Chapter 5 we conduct two series of simulation 

experiments on two network scenarios in order to compare various 

performance aspects of the VirtualClock scheduling algorithm with 

several other scheduling mechanisms like FIFO, WFQ, CQ, and PQ. We 

use the OPNET simulation tool to simulate these network scenarios. The 

first scenario compares the performance of VirtualClock in comparison to 

other schedulers for the time periods during which different sources 

show various traffic behaviors. In the second scenario, we compare and 

analyze the effect of scheduling algorithms on the performance of several 

common Internet applications: HTTP, FTP, IP Telephony, and 

videoconferencing. We conclude the thesis with Chapter 6 and address 

the possible future research. 
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Chapter 2 

 Scheduling 

2.1 Introduction                                                                  

The next generation of the Internet supports two types of applications: 

best-effort and guaranteed-service applications [18]. The best-effort 

applications, which are already common to the Internet, are content to 

accept whatever performance the network gives them. For example 

although a file transfer application would prefer to encounter zero end-

to-end delay and infinite bandwidth, it can still adapt to the available 

network resources. These applications are called best-effort because the 

network promises to deliver their data without any guarantees on 

performance bounds.  

 

Beside these applications, the Internet is expected to carry traffic from 

applications that require performance bounds in the future. For 

example, an application that contains voice as a 64 Kbps data stream will 

be no longer usable if the network provides a bandwidth less than 

64kbps [18]. 

 

The performance received by a connection depends principally on the 

scheduling mechanism. These mechanisms are carried out by the 

switching nodes located along the path between the source and the 

destination of a connection. Scheduling mechanisms are implemented 

at output interfaces of switches or routers. At each output queue of an 

interface a scheduling mechanism is used to choose which packet to 
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transmit to the outgoing link. “The scheduler can allocate different 

queuing delays and different bandwidths to different connections. This 

is done by the scheduler’s choice of service order and by serving a 

certain number of packets from a particular connection [18].” The 

scheduler can also allocate different loss rates to connections by 

assigning a certain amount of buffer space to them. Furthermore, it is 

able to allocate resources, which are desired properties in the networks 

fairly among best-effort connections. Thus, the next generation of 

Internet needs scheduling disciplines in order to support: 

� per-connection delay, bandwidth, and loss bounds needed for 

guaranteed-service applications [7] 

� fair resource allocation needed for best-effort applications. 

2.2 Scheduler model 

In packet switched networks, scheduling is done in the network’s 

intermediate nodes like routers and switches. Each intermediate node 

consists of the following components [29]: Input buffers, output buffers, 

and switching fabrics. Fig. 2.1 shows the architecture of a network 

switch. 

 

 

 

 

 

 

 

Fig 2.1  General architecture of a network switch. 

Input buffers Output buffers

Switching
fabric
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Input interface is a switch component that receives packets from other 

intermediate nodes and selects the best output link in order to send the 

packet. The output interface is in charge of selecting the best packet in 

order to send it to the outgoing link. The switching fabric is a component 

that transfers packets from the input link to the output link. 

 

Buffering can be done at any of the above mentioned components in a 

packet network’s intermediate nodes: 

� Input buffers: some switches have small input buffer spaces so 

that they only hold packets for the time period they are being 

forwarded to the switch fabric. For the other switches, all the 

buffers are located at the inputs [18].  

� Output buffers: these are the most commonly used buffers. They 

store packets as they wait for their turn to be sent to the outgoing 

link [18, 29]. 

� Mixed input and output buffers: these buffers are usually 

employed for the case in which the switching fabric is not fast 

enough. So, in order to prevent packet loss due to the low 

forwarding speed of the fabric, a small amount of memory resides 

on the input interfaces. However, the main buffering point is still 

located at the output interfaces [29].   

� Switching fabric’s buffers: this can be the case of a shared buffer 

for all the output interfaces like FIFO scheduling. 

 

Scheduling algorithms are located on the output interface of the 

network switches. Each interface has its own instance of the scheduler, 

i.e., different scheduling algorithms can be used on different interfaces. 
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The architecture of a scheduler is shown in Fig. 2.2. Each scheduler 

consists of two main components: classifier and scheduler. The classifier 

is in charge of allocating packets into different queues according to the 

scheduling classifier scheme. The scheduler selects the next best packet 

from the queues according to its appropriate scheduling algorithm.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2  The model of a scheduling algorithm. 

 

2.3 Scheduling requirements 

In the design of scheduling schemes, different trade-offs can be 

considered in terms of the following five requirements [12]. Depending 

on the specific situation, some of these requirements may be more 

important than others and the decision for the best choice is made given 

the particular situation.  

� Complexity: the scheduling schemes are different in terms of both 

control and hardware implementation complexity. The complexity 
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of the algorithm is important because the router needs to pick up 

a packet to send out to the output link every time a packet 

departs. The frequency of the packet departure depends on the 

speed of the output link and it can be once every few 

microseconds. Thus, a scheduling scheme should require only a 

few simple operations. It also has to be implemented inexpensively 

in hardware [18].    

� Fairness: Since a scheduling scheme assigns a share of network 

resources in terms of output link bandwidth and buffer capacity, 

fairness is a property needed for supporting best-effort 

applications [18].  

� Isolation (protection): is the property of not permitting the 

misbehaving users to affect the well-behaving users. Misbehavers 

are the users that send packets at a rate faster than their fair 

shares [37].  

� Efficiency: to guarantee certain performance requirements a CAC 

policy is needed in order to limit the number of guaranteed-service 

connections [18]. “A service discipline is more efficient than 

another one if it can meet the same performance guarantees 

under a heavier load of guaranteed-service traffic [37].”  

� Performance: as discussed before the main goal of a scheduling 

algorithm is to guarantee performance bounds for connections in 

terms of throughput, delay and loss. The network and its users 

agree upon certain traffic parameters. The users should not 

exceed the specified bounds in the agreement and the network 

guarantees to provide the connection’s service requirements [18]. 

Guaranteeing the performance bounds is a difficult problem in 
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today’s networks, since all the schedulers along the connection’s 

path have to take part in providing it [18]. 

2.4 Classification of scheduling algorithms 

Packet scheduling mechanisms are classified into two categories: work-

conserving and non-work-conserving [37]. A work-conserving scheduler 

is idle when there are no packets waiting in the router’s queues. In a 

non-work-conserving scheduler, each packet is assigned a time when it 

has to be sent to the output interface. The scheduler remains idle and 

no packet will be transmitted until the next packet is eligible for 

transmission [18, 37]. 

 

One of the attributes of work-conserving algorithms is that they have the 

minimum average total queuing delay. The average of total queuing 

delay is calculated on all the flows that have to be served. In addition, 

the average total queuing delay value is equal for all work-conserving 

algorithms. In other words, although different schedulers use different 

algorithms to choose the next best packet to transmit, the overall 

average queuing delay is always the same. This shows that some 

algorithms serve some flows faster at the expense of other ones [29]. 

 

A certain question arises at this point: why do we need to use non-work-

conserving algorithms and waste bandwidth by leaving the link idle until 

the packets eligibility times arrive? The answer is that non-work-

conserving algorithms make the traffic flow arriving at the switches more 

predictable by keeping the link idle for short periods of time [18]. These 

algorithms are usually the best choice for networks with real time traffic 
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since they can provide specific bounds on delay and delay jitter to the 

flows. This is achieved by delaying packets to meet special delay 

requirements.  

2.5 Scheduling algorithms 

One of the most important functions of scheduling algorithms is to select 

packets for transmission to outgoing links. Beside the classical First In 

First Out (FIFO) algorithm and the simple priority based queuing, a large 

number of new scheduling algorithms have been proposed during the 

past decade. All these algorithms are the variants of two fundamental 

disciplines, Generalized Processor Sharing (GPS) and Earliest-Deadline-

First (EDF) [3].  

 

GPS divides the resources among different traffic flows according to their 

requirements.  EDF assigns a deadline to each packet. It attempts to 

achieve the required QoS of the flows by serving the flows’ packets in the 

increasing order of their deadlines [3]. The packets deadlines are 

associated with their maximum tolerable delay and are calculated by 

adding their arrival times to their maximum tolerable delays. Delay 

earliest due date and jitter earliest due date are examples of such 

algorithms. 

 

This section focuses on the first category of the scheduling algorithms 

(GPS) with more emphasis on the VirtualClock algorithm as a special 

case. We also review some of the other GPS algorithms and outline their 

properties.  
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2.5.1 FIFO 

First In First Out (FIFO) or First Come First Serve (FCFS) is one of the 

simplest scheduling algorithms. In this mechanism, packets are served 

in the order in which they arrive to the switching node. FIFO is a work-

conserving algorithm and has a very low complexity, so it is one of the 

most commonly implemented algorithms in the networks. There are 

some limitations for FIFO as follows.  

� It is not able to provide fairness in resource allocation to different 

flows. Nevertheless, this limitation is not very important for best-

effort applications. 

� It cannot provide any performance guarantees in terms of delay, 

delay jitter, or throughput to the real time applications. Thus, 

multimedia applications do not work well with FIFO schedulers 

[29]. One way to provide a delay bound is to limit the buffer size, 

so that the packets are guaranteed to be sent in less than the time 

it takes to serve a full queue. A disadvantage of this solution is that 

it increases the packet loss probability, which is a consequence of 

the high buffer overflow probability. 

2.5.2 Generalized Processor Sharing (GPS) algorithm 

Generalized Processor Sharing (GPS) is an ideal scheduling algorithm 

[25]. In this algorithm, packets from each flow are classified into different 

logical queues. GPS serves non-empty queues in turn and skips the 

empty queues. “It sends an infinitesimally small amount of data from 

each queue, so that in any finite time interval it visits all the queues at 

least once [18].” There can be a service weigh associated with each 

queue. Queues receive service according to their associated weights.  
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Following are the variables used in a GPS algorithm: 

� φi: The share of bandwidth reserved by flowi  

� Wi (t1, t2): amount of traffic served from flowi during the time period (t1, 

t2). 

 

 A connection flow is defined as backlogged if it has packets that are 

either receiving service or waiting for service in its queue [18]. Thus, GPS 

serves each backlogged connection with minimum rate equal to its 

reserved rate at each instant. The extra bandwidth not used from other 

connection flows is distributed among all the backlogged connections in 

proportion to their reservation. In other words, during an arbitrary 

interval (t1, t2), for any pair of backlogged connection flows i and j the 

following equation holds [18]: 

 

                                        Wi (t1, t2)/Wj (t1, t2) = φi /φj      (2.1) 

or 

                                        Wi (t1, t2) /φi  = Constant. (2.2) 

 

Because GPS posses the properties of ideal fairness and complete 

isolation, a lot of research studies have been done on it. However, GPS is 

not implementable because serving an infinitesimal amount of data from 

each non-empty queue is not possible. Thus, various emulations of GPS    

have been proposed in the literature. The following sub-sections 

describe some of these emulations.  
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2.5.3 VirtualClock 

The idea behind the VirtualClock algorithm was derived from  Time 

Division Multiplexing (TDM) systems. A TDM system eliminates 

interference among users because individual user channels (flows) can 

transmit only during specific time slots. The disadvantage of a TDM 

system is that users are limited to constant data transmission rates and 

the channel capacity is wasted whenever a slot is given to a flow that has 

no data to send at that moment. The purpose of the VirtualClock 

algorithm is to maintain the guaranteed throughput and firewalls of a 

TDM system, while still achieving the statistical multiplexing properties 

of packet switched networks.  

 

The algorithm makes the statistical data flow resemble a TDM channel 

by assigning each data flow a virtual clock. Each virtual clock advances 

one tick at every packet arrival from a specific flow. The tick step is the 

mean packet inter-arrival time that has been specified by the flow. Thus, 

each virtual clock carries the expected arrival time of the packet. If a flow 

sends packets according to its specified average rate, its virtual clock 

follows real time. The algorithm stamps the packets with their own 

“virtual clock” values and transmits the packets in the ascending order of 

these stamps. Nevertheless, there is a major difference between a TDM 

system and a network controlled by a VirtualClock scheduling algorithm. 

The difference is that unlike TDM, a VirtualClock controlled network can 

support data flows with distinct throughput rates. The network 

reservation protocol determines how large a share of bandwidth each 

flow needs on average. Then, according to the flow’s reserved 

transmission rate, the VirtualClock algorithm determines which packet 



23 
 

should be forwarded next in case there is more than one packet waiting 

[38]. 
 

Choosing flow parameters: 

We consider the following parameters for each flowi entering a switch in 

a network: 

� ARi, average transmission rate (packets/sec) 

� IRi, packet inter-arrival time (sec) 

� AIi, average observation interval (sec). 

 

Choosing the AI value for each flow is very important. AI value of a flow is 

chosen such as: 

total transmitted data (over AI)/AI = AR                   (2.3) 

 

and the range of possible values for AI is: 1/AR ≤ AI ≤ total flow duration.  

 

The value for AI should be small enough to give the network sufficient 

control, nevertheless it should be large enough to tolerate variations in 

packet arrival pattern [38]. For example if the lower bound value is 

chosen for AI, the source is obliged to send packet at a constant rate. On 

the other hand, choosing an upper bound value (total transmission time) 

for AI, allows the source to send packet in any arbitrary manner.  
 

VirtualClock Algorithm:  

The algorithm uses two control variables for each flow, Virtual Clock (VC) 

and auxiliary Virtual Clock (auxVC) [38]. The following two functions are 

performed by the VirtualClock algorithm: 
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Data forwarding:  

� When the first packet is received from flowi, VCi and auxVCi are 

both set to the real time. 

� Upon receiving each packet from flowi, 

a) Vticki ← 1/ARi 

b) auxVCi ← max (real time, auxVCi) 

c) auxVCi ← auxVCi + Vticki 

   VCi ← VCi + Vticki  

� Stamp the packet with auxVCi value. 

� Insert the packet in its outgoing queue. 

� Serve the packets according to their increasing stamp values. 

 

Flow monitoring: The algorithm calculates a control variable: AIRi = ARi × 

AIi for each flowi (in packets). Upon receiving AIRi packets from flowi, the 

following conditions are checked: 

� If (VCi - real time) > T (a control threshold), then the source of flowi  

is warned 

� If (VCi  < real time), let VCi = real time. 

