

IMPLEMENTATION AND PERFORMANCE SIMULATION OF

VIRTUALCLOCK SCHEDULING ALGORITHM IN IP

NETWORKS

by

Nazy Alborz

B.A., Shahid Beheshti University, Tehran, Iran, 1998.

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

IN THE SCHOOL OF ENGINEERING SCIENCE

© Nazy Alborz 2002

SIMON FRASER UNIVERSITY

April 2002

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy
or other means, without permission of the author.

ii

Approval

Name: Nazy Alborz

Degree: Master of Applied Science

Title of thesis: Implementation and Performance Simulation of

VirtualClock Scheduling Algorithm in IP Networks

Examining Committee:

 Chair: Dr. Mehrdad Saif

 Dr. Ljiljana Trajkovic, Senior Supervisor
 School of Engineering Science

 Dr. Stephen Hardy, Supervisor
 School of Engineering Science

 Dr. Joseph Peters, Internal Examiner
 School of Computing Science

Date approved: ____________________________

iii

Abstract

In today’s high-speed packet networks that support various applications

with different service requirements, congestion control is an important

issue. One of the methods for preventing congestion is packet

scheduling [14]. Packet scheduling in network routers can provide

guaranteed performance in terms of delay, delay jitter, packet loss, and

throughput.

The main objective of this thesis is to implement a model for the

VirtualClock scheduling mechanism, perform a simulation based

performance analysis of the VirtualClock algorithm, and compare it to

three commonly used scheduling mechanisms: WFQ, Custom Queuing,

and Priority Queuing. The VirtualClock algorithm monitors the average

transmission rate of packet data flows. It also provides each flow with a

guaranteed throughput and a low queuing delay.

We implement a scheduler model for VirtualClock and incorporate it into

the IP layer output queues of an IP router using OPNET simulation tool.

We measure the performance of the algorithms in terms of fairness, end-

to-end delay, and amount of packet loss from different traffic flows

during various time periods. We also simulate a network running several

Internet applications: HTTP, FTP, IP Telephony, and videoconferencing

and we observe the impact of scheduling algorithms on the performance

of these applications. Our simulation results indicate similarities of

VirtualClock to WFQ and to Custom Queuing. They also illustrate the

differences between VirtualClock and Priority Queuing.

iv

Acknowledgments

I would like to thank my senior supervisor, Dr. Ljiljana Trajkovic for her

support, guidance, and knowledge and for giving me the opportunity to

be a member of the Communication Network Laboratory. I want to

acknowledge all the members of this lab for their help and for being

both great friends and colleagues.

My special thanks to Dr. Stephen Hardy and Dr. Joseph Peters for their

valuable comments and for being on my supervisory committee.

I would also like to thank my friend Maryam Keyvani for being a

wonderful friend, as well as my parents, my brother, and my fiancé for

their great support and endless love during my study period. Without

you all it would be impossible.

v

 Dedication

To my parents, for standing by me with their support and guidance

throughout my graduate studies.

vi

Table of Contents

Abstract.. iiii

Acknowledgments .. iv

Dedication.. v

Table of Contents ... vii

List of Tables.. ix

List of Figures .. x

1 Introduction.. 1

1.1 Introduction ... 1

1.2 Quality of Service (QoS).. 2

1.2.1 End-to-end mechanisms 4

1.2.2 Edge mechanisms .. 5

1.2.3 Core mechanisms... 6

1.2.4 Combination of QoS mechanism 9

1.3 The Internet and its architecture 9

1.3.1 Internet architecture .. 9

1.3.2 Next generation of the Internet.............................. 11

1.4 Thesis organization .. 11

2 Scheduling.. 13

2.1 Introduction ... 13

2.2 Scheduler model .. 14

2.3 Scheduling requirements... 16

2.4 Classification of scheduling algorithms............................ 18

2.5 Scheduling algorithms ... 19

2.5.1 FIFO ... 20

2.5.2 Generalized Processor Sharing (GPS) algorithm 20

vii

2.5.3 VirtualClock ... 22

2.5.4 Weighted Round Robin (Custom Queuing) 27

2.5.5 Deficit Round Robin ... 28

2.5.6 Packet by packet Generalized Processor Sharing and

Weighted Fair Queuing.. 29

2.5.7 Self-Clocked Fair Queuing 31

2.5.8 Start-time Fair Queuing... 32

2.5.9 Priority Queuing ... 33

2.6 Theoretical comparison of scheduling algorithms 34

2.7 Scheduling algorithms in OPNET..................................... 35

2.7.1 FIFO ... 35

2.7.2 Priority Queuing ... 36

2.7.3 Custom Queuing ... 36

2.7.4 Weighted Fair Queuing... 37

3 Implementation of VirtualClock Algorithm................................... 39

3.1 Introduction ... 39

3.2 OPNET Environment... 39

3.2.1 Project editor... 40

3.2.2 Node editor... 40

3.2.3 Process editor ... 40

3.2.4 Network-wide database and Common Attribute

objects ... 43

3.3 VirtualClock process model .. 43

3.3.1 State transition diagram 45

3.3.2 Enqueue state ... 48

3.3.3 Dequeue state ... 49

3.4 IP QoS Configuration object ... 52

viii

3.4.1 Definiti on of the VC Profiles structured attribute ... 52

3.4.2 Introducing the VC Profiles to the global database 55

3.4.3 Configuration of the IP objects 56

4 VirtualClock Model Verification .. 60

4.1 Model verification ... 60

4.2 Functionality test ... 68

5 Simulation Results ... 76

5.1 Simulation Scenario 1.. 77

5.1.1 VirutalClock vs. WFQ.. 80

5.1.2 VirtualClock vs. Custom Queuing.......................... 87

5.1.3 VirtualClock vs. Priority Queuing 93

5.2 Simulation Scenario 2.. 99

5.2.1 VirtualClock vs. WFQ.. 107

5.2.2 VirtualClock vs. Custom Queuing.......................... 113

5.2.3 VirtualClock vs. Priority Queuing 119

6 Conclusion.. 124

References ... 126

ix

List of Tables

2.1 Comparison of scheduling algorithms.. 35

2.2 Appropriate scheduling algorithm for various applications and

traffic types .. 35

4.1 Timetable for state transition diagram of VirtualClock............... 65

4.2 Verification table for Q0, AR = 10 (packets/sec)......................... 66

4.3 Verification table for Q1, AR = 5 (packets/sec)........................... 67

5.1 IP Telephony QoS requirements .. 101

5.2 Traffic specification for HTTP application: (a) HTTP table, (b) Page

Properties table, and (c) Server Selection table.................................. 103

5.3 FTP application table.. 104

5.4 Traffic specification for IP Telephony application: (a) HTTP table,

(b) Spurt Length, and (c) Talk Spurt Length 105

5.5 Traffic specification for Video Conferencing application: (a) Video

Conferencing table, and (b) Frame Interarrival Time Information

table... 106

x

List of Figures

1.1 Drop-tail queue management .. 7

1.2 RED queue management... 8

1.3 Internet architecture.. 10

2.1 General architecture of a network switch 14

2.2 The model of a scheduling algorithm... 16

2.3 Priority queuing scheduler in OPNET .. 37

2.4 Custom Queuing scheduler in OPNET....................................... 37

2.5 WFQ scheduler in OPNET .. 38

2.5 WFQ scheduler in OPNET .. 38

3.1 The execution flow of the unforced states.................................. 42

3.2 Internal hierarchy structure of the IP router node model 44

3.3 State transition diagram of ip_output_iface process model 46

3.4 State transition diagram of the VirtualClock process model 47

3.5 Enqueue state flowchart of VirtualClock state transition

diagram.. 50

3.6 Dequeue state flowchart of VirtualClock state transition

diagram.. 51

3.7 (a) VC profiles, (b) Queues Configuration, and (c) Classification

Schemes tables of the IP QoS Configuration object............................. 54