 

Thus, the VC variable plays the role of a flow meter, and it is increased 

according to the flow’s negotiated packet arrival rate. Hence, the 

difference between a flow’s VC and the real time shows how closely a 

flow is following its specified rate [38]. 

 

By introducing a second parameter called the auxiliary Virtual Clock, 

the algorithm prevents flows from accumulating credits. Consider the 
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case when a source sends a burst of packets after remaining idle for a 

while. In this situation, although the VC value might fall behind the real 

time, the use of the auxiliary Virtual Clock will cause the packet’s auxVC 

stamp to be updated with the real time. Thus, the traffic burst will be 

interleaved with packets from other flows. Therefore, the auxVC is used 

to order packets from distinct flows. By serving packets in the order of 

their auxVC values, the algorithm assures that flows use the bandwidth 

according to their specified packet arrival rates. Thus, although 

nonconforming flows can use free bandwidth, they cannot affect 

conforming flows.  
 

VirtualClock functionalities: 

Firewall protection: The VirtualClock algorithm provides firewall 

protection between distinct flows by serving packets in the order of their 

VC values. In the networks using a VirtualClock scheduler, if one or 

more flow sources exceed their specified average packet generation 

rates; these nonconforming sources will not affect other conforming 

sources. Because, the more nonconforming the flow, the worse service it 

gets from the VirtualClock scheduler. When a flow source generates 

packets at a rate higher than it is expected, the VC value of the flow’s 

appropriate queue advances beyond the real time; thus the flow’s 

packets will be placed at the end of the service queue. In a VirtualClock 

controlled network, although nonconforming sources can use the idle 

network resources, they cannot degrade the service to other conforming 

flows. 
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Flow prioritization: The VirtualClock algorithm is able to provide priority 

service to flows that require guaranteed performance. The VirtualClock 

can divide the incoming flows into two categories: guaranteed service 

and best effort service. Prioritization is done by replacing the real time 

by real time – P in the VirtualClock algorithm for guaranteed service 

flows. P is the priority value. The chosen P should be large enough to 

separate priority flows from non-priority flows. However, the algorithm 

prevents the priority queues from making unfair use of network 

resources and affecting other flows. If so, their VC value of such priorities 

will run ahead of the real time and ultimately they lose their priority. 

 

The priority value for best effort traffic flows is set to -∞, so they will be 

stamped by VC value of ∞. Thus, these packets will be located at the end 

of service queues and will receive low priority service. 

 

Flow monitoring: The VirtualClock is able to monitor the flows average 

throughput rate using the VC Variable. Each flow is monitored 

periodically by comparing its VC value with the real time, as mentioned 

earlier. Thus, the algorithm can deliver measurement information to 

other network control functions. It also can provide feedback to flow 

sources when the flow’s actual packet rate significantly exceeds the 

negotiated rate. The flow can either be checked: 

� every AI time period, or  

� after receiving every AIR = (AR × AI ) packets from the flow. 

 

An advantage of using the second option is that the scheduler can react 

to traffic changes faster, if the AI value is large. The above options are 
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similar in cases where the flow is transmitting packets at its specified 

traffic rate. 

 

2.5.4 Weighted Round Robin (Custom Queuing) 

Weighted Round Robin (WRR) is a simple emulation of GPS. The 

difference between GPS and WRR is that WRR serves a certain amount 

of data instead of sending an infinitesimal amount of data from the 

queues [18]. The served data can be in the form of packets or bytes.  

 

In this algorithm each queue has a weight that allows sending a certain 

amount of data from each nonempty queue. The weight is usually a 

percentage of the whole bandwidth. “This algorithm is a closer 

approximation for GPS when all connection flows have equal weights and 

all the packets have the same size (in case of packet WRR) [18, 29].” 

When different traffic flows have different weights, the WRR algorithm 

serves the flows in proportion to their weights. In cases where there are 

different packet sizes for different flows in order to achieve a normalized 

set of weights for the flows, the WRR algorithm divides each flow’s weight 

by the average packet size of that flow.  

 

There exist two problems that cause WRR not to emulate GPS correctly 

[18]: 

� In practice the source’s packet sizes may not be predictable, so a 

WRR algorithm cannot allocate bandwidth fairly to different flows. 

� At time scales shorter than a round trip time, the algorithm is not 

a fair algorithm since some flows may get more service than the 

others. WRR tends to be fair only at larger time scales.  
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A limitation of the WRR algorithm is that its performance depends on 

the packet arrival pattern. For example, when a packet arrives to a queue 

just after the queue has been served, it has to wait in the queue for a 

whole round time before getting served, no matter how important the 

packet’s flow is. 

2.5.5 Deficit Round Robin  

Deficit Round Robin (DRR) is a modification of WRR. The improvement 

to this algorithm is that it can handle variable packet sizes without 

knowing the average packet size of the flows. DRR services the queues in 

a round robin order. Each queue is allowed to send a certain amount of 

bytes in each round. There are two variables associated with each queue 

in this algorithm: Quantum and Deficit Counter [29, 31]. Quantum 

represents the number of bytes that each queue can send on its turn. 

The Deficit Counter variable is used to keep track of the credit each 

queue possesses for sending traffic and is initialized to zero. 

 

The scheduler checks each queue in turn and adds the queue’s 

Quantum to its Deficit Counter variable. DRR tries to send the number of 

bytes equal to the queue’s Deficit Counter from the queue. If the packet 

size in bytes is smaller than the Quantum value of the packet’s queue, 

the packet is served and the Deficit Counter is reduced by the packet size 

in bytes. If the packet size is larger that the Quantum value, the 

scheduler moves to the next queue without serving the packet [31]. The 

queue of the unserved packet keeps the credit it obtained from not 

sending a packet on the previous round. This credit is used by the 

queue on the next service rounds. 
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The importance of the DRR algorithm is that it is easily implemented. 

However, like WRR, it is unfair at time scales smaller than a round trip 

time. 

2.5.6 Packet by packet Generalized Processor Sharing and 

weighted Fair Queuing 

Packet by packet Generalized Processor Sharing (PGPS) and Weighted 

Fair Queuing algorithms are both approximations of GPS. The difference 

between these algorithms and GPS is that unlike GPS they don’t service 

an infinitesimal amount of data from each queue. Another improvement 

which has been done to GPS in these algorithms is that, in the case of 

flows’ variable packet sizes, they do not need to know the average packet 

size in advance [25, 26]. WFQ is essentially the same as PGPS, but they 

were independently developed. Thus, we only focus on explaining WFQ.  

 

WFQ was developed by Demers, Keshav, and Shenker in 1989.  The idea 

behind the algorithm is that for each packet, WFQ computes the time at 

which service to the packet would be finished, deploying a GPS 

scheduler. Then the WFQ scheduler services the packets in the 

increasing order of their finish times [18]. “In other words WFQ 

simulates GPS on the side and uses the results of this simulation to 

determine the packets’ service order [18].” 
 

Computation of finish time: 

For computing packet finish times, consider the following variables and 

notations:  
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� R(t), round number at time t. Round number is the number of rounds a 

bit-by-bit round robin scheduler has completed at a given time. 

� P(i, k, t), the size of k th packet that arrives to the i th queue at time t.  

� F (i, k, t), the finish time of the k th packet that arrives to the i th 

queue at time t. 

� W(i), the weight of i th connection. 

� Active queue is a queue in which the largest finish number of a 

packet either in that queue or the last served from the queue is larger 

than the current round number.  

 

The length of a round, i.e., the time it takes to serve one bit from each 

active queue, is logically proportional to the number of active queues. 

This finish time for packets arriving at both active and inactive queues is 

calculated as follows. 

 

The finish time of packets arriving to an inactive connection is the sum 

of the current round number and the packet size (bits)/queue weight, 

which is the time it takes a bit-by-bit round robin scheduler to finish the 

service of the packet. For active queues the finish time is the sum of the 

largest finish time of a packet in its queue or last served from the queue 

and the arriving packet size (bits)/queue weight [5, 18]. In other words, 

combining the above statements finish time for packet i is calculated as: 

 

F (i, k, t) = max {F (i, k-1, t), R (t)} + P (i, k, t)/W (i).  (2.4) 

 

A problem with this algorithm is “iterated deletion” [18]. The iterated 

deletion problem happens when a queue becomes inactive and is 
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deleted from the list of active queues, perhaps causing other queues to 

become inactive. A solution to this problem is to compute the list of 

deletions at any given time, which is a difficult task. A WFQ scheduler 

updates the round number on every packet arrival and departure, which 

is a complex computation happening once every few microseconds. This 

is one of the major problems with the implementation of WFQ in high-

speed networks [18]. 

 

Another problem is that WFQ has to associate each data flow to a 

separate queue, which brings up the scalability problem. A solution to 

this problem is using hashing techniques.  

 

WFQ also needs to keep track of the per-connection scheduler state, 

which causes implementation complexity and is expensive for 

schedulers that support a large number of flows [18].  

 

Despite all these problems many manufacturers such as Cisco, Inc. and 

FORE Systems, Inc. (manufacturer of ATM switches) have been using 

variants of WFQ in their routers and switches as of 1996 [5, 18]. Two 

variants of WFQ are Self-Clocked Fair Queuing (SCFQ) and Start-time 

Fair Queuing. 

2.5.7 Self-Clocked Fair Queuing 

As discussed above a major problem with WFQ was the complexity and 

cost for computation of round numbers upon each packet arrival. SCFQ 

which was proposed by Golestani in 1994, was a solution for speeding 

up the computation of finish numbers [11]. Instead of using the round 

number in this algorithm, the finish time of the packet currently 
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receiving service is used to update the queue’s finish time upon arrival of 

a packet to an empty queue. So, finish time for packet i is computed as 

[18]: 

 

                         F(i, k, t) = max{F(i, k-1, t),CF} + P(i, k, t)/W(i) .              (2.5) 

 

Finish time of a packet is set to the maximum of CF (finish time of the 

packet presently receiving service) and the finish time of last packet in 

the queue, plus the time it takes to finish service to the packet. 

Although SCFQ does not have the computational complexity of WFQ, it 

is an unfair algorithm over short periods of time. SCFQ has looser delay 

bounds than WFQ and consequently causes greater unfairness over 

shorter time scales. Hence, there is a trade-off between the lower 

computational cost and the fairness of SCFQ and WFQ [18, 29].  

2.5.8 Start-time Fair Queuing 

This algorithm is a variant of SCFQ. It provides lower implementation 

complexity than WFQ, without having loss, delay bounds, and 

unfairness properties of SCFQ. In this scheme in addition to f inish time 

another parameter called start time is calculated for each packet entering 

a queue. For packets arriving to an inactive queue the start time will be 

the current round number and for packets arriving to an active queue the 

start time is the finish number of its previous packet [18].  

 

If there exist some packets to send, the round number is set to the start 

time of the packet that is currently receiving service; otherwise the round 

number will be set to the maximum of the finish numbers of the packets 
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that have been sent until that time. The packet’s finish time is computed 

by adding up its start time and its packet size (bits)/queue weight [18].  

 

2.5.9 Priority Queuing 

Priority Queuing is one of the first solutions for providing different 

services to different flows. It allows prioritizing traffic flows. 

 

The algorithm assigns packets from traffic flows to different queues with 

various priorities. The Priority Queuing (PQ) algorithm functions as 

follows. 

 

The highest priority queues receive service until they have packets. 

Thus, the first high priority queue has the entire bandwidth of the 

output link available. The second priority queue has the entire link 

bandwidth decreased by the amount used by the first priority queue and 

so on. Thus, the traffic in each priority queue is influenced by the 

queues with higher priorities [5, 29]. 

 

PQ is useful for assuring that mission critical traffic gets priority 

treatment. “For example, Cisco uses PQ to ensure that important Oracle 

based sales reporting data gets to its destination ahead of other less 

critical traffic [5].”  

 

This algorithm is not fair because the lowest priority flows can starve if 

highest priority flows have large amounts of traffic. This is a work-

conserving mechanism and functions well when a network has a small 
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amount of high priority traffic. In addition, there might be situations in 

which the received service is much better than a required service 

delivered by a high priority flow. In these cases the algorithm is not able 

to degrade the service to the high priority flow in order to improve service 

to other flows. Thus, Priority Queuing is not a good choice for today’s 

networks, which carry both best effort and guaranteed service traffic. 

2.6 Theoretical comparison of scheduling algorithms  

In this section we compare several well-known scheduling algorithms. 

Table 2.1 compares general performance aspects of these algorithms. In 

the second column, value “n”, used for computing implementation 

complexity of the algorithms, is the number of active queues at each 

time instance. Active queues are the queues that either have packets 

stored in them or are in the process of packet transmission. In the 

fourth column of Table 2.1, by algorithm “fairness” we mean a fair 

throughput comparable to what ideal GPS algorithm provides. In the last 

column of the table, a “small” delay bound means a delay bound that is 

a small additive constant larger than the bound GPS algorithm provides 

[32]. 

 

 

Algorithm Implementation 

complexity 

Category 

 

Fairness 

 

Delay bounds 

 

GPS Impractical Work-conserving Fair 0 

VirtualCloc

k 

O(log n) Work-conserving Fair in if flow 
arrival rate is 

known 

Small 

CQ O(1) Work-conserving 
Fair in case of 

identical Small 
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packet sizes 

DRR O(1) Work-conserving Fair Large 

WFQ O(n) Work-conserving Fair  Small 

 

Table  2.1 Comparison of scheduling algorithms. 

Table 2.2 shows the scheduling algorithms which best serve particular 

classes of traffic and their corresponding application types in today’s 

Internet. 

 

Algorithm VirtualClock CQ WFQ PQ 

Traffic Consistent and 
predictable 

streams 

Constant 
packet size: 
ATM cells 

All: CBR and 
unpredictable 
with constant 
and variable 
packet sizes 

Unpredictable 
mission critical  

Application Voice over IP No Internet 
application 

All: Best effort 
and guaranteed 

service 

Control 
messages 

 

Table  2.2  Appropriate scheduling algorithm for various applications and 

traffic types. 

2.7 Scheduling algorithms in OPNET 

The OPNET simulation tool has some scheduling algorithms 

implemented in its IP routers: FIFO, Priority Queuing (PQ), Custom 

Queuing (CQ), and Weighted Fair Queuing (WFQ). These algorithms are 

also the most common algorithms used by Cisco, Inc. in their router 

products. The following describes the features of these algorithms and 

their implementation in the OPNET simulation tool. 

2.7.1 FIFO 
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This algorithm is uses one common buffer space in which packets are 

stored in case of output link congestion. The only configurable 

parameter for this scheme is the Maximum Queue Size (pkts). When this 

limit is exceeded, the packets will be dropped from the buffer. 

 

2.7.2 Priority Queuing 

In OPNET’s PQ implementation there exist four priority queues: High, 

Normal, Medium, and Low. Each packet is assigned to one of these 

priority queues based on an assigned priority. Packets that are not 

classified by these assigned proprieties will fall into the Normal queue. 

Fig. 2.3 shows a general architecture of the implemented PQ in OPNET. 

2.7.3 Custom Queuing 

OPNET’s Custom Queuing model is based on the byte by byte WRR 

algorithm. This algorithm works by cycling through the queues in 

round-robin fashion and sending the number of bytes according to the 

portion of allocated bandwidth from each queue. 
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interface 

Scheduler 

High 

Normal 

Medium 

Low 
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Fig. 2.3  Priority queuing scheduler in OPNET. 

 

There is a configurable variable (Byte Count) associated with each queue.  

This variable specifies how many bytes of data should be delivered from 

the current queue before the system moves into the next queue. When a 

particular queue is being processed, packets are sent until the number 

of sent bytes exceeds the Byte Count, or until the queue is empty. There 

is a limitation of 16 on the maximum number of definable CQ queues on 

each IP router interface. Fig. 2.4 shows how the queues are served 

employing the CQ algorithm in OPNET. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4  Custom Queuing scheduler in OPNET. 

 

2.7.4 Weighted Fair Queuing 

WFQ model in OPNET is based on the Weighted Fair Queuing algorithm 

explained earlier in this chapter. In this model, the queue whose head 

 
   

 

Classifier 

Traffic from the 

input interface 

Traffic to the outgoing 

interface 

Scheduler 

Up to 16 

2/9 

3/9 

1/9 

3/9 



38 
 

packet has the lowest Finish time will be served first by the WFQ 

scheduler. The packets’ Finish times are calculated using the WFQ 

equation. In addition, there is a configurable variable (weight) that 

defines the number of packets served from each queue upon their turn. 

Fig. 2.5 shows the function of the WFQ scheduler and the proportion of 

the sent packets based on the queue weighs.  

 

 

 

 

 

 

Fig. 2.5 WFQ scheduler in OPNET. 
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Chapter 3 

Implementation of VirtualClock Algorithm 

3.1 Introduction 

In this chapter, we describe the implementation of the data forwarding 

function of the VirtualClock scheduling algorithm. To implement the 

algorithm, we use the OPNET simulation tool. OPNET is an intelligent 

network management software, developed by OPNET Technologies, Inc. 

founded in 1986. Since then eight versions of the software have been 

released.  

 

The VirtualClock algorithm model is implemented in the Internet layer 

of OPNET’s IP routers and is created using the state transition diagram 

model, coded in embedded C. The VirtualClock model has been 

contributed to the OPNET Model Depot site, where users can download 

the model in order to control congestion in their simulated IP networks.  

3.2 OPNET environment 

OPNET provides an environment that supports modeling of 

communication networks and distributed systems [22, 23]. The OPNET 

environment contains tools for all phases of a study, including design, 

simulation, data collection, and data analysis.  

 

There are three layers for the hierarchical structure of an OPNET model: 

Network layer, Node layer, and Process layer. Each of these layers has 

an editor incorporated with them in the OPNET environment.  
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3.2.1 Project editor 

The project editor is used to construct and edit the topology of 

communication network models. The interconnection and position of 

network nodes are adjustable in this editor. It also provides operations to 

support the simulation and analysis of these network models. This editor 

is the highest modeling level in OPNET in the sense that it uses the 

objects that are defined in the other modeling editors.  

3.2.2 Node editor 

The node editor is used to define the structure and behavior of nodes 

used in the network domain (such as clients, servers, switches, routers, 

bridges, and firewalls). Each network node is made up of several 

modules. Each of these modules defines one aspect of node behavior 

such as data generation, data storage, data forwarding, etc. These 

modules are connected together via packet streams or statistic wires. In 

addition to the node structure, this editor defines the interface of a node 

model, which determines which aspects of the node model are visible 

and definable by the user.  

3.2.3 Process editor 

The process editor is used to specify the behavior of process models, 

which define the functionality of the modules used by node models. In 

addition to the behavior of a process, this editor defines the model’s 

interfaces, which determine what characteristics of the process model 

are visible and adjustable by users. 

 

Process models are defined by finite state machines, which are 

composed of two main components: states and transitions. States refer 



41 
 

to an object that corresponds to one of the situations that the process 

may find itself in. The process is always exactly in one state at a time. 

The process can move between states upon receiving some interrupts. 

The interrupts fulfill the conditions that make the process move from 

one state to another. The interrupts may be originated either from the 

process itself or from another process, called a parent process to the 

invoked process (child process). 

  

The operation of each state is defined in a distinct block written in 

embedded C or C++ code. These blocks are called executives. The 

executives of a state are split into two sections, called enter and exit 

executives. The enter executives are executed when a process enters a 

state and the exit executive are performed while the process leaves a 

state to enter another state. States are divided into two categories: forced 

states and unforced states that differ in execution timing. In unforced 

states there is a pause between the enter and exit executives. Once the 

execution of an enter executive is finished, the process returns the 

control to the process that has invoked it. The invoked process is 

suspended until the it is invoked again. At this point the exit executive 

of the blocked state is executed. In the forced states, the exit executives 

are executed by a process immediately after completion of the enter 

executives. For this reason the exit executives of forced states are 

usually left blank.  

 

Fig. 3.1 shows the execution flow through an unforced state. In this 

figure, step (1) shows the time when the process completes the enter 
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Executive immediately after it enters the unforced state. The state blocks 

at this point until a new invocation takes place.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1  The execution flow of the unforced states. 

 

Step (2) is when a new invocation to the unforced state occurs. At this 

point the exit executives of the unforced state is executed and the 

process proceeds to the next state. Step (3) shows the transition to the 
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next state. This state can either be a new state or the same unforced 

state depending on the transition conditions. Step (4) is when the 

execution of the Enter executives of the next state is finished and the 

process is blocked again and …. 

3.2.4 Network-wide database and Common Attribute objects 

This database contains some node model attributes that are common to 

more than one object in the network model. Node models that use this 

database include a unique object in their network models, which is 

called the Common Attribute Object. These objects serve the following two 

functions: 

 

� They define the Value Combination for the structured attributes 

that are commonly used by some node models like routers, 

workstations, etc. Each value Combination that is referenced by a 

specific name is a set of sub-attribute values. It means that users 

can specify that an object of their network uses a specific value 

Combination. This can be done by selecting the Value 

Combination’s unique name as the attribute value of a node used 

in their network.  

� They parse the structured attribute and store the information into 

the network-wide attribute database. 

3.3 VirtualClock process model 

The algorithm is implemented in OPNET’s ip_output_iface process model 

[1, 2]. This process model is a child process to the IP layer process model 

(ip_rte_v4) of all IP routers. Fig.3.2 shows the internal structure of an IP 
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router node model in OPNET. The ip_rte_v4 process model is marked by 

a black circle in Fig. 3.2. The ip_output_iface child process is invoked 

whenever there is a scheduling algorithm selected by the user for the IP 

router. This selection has been done by choosing the appropriate 

scheduling mechanism as a value to the Queuing Scheme attribute of 

each of the interfaces in the IP router objects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2  Internal hierarchy structure of the IP router node model. 

 

The ip_output_iface process model is in charge of assigning separate 

queues to various data flows entering the router and scheduling packets 

out of the queues. The scheduling is performed based on the 
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VirtualClock algorithm or one of the other scheduling mechanisms 

currently implemented in OPNET.  

3.3.1 State transition diagram 

We expanded and modified the state transition diagram of the already 

existing OPNET process model ip_output_iface. Fig. 3.3 shows the 

original ip_output_iface state transition diagram. As mentioned above, 

this process is in charge of performing other scheduling algorithms like 

FIFO, Weighted Fair Queuing (WFQ), Priority Queuing (PQ), and Custom 

Queuing (CQ).  

 

Congestion avoidance mechanisms like Random Early Detection (RED) 

and Weighted Random Early Detection (WRED) are also handled by this 

child process. In addition to those, this process is Resource Reservation 

Protocol (RSVP) aware. It means that the configuration of the queues can 

be managed upon a RSVP request. 

 

The state transition diagram of the VirtualClock algorithm consists of 

four states: init, enqueue, dequeue, and idle, as shown in Fig. 3.4 The 

init, enqueue, and dequeue states are all forced states and the idle state 

is an unforced state. These states are incorporated within the state 

transition diagram of the ip-output_iface process model. The state 

transition diagram functions as follows: 
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Fig. 3.3  State transition diagram of ip_output_iface process model. 

 

When a packet arrives to the ip layer process model, the scheduling 

process model is invoked. At the invocation time, the process enters the 

init sates in which some initializations for the variables and structures 

are done. Since the idle state has no transition conditions, the process 

enters the idle state immediately after the executives in the init state are 

executed. The idle state is an unforced state and the enter executive of 

the idle sates is blank, so after the process has entered this state, it 

remains idle until it receives an interrupt.  
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Fig. 3.4  State transition diagram of the VirtualClock process model. 

 

There are two interrupts that cause the process to move from init state to 

either the enqueu or dequeue states. Depending on the origin of the 

interrupt one of the outgoing conditions of the idle state is satisfied, 

which will take the process to the next state. The interrupt may originate 

from the ip_rte_v4 process model upon arrival of a packet from the upper 

layer. This will cause the RECEIVE_PACKET condition to be satisfied and 

takes the process to the euqueue state. In the enqueue state the packet 

is assigned to one of the existing queues in the router’s output 

interfaces  according to the classification table that is defined in the IP 

QoS configuration object. The process then returns to the idle state. The 

interrupt might also originate from the process itself when it is time to 

send a packet to the outgoing link. This interrupt is called a self-

interrupt and when it happens the SEND_PACKET condition is satisfied, 

taking the process to the dequeue state. So, the process enters the 

dequeue state when the last packet has just been transmitted to the 

outgoing link. This state is in charge of choosing the queue from which 

the next packet has to be transmitted according to the VirualClock 
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algorithm. The details of the VirtualClock implementation are described 

step by step below as functions done in the enqueue and dequeue states. 

3.3.2 Enqueue state 

When a packet arrives from an upper layer process, it enters the 

enqueue state. The function of the enqueue state is as follows: 

 

Step 1.  Get the incoming packet. 

Step 2. Determine the queue to which the packet belongs according to 

the flow associated with the incoming packets. The flow recognition 

criteria are: packet source address, destination address, incoming port 

number, outgoing port number, and required Type of Service (ToS).  

Step 3. Check whether the packet is the first packet of its flow. This is 

performed by setting a boolean flag for each queue. The flag is set to true 

upon arrival of the very first packet, and is checked every time a packet 

enters the enqueue state. If the packet is the first packet of the flow, VCi 

and auxVCi of the queue corresponding to flowi are initialized with the 

real time. 

Step 4. Get the ARi of flowi and calculate Vticki for the packet’s queue.  

Step 5. Advance VCi and auxVCi by Vticki and stamp the packet with 

auxVCi. The stamping is implemented by using OPNET’s data type called 

Interface Control Information (ICI). ICI contains fields for user-defined 

parameters to be shared by multiple entities in the network. After 

advancing the auxVC for each packet, the auxVC value is saved in the 

a_Virtualcl_Clock_Stamp field in the ICI named ip_arp_req_v4. Then, the 

ICI is associated with the packet, and remains with it as long as the 

packet is waiting in the queue. The a_Virtual_Clock_Stamp field is 
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accessed in the dequeue state in order to choose the packet with the 

lowest auxVC value to be sent to the output interface.  

Step 6. If there are no packets waiting in other queues, the packet is 

sent out immediately. Otherwise, it will remain in its associated queue 

and the process control returns to the idle state.  

3.3.3 Dequeue state 

The packet enters the dequeue state when it is time for it to be 

dequeued. The operations conducted in the dequeue state are: 

 

Step 1.  Send the packet to the network interface.  

Step 2. Get the ICI named ip_arp_req_v4 associated with the packet, and 

read its a_Virtual_Clock_Stamp field.  

Step 3. If there are no packets in other queues, return to the idle state. 

Otherwise, choose the next packet to be dequeued. In order to select the 

correct packet to be serviced, check all the queues by looking at the 

auxVC stamp value of the packets located at the head of the queues. The 

packet with the lowest auxVC stamp value is chosen as the next packet 

to be serviced. In case there is more than one packet with an identical 

stamp value, the priority is given to the packet from the queue with the 

lowest index.  

Step 4.  Schedule the time at which the selected packet should be 

serviced, and return to the idle state. This time is calculated by dividing 

the packet size (bits) by the link rate (bits/sec). 
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Fig. 3.5  Enqueue state flowchart of VirtualClock state transition 

diagram. 

Get incoming packet from
memory

Get the ICI coming with the
packet

ICI associated with the
packet?

End the simulation

Calculate time to send packet

Any connected interface
Destroy  ICI associated with

the packet

Interface processor busy?

Get the defined AR value of the
queue from the QoS

Configuration data base object

Calculate  Vtick variable for
packet according  its queue's

Vtick

Update  auxVC with maximum
of auxVC and current simulation

time

Calculate VC and auxVC  for
packet

Insert VC  and auxVC to the
packet's ICI

Calculate the time it takes to
process the packet

(packet size/ link speed)

Schedule an interrupt at time =
current time + packet processing

time

Mark the processor of the interface
as busy

Write statistics for VC and auxVC

Insert the packet  into its
associated queue

First packet entering
queue?

Interface processor busy?

No

Insertion is done
successfully?

Set the Insert_ok flag to TRUE
or FALSE accordingly

Initialize the VC  and auxVC
variables to the current

simulation  time

yes

NoYes

Able to access packet? No

Yes

No

Destroy the packet

No

Register the statistics for the
queue

Queue statistics
registered?

No

Insert_ok = TRUE?