3.8 Flowchart of the attr_def_VC_profiles_info_parse() function...... 57

3.9 (a) IP Address Information, (b) QoS Information, (c) Queuing Profile,

and (d) Queuing Scheme tables of the IP router objects 58

4.1 Simple network model for performance verification of the

VirtualClock algorithm... 61

xi

4.2 Incoming traffic to queues: Q0 (top) and Q1 (bottom), in

(packets/sec) vs. time... 62

4.3 Virtual Clock (VC) stamp vs. packet arrival time (sec) for queues: Q0

(top) and Q1 (bottom) ... 63

4.4 Auxiliary Virtual Clock (auxVC) vs. packet departure time (sec) for

queues Q0 (dark) and Q1 (light)... 64

4.5 Outgoing traffic from queues: Q0 (top) and Q1 (bottom), in

(packets/sec) vs. time (sec)... 64

4.6 Incoming traffic to queues: Q0 (top), Q1 (middle), and Q2 (bottom)

in (packets/sec) vs. time .. 71

4.7 Virtual Clock (VC) stamps vs. packet arrival time (sec) for queues:

Q0 (top), Q1 (middle), and Q2 (bottom) .. 71

4.8 Auxiliary Virtual Clock (auxVC) stamps vs. packet arrival

time (sec) for queues: Q0 (top), Q1 (middle), and Q2 (bottom) 72

4.9 Auxiliary Virtual Clock (auxVC) stamps vs. packet departure time

(sec) for queues: Q0 (top), Q1 (middle), and Q2 (bottom) 73

4.10 Outgoing traffic from queues: Q0 (top), Q1 (middle), Q2 (bottom)

in (packets/sec) vs. time (sec) .. 74

5.1 Network Model for Scenario 1 .. 78

5.2 Attributes of the IP QoS Configuration object 79

5.3 Incoming traffic to queues: Q0 (top), Q1 (middle), and Q2 (bottom)

in (packets/sec) vs. time (min) ... 79

5.4 VirtualClock vs. WFQ, outgoing traffic from queues: Q0 (top), Q1

(middle), and Q2 (bottom) in (packets/sec) vs. time (min).................. 81

5.5 VirtualClock vs. WFQ, buffer usage for: Q0 (top), Q1 (middle), and

Q2 (bottom) in (packets) vs. time (min)... 83

5.6 VirtualClock vs. WFQ, total buffer usage in (bytes) vs.

xii

time (min) .. 84

5.7 VirtualClock vs. WFQ, traffic dropped from queues: Q0 (top), Q1

(middle), and Q2 (bottom) in (packets/sec) vs. time (min).................. 84

5.8 VirtualClock vs. WFQ, queuing delay in queues: Q0 (top), Q1

(middle), and Q2 (bottom) in (sec) vs. time (min)................................ 85

5.9 VirtualClock vs. WFQ, traffic dropped from queues: Q0 (top), Q1

(middle), and Q2 (bottom) in (packets/sec) vs. time (min).................. 86

5.10 VirtualClock vs. Custom Queuing, outgoing traffic from queues:

Q0 (top), Q1 (middle), and Q2 (bottom) in (packets/sec) vs.

time (min) .. 90

5.11 VirtualClock vs. Custom Queuing, buffer Usage for queues: Q0

(top), Q1 (middle), and Q2 (bottom) in (packets) vs. time (min) 91

5.12 VirtualClock vs. Custom Queuing, total buffer usage for queues

in (Bytes) vs. time (min) ... 92

5.13 VirtualClock vs. Custom Queuing, queuing delay in queues: Q0

(top), Q1 (middle), and Q2 (bottom) in (sec) vs. time (min) 92

5.14 VirtualClock vs. Custom Queuing, traffic dropped from queues:

Q0 (top), Q1 (middle), and Q2 (bottom) in (packets/sec) vs.

time (min) .. 93

5.15 VirtualClock vs. Priority Queuing, outgoing traffic from queues:

Q0 (top), Q1 (middle), and Q2 (bottom) in (packets/sec) vs.

time (min) .. 95

5.16 VirtualClock vs. Priority Queuing, buffer Usage for queues: Q0

(top), Q1 (middle), and Q2 (bottom) in (packets) vs. time (min) 97

5.17 VirtualClock vs. Priority Queuing, queuing delay in queues: Q0

(top), Q1 (middle), and Q2 (bottom) in (sec) vs. time (min) 98

5.18 VirtualClock vs. Priority Queuing, traffic dropped from queues:

xiii

Q0 (top), Q1 (middle), and Q2 (bottom) in (packets/sec) vs.

time (min) .. 98

Network Model for Scenario 2 .. 103

5.19 VirtualClock vs. WFQ, HTTP page response time (top) and average

page response time (bottom) in (sec) vs. time (min)............................ 109

5.20 VirtualClock vs. WFQ, FTP downloads response time (top) and

average download response time (bottom) in (sec) vs. time (min) 111

5.21 VirtualClock vs. WFQ, IP Telephony, voice packet end-to-end

delay in (sec) vs. time (min).. 111

5.22 VirtualClock vs. WFQ, IP Telephony, voice packet delay variation

(sec) vs. time (min) ... 112

5.23 VirtualClock vs. WFQ, Videoconferencing packet end-to-end delay

in (sec) vs. time (min) ... 112

5.24 VirtualClock vs. Custom Queuing, HTTP page response time (top)

and average page response time (bottom) in (sec) vs. time (min)........ 115

5.25 VirtualClock vs. Custom Queuing, FTP download response time

(top) and average download response time (bottom) in (sec) vs.

time (min) .. 115

5.26 VirtualClock vs. Custom Queuing, IP Telephony, voice packet

end-to-end delay in (sec) vs. time (min) ... 116

5.27 VirtualClock vs. Custom Queuing, IP Telephony, voice packet

delay variation (sec) vs. time (min) ... 117

5.28 VirtualClock vs. Custom Queuing, Videoconferencing packet

end-to-end delay in (sec) vs. time (min) ... 118

5.29 VirtualClock vs. Priority Queuing, FTP download response time

(top) and average download response time (bottom) in (sec) vs.

time (min) .. 120

xiv

5.30 VirtualClock vs. Priority Queuing, IP Telephony, voice packet

end-to-end delay in (sec) vs. time (min) ... 121

5.31 VirtualClock vs. Custom Queuing, Videoconferencing packet

end-to-end delay in (sec) vs. time (min) ... 122

1

Chapter 1

Introduction

1.1 Introduction

The development of communication networks enables users to transfer

information in the form of voice, video, electronic mail, and computer

files. The following networks illustrate the evolution steps of

communication networks:

� Telephone networks

� Computer networks

� Cable television networks, and

� Wireless networks.

Although these networks are quite different, they are now able to

provide services that have previously been limited to specific networks.

The tendency of different networks towards converging into a single

network is achieved by using digital technology. This convergence

tendency does not imply that a single network technology will emerge as

a substitute for all the other technologies. Instead, the new converged

network enables both traditional and new communication services to be

delivered over various network infrastructures. Therefore, a major

challenge for the practitioners and researchers is how to interconnect

these network infrastructures in a way that is extensible and secure and

that provides a wide range of quality of services needed to support a

variety of information delivery [18, 34].

2

1.2 Quality of Service (QoS)

The concept of Quality of Service (QoS) has been dramatically changed

during the development of communication networks. Starting from the

early days of computer networks, transmitting packets from their

sources to their destinations had been the most significant goal of a

network. The reliable access to the network had been a major concern in

terms of QoS. Today, the rapid evolution of networks has brought up the

issue of ever increasing demand for bandwidth and of simultaneous

support for different types of services in the same telecommunication

network. Thus, QoS has become a key factor in the deployment of

today’s networks and services.