Write statistics for VC and
auxVC variables

Yes

No

Drop the packet and update
the dropped packets statistics

for the queue

Drop the packet and update the
dropped packets statistics for

the queue

Yes

No

Yes or
No

Get queue where packet has to
be enqueued according to the
classification table in the QoS

Configuration  object

Yes

No



51 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.6  Dequeue state flowchart of VirtualClock state transition 

diagram. 
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Figs. 3.5 and 3.6 show the flowcharts for the enqueue and dequeue 

states of VirtualClock state transition diagram, respectively.  

3.4 IP QoS Configuration object  

IP QoS Configuration is an OPNET Common Attribute object that allows 

the definition of a queuing profile for any of the QoS schemes used by IP 

nodes in OPNET. The advantage of using this global object is that once 

you define the scheme you can simply refer to the scheme on individual 

IP objects [23]. 

3.4.1 Definition of the VC Profiles structured attribute 

We added a new attribute (VC Profiles) for the VirtualClock algorithm in  

qos_attribute_definer process model. This process model is used to define 

the functionality of OPNET’s IP QoS Configuration object node model.  

 

By assigning values to the sub-attributes of the VC Profiles attribute, 

users will be able to define their own VirtualClock queuing profiles for 

the outgoing interface. This attribute has three sub-attributes: Profile 

Name, Buffer Capacity, and Queues Configuration. These attributes 

define the queuing parameters of each interface.  

 

 Profile Name is the name of the queuing management profile. The 

queuing attributes of each interface are identified by a profile name. 

Buffer Capacity shows the size of buffer for each interface. When the 

value for this sub-attribute is reached, the interface enters the state of 

congestion; otherwise the queues can still store packets.  



53 
 

Queues Configuration sub-attribute enables the users to define an 

optional number of queues on each interface. This sub-attribute, which 

is a compound attribute itself, is shown as a table with each row 

representing a separate queue. The following attributes apply to each 

queue: Arrival Rate, Classification Scheme, and Maximum Queue Size.  

 

Arrival rate is the expected packet arrival rate of the flow entering the 

queue. Maximum Queue Size is the maximum allowable number of 

packets per queue. This is used when the interface is congested. It 

means that when the total number of buffered packets in all the queues 

is reached if the total number of packets in each queue exceeds this 

value, packets will be dropped from that queue. 

 

The Classification Scheme sub-attribute defines the criteria for the 

packet in order to enqueue it. There are six distinct criteria: ToS, 

protocol, source IP address, destination IP address, source port number, 

destination port number, and the incoming interface from which the 

packet entered the router.  

 

Fig. 3.7 shows the structure and the hierarchy of the VC Profiles 

attribute and its sub-attributes through an example. As an example we 

have created a profile for VirtualClock algorithm called Flow Based 

shown in Fig. 3.7 (a). Fig. 3.7 (b) shows that this profile has four queues 

with different Arrival Rates and the same Maximum Queue Size of 500 

(packets). The classification criteria for these queues are represented in 

Fig. 3.7. (c). This figure shows that the packets originated from source 

with an IP address of 1.1.1.1, or the packets that have entered the router 
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from Interface = 0 and have the ToS = Best Effort (0) are all allocated to 

Q0. 

 

 

 
(a) 
 

 
(b) 
 

 
(c)  

Fig. 3.7  (a) VC Profiles, (b) Queues Configuration, and (c) Classification 

Schemes tables of the IP QoS Configuration object. 

 

 

 

and 

or 
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3.4.2 Introducing the VC Profiles to the global database 

In order to make the VC Profiles structured attribute and its sub-

attributes recognizable to the network-wide database, we have 

implemented a function called attr_def_VC_profiles_info_parse( ). This 

function is implemented in the qos_attribute_definer process model, 

where we previously defined the VC Profiles attribute and its sub-

attributes. The function parses the information defined in the compound 

attribute VC Profiles. It also creates instances for the data structure QM 

Information, allocates memory to these instances and stores the parsed 

information in them. The QM Information structure contains general 

queuing information for each interface. As mentioned before, the 

queuing attributes of each interface is identified by a profile name. Each 

profile contains many queues and each queue can have a list of queue 

classification criteria. The QM Information structure contains the 

following fields: 

� name: name of the queuing profile interface 

� no_queues: number of queues in the interface 

� max_total_no_buff_pkts: maximum number of buffered packets 

� queue_configuration: which is a structure itself and stores the 

queues’ parameters 

� classification_list_ptr: a pointer to the structure that stores criteria 

to classify packets. 

 

The information parsed from the VC Profiles table is stored in the first 

three fields of the QM Information Structure. Parsed information from 

the Queues Configuration and Classification Scheme tables are stored in  
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queue_configuration and classification_list_ptr fields of the structure, 

respectively. After storing the parsed information into the allocated 

memory, the attr_def_VC_profiles_info_parse( ) function registers the 

information into the attribute database in order to provide access from 

network objects to the information. Flow chart shown in Fig. 3.8 

represents the step-by-step operations of this function.  

3.4.3 Configuration of the IP objects 

After defining the common attributes in the global database, we should 

create an interface to these attributes in all the OPNET IP objects that 

desire to use the VirtualClock as a scheduling technique on their output 

interfaces. Thus, we have defined the attribute values shown in Fig. 3.9 

in the IP layer process model of the IP objects. These attribute values are 

defined for two sub-attributes of the IP Address Information compound 

attribute of the ip_rte_v4 process model. The IP Address Information 

attribute allows the configuration of the object’s output interfaces.  

 

Fig. 3.9 (a) depicts the Ip Address Information compound attribute. Each 

row in the table is related to one interface and each column in the table 

defines the attributes of the interface. As revealed in Fig. 3.9 (b) the QoS 

info sub-attribute of each interface shows the QoS related parameters 

such and management scheme used for that certain interface. This sub-

attribute includes: scheduling mechanism (FIFO, WFQ, Priority 

Queuing, Custom Queuing, and VirtualClock), queuing profile, queue 

management mechanism (RED, WRED), bandwidth management 

mechanism (Committed Access Rate), and if RSVP is supported on the 

interface, the attributes of RSVP. For the queuing profile filed, one of the 
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profiles that have previously been defined for each queuing scheme in 

the QoS Configuration Object can be chosen. 

 

Access the compound attribute
VC Profiles

All the queuing profiles are
parsed?

Determine the number of
queuing profiles

Access the  row indicating the
queuing  profile

Allocate memory of size QM
Information structure to store

the information about the
current profile

Allocate memory for the queues
of size:

number of queus x size of
queue_configuration sturcture

Access the profile name and
store it in the name field of QM

Information sturcture

Access the  Buffer Capacity and
store it in the

max_total_no_buff_pkts  field of
QM Information  structure

Determine the number of
queues

Create a list for storing the
queue  classification schemes

Access the Queues
Configuration Structure

Access and Store the queue
attirbutes in the

queue_configuration fields of
QM Information structure

Access all  the classification
criteria for the queue

Queue_index > number of
queues?

Queue_index = 0

Store the Classification Criteria
to the classification list

Queue_index + = 1

Register the data to the
network-wide database by
passing the pointer to  QM

Information

Yes

No

Yes

 
 

Fig. 3.8  Flowchart of the attr_def_VC_profiles_info_parse( ) function. 
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Fig. 3.9  (a) IP Address Information, (b) QoS Information, (c) Queuing 

Profile, and (d) Queuing Scheme tables of the IP router objects. 
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As illustrated in Fig. 3.9 (d), We have added VC as a possible value for 

the Queuing Scheme sub-attribute and also Flow Based as a sample VC 

Profile value for the queuing profile sub-attribute, shown in Fig. 3.9 (c).  
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Chapter 4 

 VirtualClock Model Verification 

In this Chapter we will show the correctness and the functionality of the 

implemented VirtualClock model by running simulations. For this 

purpose, we use OPNET software tool version 7.0.L. We introduce two 

scenarios: a simple scenario in which there are two sources creating 

conforming traffic with a constant packet generation rate. In this 

scenario, we keep track of the packets’ arrival and departure times into 

and from the ip_output_iface process model.  We also examine the 

packets’ Virtual Clock and aux Virtual Clock stamps to see how the 

VirtualClock algorithm selects and forwards packets according to the 

stamps. In the second scenario, which is a more complex one, we 

examine the functionality of the VirtualClock algorithm during 

conforming and nonconforming periods of time.  

4.1 Model verification  

In order to evaluate the performance of the VirtualClock process model, 

we have created the simple network model in the OPNET’s network 

editor. The network model is shown in Fig. 4.1. 

 

This is an ideal scenario in which both sources are generating packets 

according to their specified packet rates. The Ethernet network consists 

of two clients sending traffic to associated servers via  switches and 

routers. Clients 1 and 2 generate 1,024 byte IP packets at a constant 

rate of 10 and 5 packets/sec, respectively. 
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All the nodes in the network are connected with 10BaseT links with a 10 

Mbps data rate. The only link in the network that has a lower capacity is 

the link between Routers 1 and 2, chosen to be a DS0 link with a 64 

Kbps data rate. The bottleneck link is positioned immediately before the 

output interface of Router 1 where the VirtualClock scheduling 

algorithm is implemented. Hence, we can observe the order in which the 

packets are dequeued by the VirtualClock algorithm. 

 

 

 

 

 

 

 

 

Figure 4.1  Network model for performance verification of the 

VirtualClock algorithm. 

 

Incoming packets from Clients 1 and 2 are destined for Servers 1 and 2, 

respectively. The packets are sorted into two distinct queues and ordered 

out of the queues according to their specified packet rates. 

In the VC Profile of the IP QoS Configuration object, we defined a new 

queuing profile named Flow Based. This profile has two rows. Each row 

represents a queue with the following parameter settings: 

• Arrival Rate0 = 10, Queue Size0 = 500 
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• Arrival Rate1 = 5, Queue Size1 = 500. 

 

The following figures are simulation results, obtained from OPNET, to 

show the validity of the algorithm. Incoming packets from Client 1 are 

recognized as a flow and are assigned to the first queue (Q0).  
 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.2  Incoming traffic to queues: Q0 (top) and Q1 (bottom), in 

(packets/sec) vs. time. 

 

Packets from the second flow, coming from Client 2, are assigned to the 

second queue (Q1). The incoming traffic to queues Q0 and Q1 is shown 

in Fig. 4.2. 

Fig. 4.3 illustrates the VC stamp values of the packets in queues Q0 and 

Q1, respectively. The stamp values are calculated upon packet arrivals to 

the enqueue state of the scheduling process. As expected, when a packet 

arrives to a particular queue, the queue’s VC increases by 1/AR of the 
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particular queue (0.1 for Q0, and 0.2 for Q1), and  the arriving packet is 

stamped with the value VC. 

 

 

 

 
 

 

 

 

 

 

 

Fig. 4.3  Virtual Clock (VC)  stamp vs. packet arrival time (sec) for 

queues: Q0 (top) and Q1 (bottom).  
 

Fig. 4.4 shows the auxiliary Virtual Clock (auxVC) stamp values of the 

packets in queues Q0 and Q1 that are sent to the outgoing interface. We 

expect the VirtualClock algorithm to be a fair algorithm that assigns the 

bandwidth fairly to the flows according to their negotiated packet 

generation rates. Because the specified arrival rate of the first flow is 

twice that of the second flow, we expect that the scheduling algorithm 

will send two packets from Q0 for each packet sent from Q1, as 

illustrated in Figure 4.5. 
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Fig. 4.4  Auxiliary Virtual Clock (auxVC) vs. packet departure time (sec) 

for queues Q0 (dark) and Q1 (light). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5  Outgoing traffic from queues: Q0 (top) and Q1 (bottom), in 

(packets/sec) vs. time (sec). 
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Time Action State auxVC Queue 

5 Q1 packet arrives and scheduled for t = 5.12 enqueue 5.2 Q1 

5.1 Q0 packet arrives and queued enqueue 5.2 Q0 

5.12 Q1 packet is sent dequeue 5.2 Q1 

5.12 Q0 packet is selected and scheduled for t = 5.24 dequeue 5.2 Q0 

5.2 Q0 packet arrives and queued enqueue 5.3 Q0 

5.2 Q1 packet arrives and queued enqueue 5.2 Q1 

5.24 Q0 packet is sent dequeue 5.2 Q0 

5.24 Q0 packet is selected and scheduled for t = 5.36 dequeue 5.3 Q0 

5.3 Q0 packet arrives and queued enqueue 5.4 Q0 

5.36 Q0 packet is sent dequeue 5.3 Q0 

5.36 Q1 packet is selected and scheduled for t = 5.48 dequeue 5.4 Q1 

5.4 Q0 packet arrives and queued 5.48 enqueue 5.5 Q0 

5.4 Q1 packet arrives and queued enqueue 5.6 Q1 

5.48 Q1 packet is sent dequeue 5.4 Q1 

5.48 Q0 packet arrives and scheduled for t = 5.6 enqueue 5.4 Q0 

5.5 Q0 packet arrives and queued enqueue 5.6 Q0 

5.6 Q0 packet arrives and queued enqueue 5.7 Q0 

5.6 Q1 packet arrives and queued enqueue 5.8 Q1 

5.6 Q0 packet is sent dequeue 5.4 Q0 

5.6 Q0 packet is selected and scheduled at t = 5.72 dequeue 5.5 Q0 

5.7 Q0 packet arrives and queued enqueue 5.8 Q0 

5.72 Q0 packet is sent dequeue 5.5 Q0 

5.72 Q0 packet is selected and scheduled at t = 5.8 dequeue 5.6 Q0 

5.8 Q0 packet arrives and queued enqueue 5.9 Q0 

 

Table 4.1  Timetable for state transition diagram of VirtualClock.  
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Pkt

#  

 

Pkt 

arrival 

time  

Expected 

VC 

upon pkt 

arrival  

VC 

upon 

pkt 

arrival  

Expected 

auxVC upon pkt 

arrival  

Pkt 

departur

e time  

Expected 

auxVC 

upon pkt  

departur

e  

1 5.1 5.0 + 0.1 = 5.2 5.2 5.0 + 0.1 = 5.2 

5.2 >5.1 (real time) 

5.2 5.2 

2 5.2 5.2+ 0.1 = 5.3 5.3 5.2 + 0.1 = 5.3 

5.3 > 5.2 (real time) 

5.4 5.3 

3 5.3 5.3 + 0.1 = 5.4 5.4 5.3 + 0.1 = 5.4 

5.4 > 5.3 (real time) 