Although QoS has recently been a hot issue among networking

researchers, there are still ambiguities in the way they understand and

define it. In general, QoS means providing consistent and predictable

data delivery service in order to satisfy different application requirements

[28]. QoS can be observed from two different perspectives: network users

and network providers. Each of them has different QoS objectives. What

a network user requires is access to a large bandwidth with the lowest

possible price. On the other hand, the goal of network providers is to

maximize network efficiency while meeting the specific QoS

requirements of network users at the same time [4, 21]. Our main focus

is on the QoS from the network providers’ point of view. Common QoS

parameters used for characterizing the network performance are:

3

� Bandwidth (throughput): number of bits or bytes transmitted over the

network in a specific time period.

� Delay: the time it takes for the data packet to traverse from its source

to its destination. It consists of three components: propagation delay,

transmission delay, and queuing delay.

� Delay jitter: the variation in delay encountered by a data packet. This

is the difference between the maximum and the minimum possible

packet delay.

� Loss probability: the chance of a packet being lost in the network.

There are a number of situations that may result in the loss, such as

buffer overflow in the network switching nodes or a call set-up

request denial.

� Utilization: the ratio of busy time to the total elapsed time in a given

period. It can be measured in each of the network elements like

sources, switches, and links.

QoS is the ability of the network applications and elements like hosts or

routers to give some level of assurance to their traffic, by satisfying their

service requirements [28].

QoS requires the cooperation of all network layers from top-to-bottom, as

well as every network element from end-to-end. QoS is not able to create

more bandwidth than what is already provided by the network. However,

it manages the existing network bandwidth according to network users’

service requirements.

There are two technologies for providing QoS [28]:

4

� Resource reservation (integrated services): provides guaranteed

service to network traffic. This is achieved by allocating network

resources to user applications according to their requested QoS

and network management policy. In this framework, resource

requirements are signaled from the source node and the network

reserves resources according to the signal. An example is the

Resource Reservation Protocol (RSVP).

� Prioritization (differentiated services): network traffic is classified to

various categories, marked and prioritized. This enables the

network to give preferential treatment to the applications with

more stringent QoS requirements. Network resources are allocated

according to network management policy and the class the traffic

belongs to.

QoS is implemented in the networks through three mechanisms. A QoS–

enabled network does not need all these mechanisms together. However,

they can be combined in such a way to provide the requested service.

1.2.1 End-to-end mechanisms

These mechanisms operate on both ends of a connection. They can

either control or adapt the behavior of a certain connection. The control

mechanisms are able to control the quality of the connection. An

example of control mechanisms is Call Admission Control (CAC). A

network using CAC has a lower congestion probability, because this

mechanism preserves the integrity of the traffic already in the network

by avoiding the admission of other traffics.

5

The adaptation mechanisms adapt the behavior of a selected session in a

connection based on certain parameters, such as congestion control

mechanisms. These mechanisms reduce the traffic rate of the session in

reaction to packet loss.

1.2.2 Edge mechanisms

These mechanisms operate on the user-network interface and are

divided into two categories: policing and shaping mechanisms. These two

categories are similar, except that the shaping mechanisms work at the

network side, while policing mechanisms work on the user side.

Shaping: These mechanisms adapt the user traffic generation rate to the

traffic rate parameter that has previously been negotiated between the

user and the network. If a source starts generating traffic with a rate

more than what it has specified in its contract, the shaper stores the

incoming traffic and sends it to the network in such a way to follow the

specified values in the traffic contract. These functions do not discard

any packets that are conforming to the traffic contract.

Policing: These mechanisms, which operate on the user side of a user-

network interface, check if the traffic generated by the user conforms to

its contract with the network. If the traffic is nonconforming, the

mechanism acts in such a way to make the traffic conformant. Two

actions are done by the mechanism when source traffic exceeds its

negotiated traffic rate:

� Packet dropping: in which the nonconforming packets are

dropped.

6

� Packet marking: in which the nonconforming packets are marked

by the network, so that in case of congestion they will be the first

packets to be dropped.

1.2.3 Core mechanisms

These mechanisms operate on the network switching nodes like

switches and routers and are classified into the following categories:

Buffering: When the incoming traffic to the switching nodes is larger than

the output link capacity, packets are temporarily stored in a storage

called buffer. There are two architectures for buffering: shared buffer

and per-flow buffer. In shared buffer architecture, a common physical

memory is shared by the packets being buffered. As soon as the output

link becomes free, they are removed from the buffer by scheduler. A

per-flow architecture allocates a specific portion of memory to incoming

packets from each flow. These memory portions in the network switching

elements are often called queues. A flow can be identified in different

ways. In this document there are six criteria for identifying a single flow,

which will be explained later on. The advantage of per-flow architecture

is that it prevents greedy sources from affecting the other sources in the

network. On the other hand a shared buffer architecture is very simple

to be implemented. An advantage of buffering is that it increases the

network throughput, because logically the larger the buffer, the higher

the amount of data carried by the network.

Queue management: Queue managements are the mechanisms that choose

which packet has to be dropped in case of buffer overflow. Each queue in

a network switching node has a queue management mechanism

associated with it. If a node has more than one queue there will be

7

several instances of the queue management that operate independently

on each queue [29]. Drop tail, Random Early Detection (RED), and

Weighted Random Early Detection (WRED) are examples of queue

management mechanisms [5].

� Drop-tail: is the simplest queue management technique. As shown

in Fig. 1.1, this scheme, packets are dropped from the end of the

queue when there is no more space in the queue buffer. Drop Tail

operates on each queue independently.

Fig. 1.1 Drop-tail queue management.

� RED: is an advanced queue management technique. As shown in

Fig. 1.2, his scheme starts dropping packets when the number of

stored packets in the queue buffer exceeds a certain threshold.

The probability of loss increases with the increase of number of

queued packets. When the number of queued packets reaches the

maximum queue size, RED behaves like Drop-tail and discards all

the incoming packets [5]. By dropping packets before the queue

buffer gets full and congestion happens, RED indicates to the

source to decrease its transmission rate. RED takes advantage of

Input traffic

Scheduler

Traffic from the

incoming interface

Traffic to the

outgoing interface

Drop-tail
queue manager

8

the TCP congestion control mechanism. Assuming the packet

source is using TCP, it will decrease its transmission rate until all

the packets reach their destinations. Thus, RED can be used as a

way to cause sources to back off traffic using TCP [5, 13].

Fig 1.2 RED queue management.

� WRED: this scheme is a special form of RED. It combines the

capabilities of RED together with the ability to differentiate the

drop probability among various traffic flows stored in the same

queue. The queue threshold in this scheme is different for

different traffic classes. When the number of packets in a queue

exceeds this threshold, incoming packets to the queue are

dropped according to the drop probability of their classes.

Scheduling: The scheduler selects the next packet among the packets

waiting in the switch buffers and sends it to the output link. The

scheduler’s task is easy in a shared buffer architecture, since the

scheduler only selects the packet with the largest queue waiting time.

Input traffic

Scheduler

Traffic to the

outgoing interface
Traffic from the

incoming interface

RED
queue manager

9

FIFO is the most common scheduling algorithm used for shared buffer

architecture. However, this task becomes more complicated in a per-flow

architecture [29]. The scheduler can use a variety of algorithms in order

to select the next eligible packet from different queues. Since the focus

of this thesis is on scheduling algorithms, they will be discussed in more

detail in the next chapter.

1.2.4 Combination of QoS mechanism

In order to provide certain QoS to network applications, any combination

of the above mentioned mechanisms can be deployed in networks. What

should be taken into consideration is that although not all mechanisms

have to be present to provide a certain level of QoS, these mechanisms

are not independent. For example using a certain mechanism like “per-

flow buffering” might prevent the usage of a mechanism like “FIFO

scheduling”. Moreover, it is possible for the network to provide the same

service using a different combination of above mechanisms. How the

users’ required services are provided by the network is usually

transparent to the users.

1.3 The Internet and its architecture

Internet that is based on a packet switched networking technology with

layered infrastructure started in 1969 as a research project called

“ARPANET” [33]. At the beginning, it only connected four computers

while today over tens of billions of computers around the word are

connected, exchanging messages and resources through the Internet.

1.3.1 Internet architecture

Fig. 1.3 shows a simplified network hierarchy for Internet architecture.

10

Fig 1.3 Internet architecture.

The Internet protocol (IP) at the network layer enables the Internet to

interconnect heterogeneous sub-networks running on different

technologies such as Ethernet, Asynchronous Transfer Mode (ATM), and

Token Ring, in order to form a network of networks [10]. IP hides the

heterogeneity of the underlying layers, thus it can support different

applications through a common transport layer. There are two standard

interfaces to the transport layer: Transmission Control Protocol (TCP)

and User Datagram Protocol (UDP). IP relies on TCP/UDP to provide

reliable data delivery. This "reliability" can only assure data delivery.

Neither IP nor its high-level protocols can ensure delivery time or provide

any guarantees for data throughput. Consequently, they can make no

guarantees about when data will arrive, or how much it can deliver [28].

Current network applications such as Hypertext Transfer Protocol

(HTTP), File Transfer Protocol (FTP), remote terminal (Telnet), remote

TCP UDP

IP

Satellite
Ethernet

ATM

11

login (rlogin), Simple Network Management Protocol (SNMP), and e-mail

are now running over TCP/UDP. More and more multimedia applications

which are emerging everyday are using TCP/UDP protocols to achieve

end-to-end packet delivery.

1.3.2 Next generation of the Internet

Today’s Internet only provides best-effort service, in which traffic is

processed as quickly as possible with no guarantees for the traffic

delivery time [35]. With the increase of multimedia applications running

on the Internet with stringent performance guarantee requirements,

such as bounded delay and minimum throughput, the Internet traffic is

changing from best-effort to QoS sensitive. Since the Internet is still not

ready for this change, supporting the wide range of QoS for current and

future Internet applications is a major challenge. A key issue in QoS is

how to manage or control the network’s shared resources in terms of

bandwidth on the links or buffers in the switching nodes.

1.4 Thesis organization

The thesis is organized as follows. Chapter 2 provides background on

packet scheduling. It introduces a general scheduler model, discusses

the packet scheduling requirements and represents the two main

categories of packet scheduling algorithms. Some of the scheduling

algorithms from both categories are explained in this chapter with more

focus on the VirtualClock scheduling mechanism. In Chapter 3 we

describe the implementation of the VirtualClock scheduling algorithm in

OPNET simulation tool. We introduce the OPNET software environments

and VirtualClock implementation embedded in each of these

environments. Chapter 4 shows the validity and functionality of the

12

implemented VirtualClock model through OPNET simulation of two

network scenarios. In Chapter 5 we conduct two series of simulation

experiments on two network scenarios in order to compare various

performance aspects of the VirtualClock scheduling algorithm with

several other scheduling mechanisms like FIFO, WFQ, CQ, and PQ. We

use the OPNET simulation tool to simulate these network scenarios. The

first scenario compares the performance of VirtualClock in comparison to

other schedulers for the time periods during which different sources

show various traffic behaviors. In the second scenario, we compare and

analyze the effect of scheduling algorithms on the performance of several

common Internet applications: HTTP, FTP, IP Telephony, and

videoconferencing. We conclude the thesis with Chapter 6 and address

the possible future research.

13

Chapter 2

 Scheduling

2.1 Introduction

The next generation of the Internet supports two types of applications:

best-effort and guaranteed-service applications [18]. The best-effort

applications, which are already common to the Internet, are content to

accept whatever performance the network gives them. For example

although a file transfer application would prefer to encounter zero end-

to-end delay and infinite bandwidth, it can still adapt to the available

network resources. These applications are called best-effort because the

network promises to deliver their data without any guarantees on

performance bounds.

Beside these applications, the Internet is expected to carry traffic from

applications that require performance bounds in the future. For

example, an application that contains voice as a 64 Kbps data stream will

be no longer usable if the network provides a bandwidth less than

64kbps [18].

The performance received by a connection depends principally on the

scheduling mechanism. These mechanisms are carried out by the

switching nodes located along the path between the source and the

destination of a connection. Scheduling mechanisms are implemented

at output interfaces of switches or routers. At each output queue of an

interface a scheduling mechanism is used to choose which packet to

14

transmit to the outgoing link. “The scheduler can allocate different

queuing delays and different bandwidths to different connections. This

is done by the scheduler’s choice of service order and by serving a

certain number of packets from a particular connection [18].” The

scheduler can also allocate different loss rates to connections by

assigning a certain amount of buffer space to them. Furthermore, it is

able to allocate resources, which are desired properties in the networks

fairly among best-effort connections. Thus, the next generation of

Internet needs scheduling disciplines in order to support:

� per-connection delay, bandwidth, and loss bounds needed for

guaranteed-service applications [7]

� fair resource allocation needed for best-effort applications.

2.2 Scheduler model

In packet switched networks, scheduling is done in the network’s

intermediate nodes like routers and switches. Each intermediate node

consists of the following components [29]: Input buffers, output buffers,

and switching fabrics. Fig. 2.1 shows the architecture of a network

switch.

Fig 2.1 General architecture of a network switch.

Input buffers Output buffers

Switching
fabric

15

Input interface is a switch component that receives packets from other

intermediate nodes and selects the best output link in order to send the

packet. The output interface is in charge of selecting the best packet in

order to send it to the outgoing link. The switching fabric is a component

that transfers packets from the input link to the output link.

Buffering can be done at any of the above mentioned components in a

packet network’s intermediate nodes:

� Input buffers: some switches have small input buffer spaces so

that they only hold packets for the time period they are being

forwarded to the switch fabric. For the other switches, all the

buffers are located at the inputs [18].

� Output buffers: these are the most commonly used buffers. They

store packets as they wait for their turn to be sent to the outgoing

link [18, 29].

� Mixed input and output buffers: these buffers are usually

employed for the case in which the switching fabric is not fast

enough. So, in order to prevent packet loss due to the low

forwarding speed of the fabric, a small amount of memory resides

on the input interfaces. However, the main buffering point is still

located at the output interfaces [29].

� Switching fabric’s buffers: this can be the case of a shared buffer

for all the output interfaces like FIFO scheduling.

Scheduling algorithms are located on the output interface of the

network switches. Each interface has its own instance of the scheduler,

i.e., different scheduling algorithms can be used on different interfaces.

16

The architecture of a scheduler is shown in Fig. 2.2. Each scheduler

consists of two main components: classifier and scheduler. The classifier

is in charge of allocating packets into different queues according to the

scheduling classifier scheme. The scheduler selects the next best packet

from the queues according to its appropriate scheduling algorithm.

Fig. 2.2 The model of a scheduling algorithm.

2.3 Scheduling requirements

In the design of scheduling schemes, different trade-offs can be

considered in terms of the following five requirements [12]. Depending

on the specific situation, some of these requirements may be more

important than others and the decision for the best choice is made given

the particular situation.

� Complexity: the scheduling schemes are different in terms of both

control and hardware implementation complexity. The complexity

Classifier

Traffic from the

input interface

 Traffic to the outgoing

interface

Scheduler

Switch buffers

17

of the algorithm is important because the router needs to pick up

a packet to send out to the output link every time a packet

departs. The frequency of the packet departure depends on the

speed of the output link and it can be once every few

microseconds. Thus, a scheduling scheme should require only a

few simple operations. It also has to be implemented inexpensively

in hardware [18].

� Fairness: Since a scheduling scheme assigns a share of network

resources in terms of output link bandwidth and buffer capacity,

fairness is a property needed for supporting best-effort

applications [18].

� Isolation (protection): is the property of not permitting the

misbehaving users to affect the well-behaving users. Misbehavers

are the users that send packets at a rate faster than their fair

shares [37].