5.5 5.4 

4 5.4 5.4 + 0.1 = 5.5 5.5 5.4 + 0.1 = 5.5 

5.5 > 5.4 (real time) 

5.6 5.5 

5 5.5 5.5 + 0.1 = 5.6 5.6 5.5 + 0.1 = 5.6 

5.6 > 5.5 (real time) 

5.6 5.6 

6 5.6 5.6 + 0.1 = 5.7 5.7 5.6 + 0.1 = 5.7 

5.7 > 5.6 (real time) 

5.8 5.7 

7 5.7 5.7 + 0.1 = 5.8 5.8 5.7 + 0.1 = 5.8 

5.8 > 5.7 (real time) 

5.9 5.8 

8 5.8 5.8 + 0.1 = 5.9 5.9 5.8 + 0.1 = 5.9 

5.9 > 5.8 (real time) 

6.1 5.9 

9 5.9 5.9 + 0.1 = 6.0 6 5.9 + 0.1 = 6.0 

6.0> 5.9 (real time) 

6.2 6.0 

10 6.0 6.0 + 0.1 = 6.1 6.1 6.0 + 0.1 = 6.1 

6.1> 6.0 (real time) 

6.4 6.1 

 

Table 4.2  Verification table for Q0, AR = 10 (packets/sec). 
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Pkt

#  

 

Pkt 

arrival 

time  

Expected 

VC 

upon pkt 

arrival  

VC 

upon 

pkt 

arrival  

Expected 

auxVC upon pkt 

arrival  

Pkt 

departur

e time  

Expected 

auxVC 

upon pkt  

departur

e  

1 5.0 5.0 + 0.2 = 5.2 5.2 5.0 + 0.2= 5.2 

5.2 >5.0 (real time) 

5.1 5.2 

2 5.2 5.2+ 0.2 = 5.4 5.4 5.2 + 0.2= 5.4 

5.4> 5.2 (real time) 

5.4 5.4 

3 5.4 5.4 + 0.2 = 5.6 5.6 5.4 + 0.1 = 5.6 

5.6> 5.4 (real time) 

5.8 5.6 

4 5.6 5.6 + 0.2 = 5.8 5.8 5.6 + 0.2 = 5.8 

5.8 > 5.6 (real time) 

6.2 5.8 

5 5.8 5.8 + 0.2 = 6.0 6.0 5.8 + 0.2 = 6.2 

6.0 > 5.8 (real time) 

6.5 6.0 

6 6.0 6.0 + 0.2 = 6.2 6.2 6.0 + 0.2 = 6.2 

6.2 > 6.0 (real time) 

6.9 6.2 

7 6.2 6.2 + 0.2 = 6.4 6.4 6.2 + 0.2 = 6.4 

6.4 > 6.2 (real time) 

7.2 6.4 

8 6.4 6.4 + 0.2 = 6.6 5.6 6.4 + 0.2 = 6.6 

6.6 > 6.4 (real time) 

7.6 6.6 

9 6.6 6.6 + 0.2 = 6.8 6.8 6.6 + 0.2 = 6.8 

6.8 > 6.6 (real time) 

8.0 6.8 

10 6.8 6.8 + 0.2 = 7 7.0 6.8 + 0.2 = 7.0 

7.0 > 6.8 (real time) 

8.3 7.0 

 

Table 4.3  Verification table for Q1, AR = 5 (packets/sec). 

 

Tables 4.1 shows the timetable of VirtualClock state transition diagram. 

Tables 4.2 and 4.3 are used to verify the values of VC and auxVC 

variables for queues:Q0 and Q1. 

 



68 
 

4.2 Functionality test 

We use OPNET simulation tool to evaluate the performance of the 

VirtualClock algorithm in the simulation scenario similar to the scenario 

described in Fig. 4.1. The VirtualClock scheduler model is used inside 

the IP router node.  

 

In our scenario, we consider two conforming and one nonconforming 

sources. The first conforming source has constant packet generation 

rate. The third source which is also conforming, generates traffic with 

self-similar characteristics, which fluctuates around its specified average 

packet arrival rate. The nonconforming source generates packets with a 

constant rate. For a short period of time, it conforms to its negotiated 

packet generation rate. After this short period, the source decreases its 

rate for a while in order to gather credits for sending a burst of packets 

at a rate that is four times its expected rate. This behavior for the 

nonconforming source is chosen so that we could examine the reaction 

of the VirtualClock algorithm in situations when a misbehaving source 

wants to use the credits gained for sending a burst of traffic. 

 

The network topology is similar to the topology shown in Fig. 4.1, with 

an additional source and destination. In this scenario, we use three 

Ethernet clients to send traffic to three Ethernet servers. All the nodes 

are connected with 10BaseT links, except the DS0 link between Routers 

1 and 2. The specified packet arrival rates of Clients 1, 2, and 3 are 4, 2, 

and 2 packets/sec, respectively. These rates are assigned in the VC 

Profile of the IP QoS Configuration object. In the VC Profile, we defined a 
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queuing profile Flow Based1 that contains three rows. Each row 

represents a queue with the following parameter settings: 

• Arrival Rate0 = 4, Queue Size0 = 500 

• Arrival Rate1 = 2, Queue Size1 = 500 

• Arrival Rate2 = 2, Queue Size2 = 500. 

 

Client 1 starts sending packets at time 20 sec. Using an exponential 

process, It generates IP packets of size 1,024 bytes at a constant rate of 4 

packets/sec, and stops at 555 sec. Client 2 also generates 1,024 bytes IP 

packets. It begins generating traffic at a constant rate of 2 packets/sec at 

20 sec. At time = 142.5 sec, it reduces the traffic rate and keeps on 

sending packets at a rate of 0.5 packets/sec for 250 sec. At 392.5 sec, it 

increases its rate and continues sending packets at a rate of 8 

packets/sec until time 455 sec. Client 3 is an OPNET 

ethernet_rpg_wkstn_adv source node model. This source is chosen from 

OPNET’s Raw Packet Generator (RPG) model [24]. RPG is a traffic source 

model that is used to generate self-similar traffic [30]. 

 

The reason for choosing a self-similar traffic generator in our scenario is 

that we wanted to make our network congested with a traffic that 

behaves like today’s genuine networks traffic. Measurements conducted 

on Bellcore Ethernet traffic first indicated the self-similar characteristic 

of the traffic. The measurements showed that traffic pattern seemed 

similar over the large time scales (hours and minutes) and small time 

scales (seconds and milliseconds) [15, 19]. Later on, the self-similar 

behavior has been observed in the traffic of a number of other network 

applications like HTTP traffic, video traffic, and Motion Pictures Experts 
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Group (MPEG) traffic [15]. The self-similar traffic model is used to 

capture the fractal properties of Internet traffic.  

 

Client 3 starts at 5 sec and sends traffic with the following specifications: 

• Average arrival rate = 2  (packets/sec) 

• Hurst parameter = 0.9 

• Fractal onset time scale = 0.1. 

 

Fig. 4.6 shows the incoming traffic from Clients 1, 2, and 3 to Router 1’s 

queues Q0, Q1, and Q2, respectively. Fig. 4.7 depicts the Virtual Clock 

(VC) stamp values of the packets in queues Q0, Q1, and Q2. The slope of 

the (VC) graph for Qi is calculated as: slope i = Vticki / (1/ ARi). 

 

If a flow is conforming to its expected packet generation rate, the values 

of Vtick and 1/AR are identical. Hence, its VC slope is equal to 1.  As it 

can be seen in Fig. 4.7 (top), flow0 adheres to its specified packet arrival 

rate. Thus, the slope of the Virtual Clock graph is 1. Fig. 4.7 (middle) 

indicates that the slope of the graph changes at instances when packet 

arrival rate of the flow changes. For the periods during which traffic has 

a lower arrival rate (142.5 sec ­ 392.5 sec), Virtual Clock line has slope < 

1. For higher arrival rate periods (392.5 sec - 455 sec), we observe a 

steeper line with slope > 1. Fig. 4.7 (bottom) shows that, for a flow 

fluctuating around its specified arrival rate, the Virtual Clock graph is 

close to a line with slope 1. 
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Fig. 4.6  Incoming traffic to queues: Q0 (top), Q1 (middle), and Q2 

(bottom) in (packets/sec) vs. time.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.7  Virtual Clock (VC) stamps vs. packet arrival time (sec) for 

queues: Q0 (top), Q1 (middle), and Q2 (bottom). 
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Fig. 4.8 displays the auxiliary Virtual Clock stamp values (auxVC) of 

packets in queues Q0, Q1, and Q2. The role of this variable is to prevent 

the flows from gathering credits by not sending traffic for a period of 

time and then suddenly sending a burst of traffic. This is achieved by 

upgrading the auxiliary Virtual Clock value to the larger value between 

auxVC and real time. 

 

Figs. 4.7 and 4.8, show that the Virtual Clock and auxiliary Virtual Clock 

graphs of packets coming to Q0 (top) and Q2 (bottom) have the same 

slope, because the flows have been conforming to their expected sending 

rate. In contrast, the traffic to Q1 reduces its rate at 142.5 sec. This is 

shown as the difference between the slopes of the Virtual Clock and 

auxiliary Virtual Clock in Figs. 4.7 and 4.8 (bottom) from 142.5 sec to 

392 sec. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.8  Auxiliary Virtual Clock (auxVC) stamps vs. packet arrival time 

(sec) for queues: Q0 (top), Q1 (middle), and Q2 (bottom). 
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Fig. 4.9  Auxiliary Virtual Clock (auxVC) stamps vs. packet departure 

time (sec) for queues: Q0 (top), Q1 (middle), and Q2 (bottom). 

 

Fig. 4.9 shows the auxiliary Virtual Clock (auxVC) stamp values of the 

packets in queues Q0, Q1, and Q2 that are being sent to the outgoing 

interface. 

 

Fig. 4.10 shows the outgoing traffic from queues Q0, Q1, and Q2 of 

Router 1, after being scheduled by the VirtualClock algorithm. In case 

the total link traffic does not exceed the link’s capacity, the algorithm 

allocates bandwidth to flows according to their specified packet arrival 

rates. If there is no available bandwidth, the traffic from a flow that is 

exceeding its specified arrival rate will be queued and serviced with the 

flow’s specified arrival rate. The packets are dropped when the queue 

becomes full.  
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Fig. 4.10  Outgoing traffic from queues: Q0 (top), Q1 (middle), Q2 

(bottom) in (packets/sec) vs. time (sec).  

 

It can be seen from Figs. 4.6 and 4.10 (top) that since Client 1 is sending 

traffic according to its specified arrival rate of 4 packets/sec, the queue 

Q0 is served with the same rate. 

 

As seen from Figs. 4.6 and 4.10 (middle), traffic from Client 2  is serviced 

with its arrival rate while it conforms to its specified packet rate (2 

packets/sec until 142.5 sec and 0.5 packets/sec from 142.5 sec to 392.5 

sec). When the client starts sending packets with arrival rate of 8 

packets/sec, which is four times the expected rate, the VirtualClock 

schedules packets with the flow’s expected packet rate (2 packets/sec). 

The total bandwidth is used by the three sources until 555 sec, when 

Client 1 stops sending traffic. At that time, part of the bandwidth will be 

freed and the traffic from Q1 will be serviced at a higher rate. 
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As seen in Figs. 4.6 and 4.10 (bottom), Client 3 generates self-similar 

traffic. The Virtual Clock algorithm forwards packets at a rate of 2 

packets/sec, which is the average traffic generation rate of the source. 
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Chapter 5 

Simulation Results 

In this section we describe a series of simulation experiments. These 

simulation experiments are conducted in order to compare the 

functionality of the VirtualClock scheduling algorithm with several other 

scheduling mechanisms, such as First In First Out (FIFO), Weighted Fair 

Queuing (WFQ), Custom Queuing (CQ), and Priority Queuing (PQ). The 

selected mechanisms are commonly used as congestion management 

techniques in today’s IP routers. These routers are mainly produced by 

manufacturers like Cisco, Inc. and Juniper Networks, which are the 

leaders in network backbone router manufacturing. WFQ is Cisco’s 

premier queuing mechanism. The other two algorithms (CQ and PQ) are 

also being used in its routers [5]. “For example Cisco Uses PQ to ensure 

that important Oracle-Based sales reporting data gets serviced ahead of 

other less critical traffic [5].” CQ is the queuing mechanism that Juniper 

Networks uses in its products [16, 17].  

 

Our simulation experiments are conducted using two different scenarios 

for analysis and comparison of various performance aspects of the 

VirtualClock scheduling mechanism. The first scenario emulates an 

ideal situation in which sources follow their expected packet generation 

rates, except for the periods during which they do not conform to these 

rates. We look at the functionality of the scheduling mechanisms during 

the whole simulation time, specifically the nonconformance periods. In 

the second scenario we emulate a network, running traffic from real 

Internet applications: Hypertext Transfer Protocol (HTTP), File Transfer 
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Protocol (FTP), IP Telephony, and videoconferencing. We will study the 

impact of VirtualClock and other scheduling mechanisms on the 

performance of these applications during congestion periods. Following 

we describe the above mentioned simulation Scenarios 1 and 2 and 

explain the performance results driven by running simulations using 

the OPNET simulation tool. 

5.1 Simulation Scenario 1 

The purpose of this scenario is to compare the functionality of the 

VirtualClock scheduling mechanism with the above mentioned 

scheduling mechanisms. We look at the performance of these algorithms 

in comparison to VirtualClock for the time periods during which: 1) all 

sources conform to their specified traffic generation rate, 2) some 

sources decrease their traffic generation rate in order to collect credit for 

the periods with high traffic generation rate, and 3) sources try to use 

the collected credit for sending traffic with a rate larger than their 

expected traffic rate.  

 

We compare the fairness of the algorithms in terms of allocating 

bandwidth to these sources at the congested point in the network and 

also the amount of buffer usage, number of dropped packets, and 

queuing delay in the allocated queues to each source. 

 

This scenario is identical to the functionality test scenario in Chapter 4, 

page 67 of this document. As described before, there are three Ethernet 

clients 1, 2, and 3 sending traffic to three Ethernet servers 1, 2, and 3 

respectively. Source 1 is non-conforming and sources 2 and 3 are 
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conforming to their expected traffic generation rates. The network model 

for this scenario is shown in Fig. 5.1. 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1  Network Model for Scenario 1. 