� Efficiency: to guarantee certain performance requirements a CAC

policy is needed in order to limit the number of guaranteed-service

connections [18]. “A service discipline is more efficient than

another one if it can meet the same performance guarantees

under a heavier load of guaranteed-service traffic [37].”

� Performance: as discussed before the main goal of a scheduling

algorithm is to guarantee performance bounds for connections in

terms of throughput, delay and loss. The network and its users

agree upon certain traffic parameters. The users should not

exceed the specified bounds in the agreement and the network

guarantees to provide the connection’s service requirements [18].

Guaranteeing the performance bounds is a difficult problem in

18

today’s networks, since all the schedulers along the connection’s

path have to take part in providing it [18].

2.4 Classification of scheduling algorithms

Packet scheduling mechanisms are classified into two categories: work-

conserving and non-work-conserving [37]. A work-conserving scheduler

is idle when there are no packets waiting in the router’s queues. In a

non-work-conserving scheduler, each packet is assigned a time when it

has to be sent to the output interface. The scheduler remains idle and

no packet will be transmitted until the next packet is eligible for

transmission [18, 37].

One of the attributes of work-conserving algorithms is that they have the

minimum average total queuing delay. The average of total queuing

delay is calculated on all the flows that have to be served. In addition,

the average total queuing delay value is equal for all work-conserving

algorithms. In other words, although different schedulers use different

algorithms to choose the next best packet to transmit, the overall

average queuing delay is always the same. This shows that some

algorithms serve some flows faster at the expense of other ones [29].

A certain question arises at this point: why do we need to use non-work-

conserving algorithms and waste bandwidth by leaving the link idle until

the packets eligibility times arrive? The answer is that non-work-

conserving algorithms make the traffic flow arriving at the switches more

predictable by keeping the link idle for short periods of time [18]. These

algorithms are usually the best choice for networks with real time traffic

19

since they can provide specific bounds on delay and delay jitter to the

flows. This is achieved by delaying packets to meet special delay

requirements.

2.5 Scheduling algorithms

One of the most important functions of scheduling algorithms is to select

packets for transmission to outgoing links. Beside the classical First In

First Out (FIFO) algorithm and the simple priority based queuing, a large

number of new scheduling algorithms have been proposed during the

past decade. All these algorithms are the variants of two fundamental

disciplines, Generalized Processor Sharing (GPS) and Earliest-Deadline-

First (EDF) [3].

GPS divides the resources among different traffic flows according to their

requirements. EDF assigns a deadline to each packet. It attempts to

achieve the required QoS of the flows by serving the flows’ packets in the

increasing order of their deadlines [3]. The packets deadlines are

associated with their maximum tolerable delay and are calculated by

adding their arrival times to their maximum tolerable delays. Delay

earliest due date and jitter earliest due date are examples of such

algorithms.

This section focuses on the first category of the scheduling algorithms

(GPS) with more emphasis on the VirtualClock algorithm as a special

case. We also review some of the other GPS algorithms and outline their

properties.

20

2.5.1 FIFO

First In First Out (FIFO) or First Come First Serve (FCFS) is one of the

simplest scheduling algorithms. In this mechanism, packets are served

in the order in which they arrive to the switching node. FIFO is a work-

conserving algorithm and has a very low complexity, so it is one of the

most commonly implemented algorithms in the networks. There are

some limitations for FIFO as follows.

� It is not able to provide fairness in resource allocation to different

flows. Nevertheless, this limitation is not very important for best-

effort applications.

� It cannot provide any performance guarantees in terms of delay,

delay jitter, or throughput to the real time applications. Thus,

multimedia applications do not work well with FIFO schedulers

[29]. One way to provide a delay bound is to limit the buffer size,

so that the packets are guaranteed to be sent in less than the time

it takes to serve a full queue. A disadvantage of this solution is that

it increases the packet loss probability, which is a consequence of

the high buffer overflow probability.

2.5.2 Generalized Processor Sharing (GPS) algorithm

Generalized Processor Sharing (GPS) is an ideal scheduling algorithm

[25]. In this algorithm, packets from each flow are classified into different

logical queues. GPS serves non-empty queues in turn and skips the

empty queues. “It sends an infinitesimally small amount of data from

each queue, so that in any finite time interval it visits all the queues at

least once [18].” There can be a service weigh associated with each

queue. Queues receive service according to their associated weights.

21

Following are the variables used in a GPS algorithm:

� φi: The share of bandwidth reserved by flowi

� Wi (t1, t2): amount of traffic served from flowi during the time period (t1,

t2).

 A connection flow is defined as backlogged if it has packets that are

either receiving service or waiting for service in its queue [18]. Thus, GPS

serves each backlogged connection with minimum rate equal to its

reserved rate at each instant. The extra bandwidth not used from other

connection flows is distributed among all the backlogged connections in

proportion to their reservation. In other words, during an arbitrary

interval (t1, t2), for any pair of backlogged connection flows i and j the

following equation holds [18]:

 Wi (t1, t2)/Wj (t1, t2) = φi /φj (2.1)

or

 Wi (t1, t2) /φi = Constant. (2.2)

Because GPS posses the properties of ideal fairness and complete

isolation, a lot of research studies have been done on it. However, GPS is

not implementable because serving an infinitesimal amount of data from

each non-empty queue is not possible. Thus, various emulations of GPS

have been proposed in the literature. The following sub-sections

describe some of these emulations.

22

2.5.3 VirtualClock

The idea behind the VirtualClock algorithm was derived from Time

Division Multiplexing (TDM) systems. A TDM system eliminates

interference among users because individual user channels (flows) can

transmit only during specific time slots. The disadvantage of a TDM

system is that users are limited to constant data transmission rates and

the channel capacity is wasted whenever a slot is given to a flow that has

no data to send at that moment. The purpose of the VirtualClock

algorithm is to maintain the guaranteed throughput and firewalls of a

TDM system, while still achieving the statistical multiplexing properties

of packet switched networks.

The algorithm makes the statistical data flow resemble a TDM channel

by assigning each data flow a virtual clock. Each virtual clock advances

one tick at every packet arrival from a specific flow. The tick step is the

mean packet inter-arrival time that has been specified by the flow. Thus,

each virtual clock carries the expected arrival time of the packet. If a flow

sends packets according to its specified average rate, its virtual clock

follows real time. The algorithm stamps the packets with their own

“virtual clock” values and transmits the packets in the ascending order of

these stamps. Nevertheless, there is a major difference between a TDM

system and a network controlled by a VirtualClock scheduling algorithm.

The difference is that unlike TDM, a VirtualClock controlled network can

support data flows with distinct throughput rates. The network

reservation protocol determines how large a share of bandwidth each

flow needs on average. Then, according to the flow’s reserved

transmission rate, the VirtualClock algorithm determines which packet

23

should be forwarded next in case there is more than one packet waiting

[38].

Choosing flow parameters:

We consider the following parameters for each flowi entering a switch in

a network:

� ARi, average transmission rate (packets/sec)

� IRi, packet inter-arrival time (sec)

� AIi, average observation interval (sec).

Choosing the AI value for each flow is very important. AI value of a flow is

chosen such as:

total transmitted data (over AI)/AI = AR (2.3)

and the range of possible values for AI is: 1/AR ≤ AI ≤ total flow duration.

The value for AI should be small enough to give the network sufficient

control, nevertheless it should be large enough to tolerate variations in

packet arrival pattern [38]. For example if the lower bound value is

chosen for AI, the source is obliged to send packet at a constant rate. On

the other hand, choosing an upper bound value (total transmission time)

for AI, allows the source to send packet in any arbitrary manner.

VirtualClock Algorithm:

The algorithm uses two control variables for each flow, Virtual Clock (VC)

and auxiliary Virtual Clock (auxVC) [38]. The following two functions are

performed by the VirtualClock algorithm:

24

Data forwarding:

� When the first packet is received from flowi, VCi and auxVCi are

both set to the real time.

� Upon receiving each packet from flowi,

a) Vticki ← 1/ARi

b) auxVCi ← max (real time, auxVCi)

c) auxVCi ← auxVCi + Vticki

 VCi ← VCi + Vticki

� Stamp the packet with auxVCi value.

� Insert the packet in its outgoing queue.

� Serve the packets according to their increasing stamp values.

Flow monitoring: The algorithm calculates a control variable: AIRi = ARi ×

AIi for each flowi (in packets). Upon receiving AIRi packets from flowi, the

following conditions are checked:

� If (VCi - real time) > T (a control threshold), then the source of flowi

is warned

� If (VCi < real time), let VCi = real time.

Thus, the VC variable plays the role of a flow meter, and it is increased

according to the flow’s negotiated packet arrival rate. Hence, the

difference between a flow’s VC and the real time shows how closely a

flow is following its specified rate [38].

By introducing a second parameter called the auxiliary Virtual Clock,

the algorithm prevents flows from accumulating credits. Consider the

25

case when a source sends a burst of packets after remaining idle for a

while. In this situation, although the VC value might fall behind the real

time, the use of the auxiliary Virtual Clock will cause the packet’s auxVC

stamp to be updated with the real time. Thus, the traffic burst will be

interleaved with packets from other flows. Therefore, the auxVC is used

to order packets from distinct flows. By serving packets in the order of

their auxVC values, the algorithm assures that flows use the bandwidth

according to their specified packet arrival rates. Thus, although

nonconforming flows can use free bandwidth, they cannot affect

conforming flows.

VirtualClock functionalities:

Firewall protection: The VirtualClock algorithm provides firewall

protection between distinct flows by serving packets in the order of their

VC values. In the networks using a VirtualClock scheduler, if one or

more flow sources exceed their specified average packet generation

rates; these nonconforming sources will not affect other conforming

sources. Because, the more nonconforming the flow, the worse service it

gets from the VirtualClock scheduler. When a flow source generates

packets at a rate higher than it is expected, the VC value of the flow’s

appropriate queue advances beyond the real time; thus the flow’s

packets will be placed at the end of the service queue. In a VirtualClock

controlled network, although nonconforming sources can use the idle

network resources, they cannot degrade the service to other conforming

flows.

26

Flow prioritization: The VirtualClock algorithm is able to provide priority

service to flows that require guaranteed performance. The VirtualClock

can divide the incoming flows into two categories: guaranteed service

and best effort service. Prioritization is done by replacing the real time

by real time – P in the VirtualClock algorithm for guaranteed service

flows. P is the priority value. The chosen P should be large enough to

separate priority flows from non-priority flows. However, the algorithm

prevents the priority queues from making unfair use of network

resources and affecting other flows. If so, their VC value of such priorities

will run ahead of the real time and ultimately they lose their priority.

The priority value for best effort traffic flows is set to -∞, so they will be

stamped by VC value of ∞. Thus, these packets will be located at the end

of service queues and will receive low priority service.

Flow monitoring: The VirtualClock is able to monitor the flows average

throughput rate using the VC Variable. Each flow is monitored

periodically by comparing its VC value with the real time, as mentioned

earlier. Thus, the algorithm can deliver measurement information to

other network control functions. It also can provide feedback to flow

sources when the flow’s actual packet rate significantly exceeds the

negotiated rate. The flow can either be checked:

� every AI time period, or

� after receiving every AIR = (AR × AI) packets from the flow.

An advantage of using the second option is that the scheduler can react

to traffic changes faster, if the AI value is large. The above options are

27

similar in cases where the flow is transmitting packets at its specified

traffic rate.

2.5.4 Weighted Round Robin (Custom Queuing)

Weighted Round Robin (WRR) is a simple emulation of GPS. The

difference between GPS and WRR is that WRR serves a certain amount

of data instead of sending an infinitesimal amount of data from the

queues [18]. The served data can be in the form of packets or bytes.

In this algorithm each queue has a weight that allows sending a certain

amount of data from each nonempty queue. The weight is usually a

percentage of the whole bandwidth. “This algorithm is a closer

approximation for GPS when all connection flows have equal weights and

all the packets have the same size (in case of packet WRR) [18, 29].”

When different traffic flows have different weights, the WRR algorithm

serves the flows in proportion to their weights. In cases where there are

different packet sizes for different flows in order to achieve a normalized

set of weights for the flows, the WRR algorithm divides each flow’s weight

by the average packet size of that flow.

There exist two problems that cause WRR not to emulate GPS correctly

[18]:

� In practice the source’s packet sizes may not be predictable, so a

WRR algorithm cannot allocate bandwidth fairly to different flows.

� At time scales shorter than a round trip time, the algorithm is not

a fair algorithm since some flows may get more service than the

others. WRR tends to be fair only at larger time scales.

28

A limitation of the WRR algorithm is that its performance depends on

the packet arrival pattern. For example, when a packet arrives to a queue

just after the queue has been served, it has to wait in the queue for a

whole round time before getting served, no matter how important the

packet’s flow is.

2.5.5 Deficit Round Robin

Deficit Round Robin (DRR) is a modification of WRR. The improvement

to this algorithm is that it can handle variable packet sizes without

knowing the average packet size of the flows. DRR services the queues in

a round robin order. Each queue is allowed to send a certain amount of

bytes in each round. There are two variables associated with each queue

in this algorithm: Quantum and Deficit Counter [29, 31]. Quantum

represents the number of bytes that each queue can send on its turn.

The Deficit Counter variable is used to keep track of the credit each

queue possesses for sending traffic and is initialized to zero.

The scheduler checks each queue in turn and adds the queue’s

Quantum to its Deficit Counter variable. DRR tries to send the number of

bytes equal to the queue’s Deficit Counter from the queue. If the packet

size in bytes is smaller than the Quantum value of the packet’s queue,

the packet is served and the Deficit Counter is reduced by the packet size

in bytes. If the packet size is larger that the Quantum value, the

scheduler moves to the next queue without serving the packet [31]. The

queue of the unserved packet keeps the credit it obtained from not

sending a packet on the previous round. This credit is used by the

queue on the next service rounds.

29

The importance of the DRR algorithm is that it is easily implemented.

However, like WRR, it is unfair at time scales smaller than a round trip

time.

2.5.6 Packet by packet Generalized Processor Sharing and

weighted Fair Queuing

Packet by packet Generalized Processor Sharing (PGPS) and Weighted

Fair Queuing algorithms are both approximations of GPS. The difference

between these algorithms and GPS is that unlike GPS they don’t service

an infinitesimal amount of data from each queue. Another improvement

which has been done to GPS in these algorithms is that, in the case of

flows’ variable packet sizes, they do not need to know the average packet

size in advance [25, 26]. WFQ is essentially the same as PGPS, but they

were independently developed. Thus, we only focus on explaining WFQ.

WFQ was developed by Demers, Keshav, and Shenker in 1989. The idea

behind the algorithm is that for each packet, WFQ computes the time at

which service to the packet would be finished, deploying a GPS

scheduler. Then the WFQ scheduler services the packets in the

increasing order of their finish times [18]. “In other words WFQ

simulates GPS on the side and uses the results of this simulation to

determine the packets’ service order [18].”

Computation of finish time:

For computing packet finish times, consider the following variables and

notations:

30

� R(t), round number at time t. Round number is the number of rounds a

bit-by-bit round robin scheduler has completed at a given time.

� P(i, k, t), the size of k th packet that arrives to the i th queue at time t.

� F (i, k, t), the finish time of the k th packet that arrives to the i th

queue at time t.

� W(i), the weight of i th connection.

� Active queue is a queue in which the largest finish number of a

packet either in that queue or the last served from the queue is larger

than the current round number.

The length of a round, i.e., the time it takes to serve one bit from each

active queue, is logically proportional to the number of active queues.