 

All nodes in the network are connected with 10BaseT links with the 

capacity of 10Mbps. The link between Routers 1 and 2 is the network 

bottleneck and is a DS0 link with 64Kbps data rate. Thus, Router 1 does 

not have the ability to forward all the traffic that arrives to the outgoing 

link. For this reason the scheduling mechanisms are performed at the 

beginning point of the bottleneck link (Router 1). These mechanisms are 

defined as attributes of the IP QoS Configuration Object, which has to be 

used in our network if we want to perform scheduling in one of the 

routers. Fig. 5.2 shows the attributes of this object. In case of 

congestion, by employing any of the above scheduling algorithms, the 

received traffic from Clients 1, 2, and 3 are categorized and stored in 

Router 1’s output queues: Q0, Q1, and Q2, respectively. Fig. 5.3 shows 

the Incoming traffic to Q0, Q1, and Q2. All the traffic generation 
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parameters of the sources are the same as those in the network of the 

functionality scenario and are specified in page 68 and 69. 

 

 

 

 

 

 

 

 

 

Fig. 5.2  Attributes of the IP QoS Configuration object. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3  Incoming traffic to queues: Q0 (top), Q1 (middle), and Q2 

(bottom) in (packets/sec) vs. time (min). 
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In the following sub-sections, we repeat the simulation with the same 

network configuration and traffic generation parameters for the 

mentioned schedulers and compare the simulation results with the 

results of the VirtualClock scheduler. 

 

In order to configure the VirtualClock queue parameters we use the 

queuing profile Flow Based1, defined in the VC Profile attribute of the IP 

QoS Configuration object and stated on pages 67 and 68 of this 

document.   

5.1.1 VirtualClock vs. WFQ  

In this section, first we explain the configuration of the WFQ algorithm 

in OPNET. Then we show the simulation results of WFQ compared with 

VirtualClock.  

 

WFQ queue parameters are defined as sub-attributes of the WFQ Profile 

attribute of the IP QoS Configuration Object. In order to set appropriate 

values for the WFQ queue parameters, we define a new profile Flow 

Based in the WFQ Profile. This profile has three rows, and each row 

represents a queue with the following queue parameter settings: 

� Weight0 = 4, Queue Size0 = 500 

� Weight1 = 2, Queue Size1 = 500 

� Weight2 = 2, Queue Size2 = 500. 

 

WFQ assigns a weight to each flow, which determines the percentage of 

the link bandwidth assigned to each flow. Since the average arrival rate 
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to queues Q0, Q1, and Q2 are 4, 2, and 2 respectively, and the packet 

sizes are equal for all the flows, we assign queue weights in proportion to 

the packet arrival rate to these queues. Thus, the bottleneck link 

bandwidth allocations to queues Q0, Q1, and Q2 are 50%, 25%, and 

25%. The maximum length of each queue is defined by Queue Size 

attribute. When a queue is longer than the Queue Size, all the additional 

packets are dropped.  

 

Fig. 5.4 shows the outgoing traffic from queues Q0, Q1, and Q2 of 

Router 1 after being scheduled by the VirtualClock (dark graph) and 

WFQ (light graph) algorithms.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5.4  VirtualClock vs. WFQ, outgoing traffic from queues: Q0 (top), Q1 

(middle), and Q2 (bottom) in (packets/sec) vs. time (min). 
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In this scenario, if all three clients send traffic according to their 

specified traffic generation rate, the total capacity of the bottleneck link 

will be fully utilized. Otherwise, if a fair scheduling algorithm is being 

used at the congestion point, only nonconforming sources will be 

punished. 

 

Since Client 1 is conforming to its specified traffic generation rate (4 

packets/sec), it can be seen from the Fig. 5.4 (top) that both 

VirtualClock and WFQ serve the traffic from Q0 with the same rate. The 

middle graph in this figure shows that traffic from Q1 is serviced by both 

VirtualClock and WFQ with its arrival rate, while it conforms to its 

expected average arrival rate (from the beginning of the simulation until 

time 6 minutes and 32 seconds). This graph also indicates how 

VirtualClock and WFQ treat the flows fairly.  This is done by reducing 

the traffic burst from Client 2 to its specified rate when it tries to make 

use of its collected share of bandwidth during time = 2 minutes and 22 

seconds to time= 6 minutes and 32 sec in order to send a burst of traffic. 

The bottom graph shows that although Client 3 is fluctuating around its 

average traffic rate, both VirtualClock and WFQ serve Q3 with a constant 

rate equal to its specified rate (2 packets/sec).  

 

WFQ scheduling is a well-known algorithm for its high degree of fairness 

[25, 26]. By comparing the VirtualClock and WFQ outgoing traffic from 

queues Q0, Q1, and Q2, it can be concluded that VirtualClock can also 

be considered as fair as the WFQ algorithm, since these graphs for each 

queue are tightly following each other, and have exactly the same 

behavior during sources’ conforming and nonconforming periods.   
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Fig. 5.5  VirtualClock vs. WFQ, buffer usage for Q0 (top), Q1 (middle), 

and Q2 (bottom) in (packets) vs. time (min). 

 

Fig. 5.5 shows the amount of buffer usage for VirtualClock and WFQ 

queues: Q0, Q1, and Q2. The graphs: (top), (middle), and (bottom) show 

that the maximum buffer usage for all three queues occur during the 

bursty period of Client 2. By comparing the amount of the buffer usage 

in these queues, it can be seen that the buffer usage in Q0 (top graph) 

in comparison to the other queues is the lowest. The reason for this is 

that the incoming traffic to this queue has a constant rate, that is similar 

to the outgoing traffic rate. Thus, the packets from this flow do not need 

to get buffered in Q0. Although the average incoming traffic is equal to 

the average outgoing traffic from this queue, Q2 has a higher number of 

buffer usage. The reason is that since, the actual incoming traffic rate 

fluctuate around its average value, packets need to be buffered in Q2 to 

be serviced by the scheduler with a constant rate.  
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Fig. 5.6  VirtualClock vs. WFQ, total buffer usage in (bytes) vs. time 

(min). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.7  VirtualClock vs. WFQ, traffic dropped from queues: Q0 (top), Q1 

(middle), and Q2 (bottom) in (packets/sec) vs. time (min). 
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Fig. 5.6 shows the total buffer usage for VirtualClock and WFQ queues. It 

can be seen from the graph that all of the queues for these two 

algorithms are using exactly the same amount of buffer. By looking at 

Figs. 5.5 and 5.6 and comparing the amount of buffer usage (total 

amount and individually for each queue) for VirtualClock and WFQ 

queues, it can be concluded that both algorithms have the same 

behavior for buffer usage. Comparison of dropped  packets from queues: 

Q0, Q1, and Q2 is shown in Fig. 5.7. 

 

 

 

 

 

 

 

 

 

 

Fig. 5.8  VirtualClock vs. WFQ, queuing delay in queues: Q0 (top), Q1 

(middle), and Q2 (bottom) in (sec) vs. time (min). 

 

VirtualClock does not directly reduce queuing delay; however, it 

indirectly contributes to the queuing delay reduction. This is done by 

servicing individual traffic flows with their specified traffic generation 
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rates so that traffic from each source will experience minimal queuing 

delay if it is transmitting with its expected rate [38] Fig. 5.8 (top), 

(middle), and (bottom) show the queuing delay in VirtualClock and WFQ 

queues for traffic from Clients 1, 2, and 3, respectively. The graphs show 

that, the highest delay among three queues is encountered by Q1 

during the bursty period. On the other hand, the lowest delay is 

encountered by Q0, which stores the conforming flow. With a traffic rate 

that varies around its expected value, Q2 experiences higher delay 

during times when this variation is higher and lower delay during lower 

variation periods.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.9  VirtualClock vs. WFQ, traffic dropped from queues: Q0 (top), Q1 

(middle), and Q2 (bottom) in (packets/sec) vs. time (min). 

 

In order to evaluate the traffic loss behavior of the VirtualClock algorithm 

in comparison to WFQ, we reduce the value of the Queue Size attribute 
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to 30 (packets) for the three queues in both algorithms and perform the 

simulation again. The reason for initially selecting Queue Size = 500 was 

that we could completely capture the packet forwarding behavior of the 

algorithms without losing any traffic in the queues. Fig. 5.9 shows the 

dropped traffic from VirtualClock and WFQ algorithms from the queues. 

The top graph shows that since Client 1 is a conforming source and 

sends traffic with a constant rate, the traffic entering Q0 is sent out of 

the queue with its incoming rate, thus no loss happens in this queue. 

The middle graph shows that the higher number of loss happens during 

Client 2’s burst period and the amount of loss is similar for both of the 

algorithms. And the bottom figure shows that since the queue buffers 

are mostly being deployed during periods with higher variation around 

the average rate value, consequently these periods posse higher traffic 

loss.  

 

From Figs. 5.2 to 5.9 we can observe that the functionality of 

VirtualClock in terms of fairness, resource (buffer) usage, and loss is very 

close to the WFQ algorithm.   

5.1.2 VirtualClock vs. Custom Queuing 

In this section we repeat Scenario 1 using Custom Queuing as the 

scheduling mechanism in Router 1. Following that we first describe the 

configuration of Custom Queuing algorithm in OPNET, then compare the 

driven simulation results from Custom Queuing with those of 

VirtualClock algorithm. 
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As mentioned earlier, Custom Queuing assigns a certain percentage of 

the bandwidth to each queue at a potential congestion point of the 

network. This particular percentage of the bandwidth can be indirectly 

specified in terms of the Byte Count variable defined for each queue. The 

scheduler cycles through the queues in a round-robin order. At each 

queue’s turn packets are sent until the Byte Count value is exceeded, or 

the queue becomes empty. Once the Byte Count value is exceeded the 

packet that is currently being transmitted will be completely sent.  

 

Similar to WFQ and VirtualClock, Custom Queuing queue parameters 

are defined as sub-attributes of the CQ Profile attribute of the IP QoS 

Configuration object. Custom Queuing queue parameters are identified 

by defining a Flow Based Profile in the CQ Profile. Each row of this 

profile shows a queue with the following queue parameter settings: 

� ByteCount0 = 2048, Queue Size0 = 500 

� ByteCount1 = 1024, Queue Size1 = 500 

� ByteCount2 = 1024, Queue Size2 = 500. 

 

We assign values to the queue Byte Count variables in proportion to the 

expected packet arrival rate of the flows entering these queues. 

Following are the steps to be taken for determining the Byte Count value 

[5]: 

- Step 1: For each queue, divide the desired percentage of 

bandwidth allocation to each queue by the packet size 

(byte). 

- Step 2: Normalize the calculated numbers in step 1 by 

dividing them by their lowest number. 
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- Step 3: Round up the calculated values in step 2 to the next 

whole number. If the ratio values have a fraction, an 

additional packet should be sent. This step calculates the 

actual Packet Count. 

- Step 4: Multiply the calculated Packet Counts for each 

queue by that queues packet size. This step converts the 

Packet Count numbers to Byte Counts. 

In order to calculate the bandwidth distribution that the above 

Byte Count ratio allocates do the following next two steps: 

- Step 5: calculate the total number of bytes sent after the 

algorithms serves each queue once by adding up the Byte 

Counts for each queue.  

- Step 6: Calculate the percentage of number of bytes sent 

from each queue, and finally, 

- Step 7: If this number is not close enough to the desired 

bandwidth, multiply the normalized values calculated in 

step 2 by the best value and do the other steps until getting 

close enough to the desired bandwidth percentage. 

 

The average expected arrival rate to queues Q0, Q1, and Q2 are 4, 2, and 

2 and all the packets are of the same size (1024 bytes). Thus, the 

bandwidth percentage for queues Q0, Q1, and Q2 is 50%, 25%, and 

25%, respectively. The Byte Count values for the three queues are 

calculated by following the above steps. The number of serviced packets 

from queues Q0, Q1, and Q2 are 2, 1, and 1 in each round. 

 



90 
 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.10  VirtualClock vs. Custom Queuing, outgoing traffic from queues: 

Q0 (top), Q1 (middle), and Q2 (bottom) in (packets/sec) vs. time (min). 

 

Fig. 5.10 shows the outgoing traffic from queues Q0, Q1, and Q2 of 

Router 1 after being scheduled by the VirtualClock and Custom 

Queuing algorithms. The graphs (top), (middle), and (bottom) show that 

although the average outgoing traffic during different periods 

(conforming and nonconforming) is the same for both algorithms (as 

described in section 5.1), the outgoing traffic from the Custom Queuing 

algorithm has a different pattern. 

 

Graphs show that the traffic is sent from the VirtualClock queues with a 

constant rate equal to the specified traffic rate of the flows entering the 

queues. On the other hand, the traffic from Custom Queuing queues is 

sent out with a rate, which oscillates around this specified rate. 



91 
 

Therefore, the graphs illustrate that VirtualClock treats the conforming 

flows more fairly than Custom Queuing. 

 

Buffer usage individually for Q0, Q1, and Q2 and totally for VirtualClock 

and Custom Queuing queues is shown in Figs. 5.11 and 5.12, 

respectively. Fig. 5.13 shows the queuing delay that the traffic from each 

of the three sources encounter in queues Q0, Q1, and Q2. Dropped 

packets from each of these queues are illustrated in Fig. 5.14. For 

measuring the traffic dropped statistic, we set the Queue Size = 30, the 

same as stated in section 5.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.11  VirtualClock vs. Custom Queuing, buffer Usage for queues: Q0 

(top), Q1 (middle), and Q2 (bottom) in (packets) vs. time (min). 
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Fig. 5.12  VirtualClock vs. Custom Queuing, total buffer usage for 

queues in (bytes) vs. time (min). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.13  VirtualClock vs. Custom Queuing, queuing delay in queues: 

Q0 (top), Q1 (middle), and Q2 (bottom) in (sec) vs. time (min). 
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Fig. 5.14  VirtualClock vs. Custom Queuing, traffic dropped from queues: 

Q0 (top), Q1 (middle), and Q2 (bottom) in (packets/sec) vs. time (min). 

 

Comparing the performance of VirtualClock and Custom Queuing in our 

simulation scenario by looking at Figs. 5.10 to 5.14, we can conclude 

that VirtualClock behaves more fairly than Custom Queuing. The 

constant pattern of traffic being scheduled by VirtualClock from different 

queues in comparison to the oscillating pattern of traffic from Custom 

Queuing proves this. On the other hand the functionality of these 

algorithms in terms of Buffer usage, queuing delay, and packet loss is 

very similar. However, WFQ and Custom Queuing behave more similarly 

in terms of the mentioned performance measurements.  