This finish time for packets arriving at both active and inactive queues is

calculated as follows.

The finish time of packets arriving to an inactive connection is the sum

of the current round number and the packet size (bits)/queue weight,

which is the time it takes a bit-by-bit round robin scheduler to finish the

service of the packet. For active queues the finish time is the sum of the

largest finish time of a packet in its queue or last served from the queue

and the arriving packet size (bits)/queue weight [5, 18]. In other words,

combining the above statements finish time for packet i is calculated as:

F (i, k, t) = max {F (i, k-1, t), R (t)} + P (i, k, t)/W (i). (2.4)

A problem with this algorithm is “iterated deletion” [18]. The iterated

deletion problem happens when a queue becomes inactive and is

31

deleted from the list of active queues, perhaps causing other queues to

become inactive. A solution to this problem is to compute the list of

deletions at any given time, which is a difficult task. A WFQ scheduler

updates the round number on every packet arrival and departure, which

is a complex computation happening once every few microseconds. This

is one of the major problems with the implementation of WFQ in high-

speed networks [18].

Another problem is that WFQ has to associate each data flow to a

separate queue, which brings up the scalability problem. A solution to

this problem is using hashing techniques.

WFQ also needs to keep track of the per-connection scheduler state,

which causes implementation complexity and is expensive for

schedulers that support a large number of flows [18].

Despite all these problems many manufacturers such as Cisco, Inc. and

FORE Systems, Inc. (manufacturer of ATM switches) have been using

variants of WFQ in their routers and switches as of 1996 [5, 18]. Two

variants of WFQ are Self-Clocked Fair Queuing (SCFQ) and Start-time

Fair Queuing.

2.5.7 Self-Clocked Fair Queuing

As discussed above a major problem with WFQ was the complexity and

cost for computation of round numbers upon each packet arrival. SCFQ

which was proposed by Golestani in 1994, was a solution for speeding

up the computation of finish numbers [11]. Instead of using the round

number in this algorithm, the finish time of the packet currently

32

receiving service is used to update the queue’s finish time upon arrival of

a packet to an empty queue. So, finish time for packet i is computed as

[18]:

 F(i, k, t) = max{F(i, k-1, t),CF} + P(i, k, t)/W(i) . (2.5)

Finish time of a packet is set to the maximum of CF (finish time of the

packet presently receiving service) and the finish time of last packet in

the queue, plus the time it takes to finish service to the packet.

Although SCFQ does not have the computational complexity of WFQ, it

is an unfair algorithm over short periods of time. SCFQ has looser delay

bounds than WFQ and consequently causes greater unfairness over

shorter time scales. Hence, there is a trade-off between the lower

computational cost and the fairness of SCFQ and WFQ [18, 29].

2.5.8 Start-time Fair Queuing

This algorithm is a variant of SCFQ. It provides lower implementation

complexity than WFQ, without having loss, delay bounds, and

unfairness properties of SCFQ. In this scheme in addition to f inish time

another parameter called start time is calculated for each packet entering

a queue. For packets arriving to an inactive queue the start time will be

the current round number and for packets arriving to an active queue the

start time is the finish number of its previous packet [18].

If there exist some packets to send, the round number is set to the start

time of the packet that is currently receiving service; otherwise the round

number will be set to the maximum of the finish numbers of the packets

33

that have been sent until that time. The packet’s finish time is computed

by adding up its start time and its packet size (bits)/queue weight [18].

2.5.9 Priority Queuing

Priority Queuing is one of the first solutions for providing different

services to different flows. It allows prioritizing traffic flows.

The algorithm assigns packets from traffic flows to different queues with

various priorities. The Priority Queuing (PQ) algorithm functions as

follows.

The highest priority queues receive service until they have packets.

Thus, the first high priority queue has the entire bandwidth of the

output link available. The second priority queue has the entire link

bandwidth decreased by the amount used by the first priority queue and

so on. Thus, the traffic in each priority queue is influenced by the

queues with higher priorities [5, 29].

PQ is useful for assuring that mission critical traffic gets priority

treatment. “For example, Cisco uses PQ to ensure that important Oracle

based sales reporting data gets to its destination ahead of other less

critical traffic [5].”

This algorithm is not fair because the lowest priority flows can starve if

highest priority flows have large amounts of traffic. This is a work-

conserving mechanism and functions well when a network has a small

34

amount of high priority traffic. In addition, there might be situations in

which the received service is much better than a required service

delivered by a high priority flow. In these cases the algorithm is not able

to degrade the service to the high priority flow in order to improve service

to other flows. Thus, Priority Queuing is not a good choice for today’s

networks, which carry both best effort and guaranteed service traffic.

2.6 Theoretical comparison of scheduling algorithms

In this section we compare several well-known scheduling algorithms.

Table 2.1 compares general performance aspects of these algorithms. In

the second column, value “n”, used for computing implementation

complexity of the algorithms, is the number of active queues at each

time instance. Active queues are the queues that either have packets

stored in them or are in the process of packet transmission. In the

fourth column of Table 2.1, by algorithm “fairness” we mean a fair

throughput comparable to what ideal GPS algorithm provides. In the last

column of the table, a “small” delay bound means a delay bound that is

a small additive constant larger than the bound GPS algorithm provides

[32].

Algorithm Implementation

complexity

Category

Fairness

Delay bounds

GPS Impractical Work-conserving Fair 0

VirtualCloc

k

O(log n) Work-conserving Fair in if flow
arrival rate is

known

Small

CQ O(1) Work-conserving
Fair in case of

identical Small

35

packet sizes

DRR O(1) Work-conserving Fair Large

WFQ O(n) Work-conserving Fair Small

Table 2.1 Comparison of scheduling algorithms.

Table 2.2 shows the scheduling algorithms which best serve particular

classes of traffic and their corresponding application types in today’s

Internet.

Algorithm VirtualClock CQ WFQ PQ

Traffic Consistent and
predictable

streams

Constant
packet size:
ATM cells

All: CBR and
unpredictable
with constant
and variable
packet sizes

Unpredictable
mission critical

Application Voice over IP No Internet
application

All: Best effort
and guaranteed

service

Control
messages

Table 2.2 Appropriate scheduling algorithm for various applications and

traffic types.

2.7 Scheduling algorithms in OPNET

The OPNET simulation tool has some scheduling algorithms

implemented in its IP routers: FIFO, Priority Queuing (PQ), Custom

Queuing (CQ), and Weighted Fair Queuing (WFQ). These algorithms are

also the most common algorithms used by Cisco, Inc. in their router

products. The following describes the features of these algorithms and

their implementation in the OPNET simulation tool.

2.7.1 FIFO

36

This algorithm is uses one common buffer space in which packets are

stored in case of output link congestion. The only configurable

parameter for this scheme is the Maximum Queue Size (pkts). When this

limit is exceeded, the packets will be dropped from the buffer.

2.7.2 Priority Queuing

In OPNET’s PQ implementation there exist four priority queues: High,

Normal, Medium, and Low. Each packet is assigned to one of these

priority queues based on an assigned priority. Packets that are not

classified by these assigned proprieties will fall into the Normal queue.

Fig. 2.3 shows a general architecture of the implemented PQ in OPNET.

2.7.3 Custom Queuing

OPNET’s Custom Queuing model is based on the byte by byte WRR

algorithm. This algorithm works by cycling through the queues in

round-robin fashion and sending the number of bytes according to the

portion of allocated bandwidth from each queue.

 Classifier

Traffic from the

input interface

 Traffic to the outgoing

interface

Scheduler

High

Normal

Medium

Low

37

Fig. 2.3 Priority queuing scheduler in OPNET.

There is a configurable variable (Byte Count) associated with each queue.

This variable specifies how many bytes of data should be delivered from

the current queue before the system moves into the next queue. When a

particular queue is being processed, packets are sent until the number

of sent bytes exceeds the Byte Count, or until the queue is empty. There

is a limitation of 16 on the maximum number of definable CQ queues on

each IP router interface. Fig. 2.4 shows how the queues are served

employing the CQ algorithm in OPNET.