5.1.3 VirtualClock vs. Priority Queuing 

We replicate Scenario 1, employing the Priority Queuing scheduling 

algorithm at the output queues of Router 1 and re-running the 
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simulations. In this section, we will explain the allocation of priority 

queues to flows from different sources. Then we observe the performance 

similarities and dissimilarities between VirtualClock and Priority 

Queuing.  

 

In Chapter 2.5.2, we described the basic idea behind the Priority 

Queuing (PQ) mechanism. Using this mechanism, traffic can be 

prioritized into 4 priority classes: High, Medium, Normal and Low. For 

PQ implementation in OPNET, there is one queue associated with each 

priority group. Unclassified packets assigned into the normal queue. The 

traffic from higher priority queues will get preferential service over lower 

priority queues. 

 

In this scenario we allocate traffic from Clients 1, 2, and 3 to low, 

medium, and high priority queues respectively. Similar to VirtualClock, 

WFQ, and Custom Queuing, PQ queue parameters are defined as sub-

attributes of PQ Profile attribute of the IP QoS Configuration Object. The 

Flow Based Profile defines the three priority queues and their priorities. 

The priority of the queues is assigned by their location order and 

increases by increasing the queue number, meaning that Q2 has the 

highest and Q0 has the lowest priority. 

 

� Low Priority, Queue Size0 = 500 

� Medium Priority, Queue Size1 = 500 

� High priority, Queue Size2 = 500. 
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Fig 5.15 shows the outgoing traffic from VirtualClock and PQ queues. 

The bottom graph shows the traffic sent from Q2, the PQ’s highest 

priority queue. The sent and received traffic of this queue using PQ are 

exactly the same, since the highest priority queue has access to the total 

link bandwidth. On the other hand, while the incoming traffic to this 

queue has variation around its specified traffic rate, VirtualClock 

regulates the outgoing traffic with a constant rate equal to the flow’s 

specified rate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.15  VirtualClock vs. Priority Queuing, outgoing traffic from queues: 

Q0 (top), Q1 (middle), and Q2 (bottom) in (packets/sec) vs. time (min). 

 

The middle graph shows the outgoing traffic from Q1 (PQ’s medium 

priority queue). Only during the traffic’s nonconformance period the 

outgoing traffic is forwarded with a lower rate than incoming traffic to 
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this queue. The medium priority queue can use the rest of the 

bandwidth left unused by the high priority queue. Therefore, the 

transmit rate during the nonconformance period is the maximum rate 

the flow can transmit until the total link bandwidth is occupied. The 

difference between the traffic sent from VirtualClock and Priority 

Queuing is also observable during this period. The top graph illustrates 

the outgoing traffic from Q3, the low priority queue of PQ scheduler. We 

can observe that the PQ scheduler assigns the remaining link 

bandwidth, not utilized by other priority queues, to Q0. Because during 

client 2’s nonconformance period the total bandwidth is used by the 

high and medium priority queue, Q0 will not send any traffic. By 

comparing the Outgoing traffic emplying the two algorithms, it can be 

concluded that the VirtualClock is still transmitting traffic from Q0 with 

the flow’s negotiated rate; however PQ can only transmit according to the 

remaining link bandwidth. It might also starve during certain periods.  

 

Figs. 5.16 and 5.17 show the buffer usage in VirtualClock and PQ 

queues. The bottom graphs of this figures show that, since PQ forwards 

the packets to the outgoing link immediately after they arrive to Q2, 

these packets do not use the buffer and encounter no delay in the 

queue. The middle graphs show that the buffer is only occupied in Q1 

during the traffic’s nonconformance period. Thus the traffic is also being 

delayed in Q1 during this period. And finally the low priority queue (Q0) 

has a high amount of buffer occupancy during the simulation, 

particularly while client 1 is sending a burst of traffic. The buffer usage 

by this queue with PQ algorithm is almost five times the value of the 
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VirtualClock algorithm. Consequently, the traffic entering Q0 has a long 

queuing delay. Observe Fig. 5.17 (bottom graph). 

  

 

 

 

 

 

 

Fig. 5.16  VirtualClock vs. Priority Queuing, buffer Usage for queues: Q0 

(top), Q1 (middle), and Q2 (bottom) in (packets) vs. time (min). 

 

The traffic loss behavior of the PQ algorithm in comparison to 

VirtualClock is shown in Fig. 5.18 Similar to sections 5.1 and 5.2, we 

reduce the Queue size value of all the queues to 30 packets and repeat 

the simulation for observing the queues’ loss behavior. It is observed 

from the bottom figure that since Q2’s buffer occupancy is zero, no 

traffic is lost due to the buffer overflow in this queue. The middle graphs 

shows packet loss for Q1 only during its flow’s nonconformance period 

and the top graph shows highest loss behavior during the simulation.  
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Fig. 5.17  VirtualClock vs. Priority Queuing, queuing delay in queues: 

Q0 (top), Q1 (middle), and Q2 (bottom) in (sec) vs. time (min). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.18  VirtualClock vs. Priority Queuing, traffic dropped from queues: 

Q0 (top), Q1 (middle), and Q2 (bottom) in (packets/sec) vs. time (min). 
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5.2 Simulation Scenario 2 

In this scenario we compare the effect of VirtualClock with the WFQ, 

Custom Queuing, and Priority Queuing scheduling mechanisms on the 

performance of four common Internet applications: Hypertext Transfer 

Protocol (HTTP), File Transfer Protocol (FTP), IP Telephony, and 

videoconferencing. Following there is a brief description about these 

protocols: 

 

� HTTP is an application level data transfer protocol that forms the 

foundation of the Web. It is the protocol language that enables Web 

browsers (clients) to access files on Web servers. Thus, HTTP is 

implemented in two programs: the client program and the server 

program. The client program and server programs talk to each other 

by exchanging HTTP messages. HTTP defines the structure of these 

messages and how the client and server exchange the messages. In 

an HTTP session, Web clients (i.e., browsers) request Web pages from 

web servers and servers transfer Web pages to clients. HTTP 

communication usually takes place over TCP/IP connections. 

 

� FTP  is a protocol for transferring files from one host to another host. 

In an FTP session, the user is sitting in front of the local host and 

wants to transfer files to or from a remote host. In order for the user 

to access the remote account, the user has to provide a user 

identification and a password. After providing this authorization 

information, the user can transfer files from the local file system to 

the remote file system and vice versa [27]. In contrast to HTTP that 
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uses one TCP connection, FTP uses two TCP connections: a control 

connection to send control information and a data connection to 

transfer files. When the user requests a file transfer (either to or from 

the remote host), FTP opens a TCP connection on server port. FTP 

sends one file over this connection and then closes the connection. If, 

during the same session, the user wants to transfer another file, FTP 

opens another data TCP connection. 

  

� IP Telephony refers to services that transport audio or facsimile 

traffic over the Internet, rather than the public switched telephone 

network, employing the Internet Protocol. When an Internet 

telephone call originates, the analog voice signal is converted to a 

digital format and the signal is compressed into the Internet protocol 

(IP) packets for transmission over the Internet. A reverse process is 

performed at the receiving end. IP telephony, also called Voice Over IP 

(VoIP), requires certain bounds on packet end-to-end delay and delay 

jitter to ensure a voice quality similar to the conventional phone calls. 

Delay is an important factor that affects the quality of the 

conversation. Humans can tolerate about 250 msec of delay before it 

is noticed. Today audio quality has been observed to become quite 

poor in a pure best-effort network, especially in congested periods 

because it exceeds this delay. So, in order to improve the delay 

problem, QoS routers are used in the networks to allocate sufficient 

bandwidth to voice traffic by giving it a high service priority. Also voice 

compression standards like G.729 (8:1) and G.723 (10:1) are used to 

minimize the bandwidth required for voice. Without compression, a 

voice signal requires 64 Kbps of bandwidth to maintain good quality. 
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G.723, for instance, is the maximum compression rate and requires 

only 5.3 Kbps (plus an added 7.8 Kbps for IP overhead) [8, 20].  Table 

5.1 shows the IP telephony QoS requirements. 

 

Quality Packet loss (%)  Max delay jitter (ms) 

Perfect 0 0 

Good 3 75 

Medium 10 125 

Poor 25 225 

Table 5.1  IP Telephony QoS requirements. 

 

� Videoconferencing is a technology that allows the transmission of 

digital voice conversations and video pictures over the Internet. The 

QoS requirements for transmitting voice and video are much different 

than for data. The required bandwidth for data signals depends on 

the amount of tolerable delay in receiving the file. However, voice and 

video need more synchronization to move pieces of the information at 

a constant rate so it can be heard and seen in real time. Also 

bandwidth requirements for voice and video are more critical than for 

data. As mentioned before, without compression, a good quality voice 

signal requires 64 Kbps of bandwidth. However, video signals require 

a much larger bandwidth without compression. The amount of 

required bandwidth for video depends on expected image resolution, 

frame rate, and compression technique. Image resolution is the 

image’s clarity and is based on the number of available pixels that 

represent the image. The frame rate is how often the image is 

captured and sent out to the network. Among compression 
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techniques, JPEG (Joint Photographic Experts Group) and MPEG 

(Moving Pictures Experts Group) are two ISO/ITU (International 

Telecommunication Union) standards for lossy compression. JPEG 

compresses each frame independently in a video sequence, providing 

compression ratio of 100:1 that decreases bandwidth requirements by 

a factor of 100. MPEG compresses each frame dependent on previous 

frames. It means that the information will not be repeated in the 

current frame if the frame includes similar information from the 

previous one. Thus, the compression ratio is improved to 300:1 in this 

technique. 

  

In this scenario we have an HTTP Client downloading and uploading 

from an HTTP Server and an FTP Client that transfers and receives files 

from an FTP Server. In addition we have two voice parties talking through 

a voice session and two videoconferencing parties connected with a 

videoconferencing session. The topology in this scenario is similar to 

Scenario 1 i.e., HTTP client, FTP Client, Voice Party1, and 

Videoconferencing Party1 are connected to an Ethernet switch. The 

HTTP and FTP Servers together with Voice Party2 and Videoconferencing 

Party2 are connected to another Ethernet switch. Each of the switches is 

connected to an IP router. All the links in the network are 10BaseT 

(10Mbps) except the link between the IP routers, which is a DS1 link of 

capacity 1.544 Mbps. Because unlike Scenario 1, a bi-directional traffic 

is flowing through the link between router A and router B (bottleneck 

link), the scheduling mechanisms are being employed at both of the 

routers. Fig. 5.19 shows the network model for  Scenario 2. We will 

describe the traffic specification for each of the application sessions next. 
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Fig. 5.19  Network model for Scenario 2. 

 

 

 

 

 

 

 

 

 

 

        

Tables 5.2  Traffic specification for HTTP application: (a) HTTP table, (b) 

Page Properties table, and (c) Server Selection table. 

 

The traffic specification for HTTP application is defined in the above 

tables. In the top table, the HTTP Specification attribute defines the 

version of HTTP [9]. The Page Interarrival Time value shows the 

(C) 

(b) 

(a) 
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distribution name and argument to be used for generating random 

outcomes for page Interarrival times. The Page Properties table (b) 

specifies the page properties. Each page contains some objects and each 

object is represented by a row in this table. The first row represents the 

page itself and the subsequent rows represent the objects within the 

page. For each object the first column shows the distribution and 

arguments for size of each object in bytes and the second column shows 

the number of objects. Table (c) defines the Server Selection table. Since 

HTML pages have links to other pages either on the same server or on 

the remote server, this affects the server selection. Different values for 

the Initial Repeat Probability attribute can emulate different user 

behaviors. The browsing value for this attribute means a user goes to a 

site and access many links on that site before moving to another site. 

The second row in the table defines the number of pages per each server 

[23]. 

 

 

 

 

Table 5.3  FTP application table. 

 

Table 5.3 shows the parameters for the FTP application. The client 

downloads one file per FTP session. The Command Mix (Get/Total) 

attribute denotes the percentage of file get command to the total FTP 

commands. The remaining percentage is file put transactions. The 

second and third row show the distribution name and argument used for 

generating time between file transfers and file size. 
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Tables 5.4  Traffic specification for IP Telephony application: (a) HTTP 

table, (b) Spurt Length, and (c) Talk Spurt Length. 

 

The traffic specification for IP Telephony application is defined in tables 

5.4 (b) and (c). These tables specify the distribution and arguments to be 

used for random outcome generation for Silence and Talk Spurt Length, 

respectively.  The Silence Length table specifies the time spent by the 

called party (incoming) and the calling party (outgoing) in a silence mode 

during a speech-silence cycle. The Talk Spurt Length table (c) specified 

the time spent by the called (incoming) and calling party (outgoing) in 

the speech mode. The fourth row in table 5.4 (a) shows the encoding 

scheme to be used by called and calling parties [23]. Coding techniques 

for telephony and voice packet are standardized by the ITU-T 

(International Telecommunication Union-Telecommunication 

Standardization Sector) in its G-series recommendations. We choose 

(a) 

(b) 

(c) 
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G.729, an encoder scheme where voice is coded into 8-kbps streams. 

This scheme has an algorithmic delay of less than 16 ms. [6]. The last 

row in table (a) determines the number of encoded voice frames grouped 

into a voice packet before being sent by the application to the lower 

layers. 

 

 

 

 

 

 

 

Tables 5.5  Traffic specification for videoconferencing application: (a) 

videoconferencing table, and (b) Frame Interarrival Time Information 

table. 

 

Tables 5.5 define the traffic specifications for the videoconferencing 

application. The Frame Interarrival Time Information table (b) shows the 

frame rate in frames/sec for the incoming and outgoing video streams. 

The second row in table (a) shows the frame size of the incoming and 

outgoing traffic streams [23].  

 

We will replicate the above simulation scenario with the same network 

configuration and traffic generation parameters for the applications, with 

different scheduling mechanisms: VirtualClock, WFQ, CQ, and Priority 

Queuing. In each sub-section, we will compare the performance of these 

applications using the above scheduling mechanisms with the 

(a) 

(b) 
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application performance using VirtualClock. The queue allocation for all 

the algorithms in both router A and B is the same i.e., HTTP, FTP, IP 

Telephony, and videoconferencing packets are assigned to Q0, Q1, Q2, 

and Q3, respectively. Next we will define the queue parameters for the 

VirtualClock queues.  

 

Initially we run the simulation for the network with the VirtualClock 

algorithm deployed at the routers. The parameters for VirtualClock 

queues, defined in VC Profile, are as follows: 

� ArrivalRate0 = 0.3, Queue Size0 = 500 

� ArrivalRate1 = 1.5, Queue Size1 = 500 

� ArrivalRate2 = 110, Queue Size2 = 500 

� ArrivalRate3 = 140, Queue Size3= 500. 

 

The ArrivalRate  value for each queue is equal to the measured average 

Packet arrival rate (packets/sec) from the applications to that queue. It 

has to be taken into consideration that since VirtualClock algorithm 

services the flows in a packet by packet basis, the Arrival Rate should be 

measured in packets/sec. 

5.2.1 VirtualClock vs. WFQ 

In this section we will show the simulation results of WFQ in comparison 

with VirtualClock for Scenario 2. The WFQ queue configuration is 

defined below with each row representing a queue having the following 

queue parameter settings: 

� Weight0 = 0.02, Queue Size0 = 500 

� Weight1 = 0.58, Queue Size1 = 500 
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� Weight2 = 1.94, Queue Size2 = 500 

� Weight3 = 97.45, Queue Size3 = 500. 

 

For calculating the associated weight to each queue, the percentage of 

the link bandwidth consumption by each application flow has to be 

determined. This is done by measuring the average traffic rate 

(bytes/sec) from each flow. The average packet arrival rate to queues, Q0, 

Q1, Q2, and Q3 is 0.3, 1,5, 100, and 140 (packets/sec) with the average 

packet size (bytes) 154, 767.2, 37, and 1325, respectively. Therefore, the 

above queue weights show the percentage of required bandwidth by 

each queue.  

  

Fig. 5.19 shows the HTTP page response time and average page response 

by VirtualClock and WFQ algorithms. The page response time is 

measured from the time the client requests a page from the server until 

the time the page is downloaded to the client’s computer. By comparing 

the amount of this variable for VirtualClock and WFQ, it can be seen that 

WFQ provides a lower average page response time for HTTP than 

VirtualClock. The top graph shows that, although the page response 

time difference using the two algorithms is very high for a short period at 

the beginning of the simulation, for the rest of the simulation this 

difference disappears.  
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Fig 5.19  VirtualClock vs. WFQ, HTTP page response time (top) and 

average page response time (bottom) in (sec) vs. time (min).  

 

Fig. 5.20 shows the FTP download response time and average download 

response time using VirtualClock and WFQ algorithms. Download time is 

measured from the time a client application sends a request to the  

server to the time it receives the requested file. The bottom graph shows 
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that VirtualClock has a lower average FTP download response time than 

WFQ. However, the top graph shows that both algorithms provide the 

same download time during the simulation. The difference in FTP 

average download response time between the two algorithms (seen in 

the top graph) is caused by different delays encountered by security 

packets at the beginning of the simulation.  
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Fig 5.20  VirtualClock vs. WFQ, FTP downloads response time (top) and 

average download response time (bottom) in (sec) vs. time (min).  

 

 

 

 

 

 

 

 

 

 

 

Fig 5.21  VirtualClock vs. WFQ, IP Telephony, voice packet end-to-end 

delay in (sec) vs. time (min).  
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Fig 5.22  VirtualClock vs. WFQ, IP Telephony, voice packet delay 

variation (sec) vs. time (min). 

The voice packet end-to-end delay from the IP Telephony application is 

shown in Fig. 5.21. It can be seen that the effect of both VirtualClock 

and WFQ on the voice packets end-to-end delays is very similar. Fig. 

5.22 compares the delay variation encountered by voice packets using 

the two algorithms. It shows that the VirtualClock causes a much lower 

delay variation for voice packets. However, delay variation which is an 

essential factor for a good quality voice connection has a very high value 

for both of the algorithms due to the high congestion in the network.  

The highest tolerable delay variation for the poorest quality voice is 225 

msec. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.23  VirtualClock vs. WFQ, Videoconferencing packet end-to-end 

delay in (sec) vs. time (min).  
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In a videoconferencing session if the packets arrive late but their 

lateness is even and predictable by the receiving terminal the quality of 

the conference can still be retained.  The important factor is variation in 

delay that results in an uneven and unpredictable quality within a video 

conference [36]. However, excessive delay increases the chances of 

people talking over one another because they do not realize that the 

person at the other end has started speaking too. Fig. 5.23 shows the 

videoconferencing end-to-end delay for VirtualClock and WFQ 

algorithms. The graph shows that the end-to-end delay value is similar 

for both WFQ and VirtualClock. It can also be observed that the amount 

of delay variation is low for both of the algorithms, although this delay is 

high. 

5.2.2 VirtualClock vs. Custom Queuing 

We repeat Scenario 2 with the Custom Queuing mechanism at the 

routers and look at the performance of the applications using 

VirtualClock in comparison to Custom Queuing. What follows are the 

queue Custom Queuing parameter settings. The Byte Count values for 

the Custom Queuing queues are calculated by measuring the average 

bandwidth requirement (bits or bytes) and average packet size (bytes) for 

each application flow and following the described steps in section 5.1.2. 

The computed queue parameter setting for the Custom Queuing queues 

are as follows: 

� ByteCount0 = 154, Queue Size0 = 500 

� ByteCount1 = 7020, Queue Size1 = 500 

� ByteCount2 = 14907, Queue Size2 = 500 

� ByteCount3 = 719475, Queue Size2 = 500. 
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HTTP page response time and average page response time is shown in 

Fig. 2.24 It can be seen that the average page response time for both 

VirtualClock and Custom Queuing is relatively similar. Fig. 5.25 

illustrates the FTP download and average download response time. The 

bottom graphs show that VirtualClock provides a lower average file 

download time than Custom Queuing.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



115 
 

Fig 5.24  VirtualClock vs. Custom Queuing, HTTP page response time 

(top) and average page response time (bottom) in (sec) vs. time (min).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.25  VirtualClock vs. Custom Queuing, FTP download response time 

(top) and average download  

response time (bottom) in (sec) vs. time (min).  
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The performance of voice is shown in Figs. 5.26 and 5.27, in terms of 

voice packet end-to-end delay and packet delay variation. It can be seen 

there that VirtualClock has a considerably lower value for both packet 

end-to-end delay and packet delay variation than Custom Queuing.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.26  VirtualClock vs. Custom Queuing, IP Telephony, voice packet 

end-to-end delay in (sec) vs. time (min).  

 

The videoconferencing application packet end-to-end delay for 

VirtualClock and Custom Queuing is shown in Fig. 28. The figure shows 

that the end-to-end delay encountered by videoconferencing packets 

using Custom Queuing is almost half of that value using VirtualClock. 

Although Custom Queuing provides a poor performance for IP 

Telephony, it supplies a better-quality functionality for a 

videoconferencing application. Therefore, it can be concluded that a 
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higher quality for videoconferencing is achieved by paying the price of 

gaining a worse quality for IP Telephony.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.27  VirtualClock vs. Custom Queuing, IP Telephony, voice packet 

delay variation (sec) vs. time (min). 
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Fig 5.28  VirtualClock vs. Custom Queuing, Videoconferencing packet 

end-to-end delay in (sec) vs. time (min).  

As seen in Figs.5.26, 5.27, and 5.28 VirtualClock and CQ are providing 

different end-to-end delay and delay jitter for IP Telephony and 

videoconferencing applications. Since voice and videoconferencing end-

to-end delay provided by VirtualClock and WFQ are identical and WFQ is 

proven to be a fair algorithm, it can be concluded that CQ is not treating 

thesis applications fairly. As discussed earlier, CQ behaves unfair when 

traffic flows have variable packet sizes and average packet sizes of the 

flows are unpredictable.   

 

In our simulation scenario, the average packet size of a flow entering a 

CQ queue is one of the main parameters for calculating the Byte Count  

value associated with that queue. Since voice and videoconferencing 

packet sizes are of different sizes, the solution we choose to estimate the 

average packet size of those flows is to monitor the incoming packets to 

thesis queues, collect the statistic for the size of the packets, plot the 

average value of these statistics  in a graph, and choose the best guess 

for the average packet size. Thus, the chosen average packet size is not a 

precise value and explains the observed dissimilarities in the 

performance of voice and videoconferencing applications using 

VirtualClock and CQ. We also see that since the average packet size of 

the flows is not unknown for in our simulation scenario, CQ behaves 

unfair. 
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5.2.3 VirtualClock vs. Priority Queuing 

In this section we look at the performance dissimilarities of the 

applications when employing VirtualClock and Priority Queuing at the 

output queues of the routers. Priority Queuing enables us to give 

absolute preferential service to high priority applications instead equally 

treating the applications according to their required bandwidth 

(VirtualClock). We allocate the traffic from FTP, voice, videoconferencing, 

and HTTP applications to High, Medium, Normal, and Low priority 

queues defined in section 2.5.2, respectively. In the real networks, both 

HTTP, and FTP are considered as applications with non-critical 

performance requirements. On the other hand, both IP Telephony and 

videoconferencing are known as mission critical applications. In this 

scenario since we are also interested in observing and comparing the 

effect of Priority Queuing in comparison to VirtualClock on low volume 

traffic such as HTTP and HTTP, we assign FTP to the highest priority 

queue. Otherwise the total link bandwidth would be consumed by high 

volume, mission critical applications (voice, and videoconferencing). 

 

The queue allocation to the applications is defined in PQ Profile attribute 

of IP QoS Configuration object as follows: 

� Low Priority, Queue Size0 = 500 (HTTP) 

� Medium Priority, Queue Size1 = 500 (Videoconferencing) 

� Normal priority, Queue Size2 = 500 (IP Telephony) 

� High priority, Queue Size3 = 500 (FTP).  

 

Because the HTTP application is assigned to the lowest priority queue, 

and the other three applications utilize all the bandwidth in the 
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bottleneck link, no HTTP traffic can be transferred through this link. 

Thus, the HTTP traffic isn’t serviced and will be starved in this network.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.29  VirtualClock vs. Priority Queuing, FTP download response time 

(top) and average download  

response time (bottom) in (sec) vs. time (min). 
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Fig. 5.29 shows the FTP download response time and average download 

response time of VirtualClock vs. Priority Queuing. It can be verified that 

since the FTP has highest priority among the other applications, it is 

encountering a very low FTP download response time (average of 0.55 

sec.) in contrast to the high file download time of the VirtualClock. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.30  VirtualClock vs. Priority Queuing, IP Telephony, voice packet 

end-to-end delay in (sec) vs. time (min). 

 

Fig. 5.30 shows the end-to-end delay of voice packets using VirtualClock 

and PQ. It can be seen that the average delay value encountered by voice 

packets for both algorithms is very similar. However, the figure shows 

that delay variation, using Priority Queuing is higher than using 

VirtualClock.  
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Figure 5.31 shows the packet end-to-end delay of a videoconferencing 

application. It can be seen from the graphs that the two algorithms load 

the same end-to-end delay for videoconferencing packets. It can be 

concluded from the driven simulation results of Scenario 2 that 

VirtualClock behaves very similarly to WFQ in providing service to 

applications with various priorities and different performance 

requirements. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 5.31  VirtualClock vs. Custom Queuing, Videoconferencing packet 

end-to-end delay in (sec) vs. time (min).  

 

It can also be observed that VirtualClock provides similar service 

performances as Custom Queuing to the low volume applications (HTTP 

and FTP). However, it services the higher volume, more mission critical 

applications differently than Custom Queuing. VirtualClock provides 
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better service for voice application in terms of packet end-to-end delay 

and delay variation, but poorer service for videoconferencing. It has to be 

taken into consideration that the performance of the algorithms is being 

evaluated by choosing the algorithm specific queue parameters, which 

leads to the same network bandwidth allocation to the queues.  
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Chapter 6 

Conclusion 

With more and more multimedia applications currently running on the 

Internet, Internet is expected to support a wide range of applications in 

the future. The applications with different QoS requirements in terms of 

bandwidth, delay, delay jitter, and traffic loss. Traffic scheduling in 

network switching nodes is used as a means of avoiding congestion in 

order to provide QoS to different traffic classes.  

 

In this thesis we described the implementation of the VirtualClock 

scheduling mechanism employing the OPNET simulation tool. The 

algorithm is implemented in the output queues of the IP router node 

objects in OPNET. We show how we incorporate the algorithm in the IP 

layer of the router’s network hierarchy so that it can communicate with 

the upper and lower network layers of this object. We verified the 

correctness and the functionality of the VirtualClock model by 

conducting simulations on two network scenarios. In the first network 

scenario, we measured the arrival and departure times of packets 

entering and leaving the router’s queues. We verified that the measured 

values match the scheduled packet departure times by the VirtualClock 

scheduler. In the second network scenario, we examined the 

functionality of the model during the sources’ conforming and 

nonconforming periods. We verified the algorithm by  examining the 

conformance of the two main variables of the algorithm measured during 

simulation with their expected calculated values during both conforming 

and non-conforming traffic periods.  
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Finally we compared the performance of the VirtualClock algorithm with 

several other scheduling algorithms: WFQ, CQ, and PQ. These 

algorithms are used in current IP routers, which are manufactured by 

Cisco system Inc. and Juniper networks. The comparison is performed 

through two sets of simulation scenarios. Our driven simulation results 

from the first scenario showed that the VirtualClock algorithm performs 

closely to WFQ and CQ during both conforming and nonconforming 

periods. However, the VirtualClock algorithm behaves differently than 

PQ. VirtualClock allocates bandwidth fairly to traffic from different flows 

according to their specified traffic generation rates, but PQ provides 

preferential priority to selected traffic queues at the price of starvation of 

other low priority queues. We also compare the effect of VirtualClock 

with the above algorithms on the performance of four Internet 

applications: HTTP, FTP, IP Telephony, and Video Conferencing. It can be 

indicated from the results that applications with a predictable, 

consistent traffic generation rate like voice have a rich performance 

under the effect of VirtualClock and CQ and WFQ has a similar effect on 

the mentioned Internet applications. On the other hand, PQ has a better 

influence on the performance of unpredictable, mission critical 

applications that need to get preferential service over the other 

applications like videoconferencing. 
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