Fig. 2.4 Custom Queuing scheduler in OPNET.

2.7.4 Weighted Fair Queuing

WFQ model in OPNET is based on the Weighted Fair Queuing algorithm

explained earlier in this chapter. In this model, the queue whose head

Classifier

Traffic from the

input interface

Traffic to the outgoing

interface

Scheduler

Up to 16

2/9

3/9

1/9

3/9

38

packet has the lowest Finish time will be served first by the WFQ

scheduler. The packets’ Finish times are calculated using the WFQ

equation. In addition, there is a configurable variable (weight) that

defines the number of packets served from each queue upon their turn.

Fig. 2.5 shows the function of the WFQ scheduler and the proportion of

the sent packets based on the queue weighs.

Fig. 2.5 WFQ scheduler in OPNET.

.

Classifier

Traffic from the

input interface

Traffic to the outgoing

interface

Scheduler
W1

W2

W3

W4

W3/W1 = 3, W3/W2 = 1

39

Chapter 3

Implementation of VirtualClock Algorithm

3.1 Introduction

In this chapter, we describe the implementation of the data forwarding

function of the VirtualClock scheduling algorithm. To implement the

algorithm, we use the OPNET simulation tool. OPNET is an intelligent

network management software, developed by OPNET Technologies, Inc.

founded in 1986. Since then eight versions of the software have been

released.

The VirtualClock algorithm model is implemented in the Internet layer

of OPNET’s IP routers and is created using the state transition diagram

model, coded in embedded C. The VirtualClock model has been

contributed to the OPNET Model Depot site, where users can download

the model in order to control congestion in their simulated IP networks.

3.2 OPNET environment

OPNET provides an environment that supports modeling of

communication networks and distributed systems [22, 23]. The OPNET

environment contains tools for all phases of a study, including design,

simulation, data collection, and data analysis.

There are three layers for the hierarchical structure of an OPNET model:

Network layer, Node layer, and Process layer. Each of these layers has

an editor incorporated with them in the OPNET environment.

40

3.2.1 Project editor

The project editor is used to construct and edit the topology of

communication network models. The interconnection and position of

network nodes are adjustable in this editor. It also provides operations to

support the simulation and analysis of these network models. This editor

is the highest modeling level in OPNET in the sense that it uses the

objects that are defined in the other modeling editors.

3.2.2 Node editor

The node editor is used to define the structure and behavior of nodes

used in the network domain (such as clients, servers, switches, routers,

bridges, and firewalls). Each network node is made up of several

modules. Each of these modules defines one aspect of node behavior

such as data generation, data storage, data forwarding, etc. These

modules are connected together via packet streams or statistic wires. In

addition to the node structure, this editor defines the interface of a node

model, which determines which aspects of the node model are visible

and definable by the user.

3.2.3 Process editor

The process editor is used to specify the behavior of process models,

which define the functionality of the modules used by node models. In

addition to the behavior of a process, this editor defines the model’s

interfaces, which determine what characteristics of the process model

are visible and adjustable by users.

Process models are defined by finite state machines, which are

composed of two main components: states and transitions. States refer

41

to an object that corresponds to one of the situations that the process

may find itself in. The process is always exactly in one state at a time.

The process can move between states upon receiving some interrupts.

The interrupts fulfill the conditions that make the process move from

one state to another. The interrupts may be originated either from the

process itself or from another process, called a parent process to the

invoked process (child process).

The operation of each state is defined in a distinct block written in

embedded C or C++ code. These blocks are called executives. The

executives of a state are split into two sections, called enter and exit

executives. The enter executives are executed when a process enters a

state and the exit executive are performed while the process leaves a

state to enter another state. States are divided into two categories: forced

states and unforced states that differ in execution timing. In unforced

states there is a pause between the enter and exit executives. Once the

execution of an enter executive is finished, the process returns the

control to the process that has invoked it. The invoked process is

suspended until the it is invoked again. At this point the exit executive

of the blocked state is executed. In the forced states, the exit executives

are executed by a process immediately after completion of the enter

executives. For this reason the exit executives of forced states are

usually left blank.

Fig. 3.1 shows the execution flow through an unforced state. In this

figure, step (1) shows the time when the process completes the enter

42

Executive immediately after it enters the unforced state. The state blocks

at this point until a new invocation takes place.

Fig. 3.1 The execution flow of the unforced states.

Step (2) is when a new invocation to the unforced state occurs. At this

point the exit executives of the unforced state is executed and the

process proceeds to the next state. Step (3) shows the transition to the

(6) End of Invocation

(2) Start of Invocation

(4) End of Invocation

(5) Start of Invocation

(3) Transition to the

next state

(1) Block point of the
state

Enter
executive

Blocked

Exit
executive

Enter
executive

Blocked

Exit
executive

Enter
executive

Blocked

Exit
executive

43

next state. This state can either be a new state or the same unforced

state depending on the transition conditions. Step (4) is when the

execution of the Enter executives of the next state is finished and the

process is blocked again and ….

3.2.4 Network-wide database and Common Attribute objects

This database contains some node model attributes that are common to

more than one object in the network model. Node models that use this

database include a unique object in their network models, which is

called the Common Attribute Object. These objects serve the following two

functions:

� They define the Value Combination for the structured attributes

that are commonly used by some node models like routers,

workstations, etc. Each value Combination that is referenced by a

specific name is a set of sub-attribute values. It means that users

can specify that an object of their network uses a specific value

Combination. This can be done by selecting the Value

Combination’s unique name as the attribute value of a node used

in their network.

� They parse the structured attribute and store the information into

the network-wide attribute database.

3.3 VirtualClock process model

The algorithm is implemented in OPNET’s ip_output_iface process model

[1, 2]. This process model is a child process to the IP layer process model

(ip_rte_v4) of all IP routers. Fig.3.2 shows the internal structure of an IP

44

router node model in OPNET. The ip_rte_v4 process model is marked by

a black circle in Fig. 3.2. The ip_output_iface child process is invoked

whenever there is a scheduling algorithm selected by the user for the IP

router. This selection has been done by choosing the appropriate

scheduling mechanism as a value to the Queuing Scheme attribute of

each of the interfaces in the IP router objects.

Fig. 3.2 Internal hierarchy structure of the IP router node model.

The ip_output_iface process model is in charge of assigning separate

queues to various data flows entering the router and scheduling packets

out of the queues. The scheduling is performed based on the

45

VirtualClock algorithm or one of the other scheduling mechanisms

currently implemented in OPNET.

3.3.1 State transition diagram

We expanded and modified the state transition diagram of the already

existing OPNET process model ip_output_iface. Fig. 3.3 shows the

original ip_output_iface state transition diagram. As mentioned above,

this process is in charge of performing other scheduling algorithms like

FIFO, Weighted Fair Queuing (WFQ), Priority Queuing (PQ), and Custom

Queuing (CQ).

Congestion avoidance mechanisms like Random Early Detection (RED)

and Weighted Random Early Detection (WRED) are also handled by this

child process. In addition to those, this process is Resource Reservation

Protocol (RSVP) aware. It means that the configuration of the queues can

be managed upon a RSVP request.

The state transition diagram of the VirtualClock algorithm consists of

four states: init, enqueue, dequeue, and idle, as shown in Fig. 3.4 The

init, enqueue, and dequeue states are all forced states and the idle state

is an unforced state. These states are incorporated within the state

transition diagram of the ip-output_iface process model. The state

transition diagram functions as follows:

46

Fig. 3.3 State transition diagram of ip_output_iface process model.

When a packet arrives to the ip layer process model, the scheduling

process model is invoked. At the invocation time, the process enters the

init sates in which some initializations for the variables and structures

are done. Since the idle state has no transition conditions, the process

enters the idle state immediately after the executives in the init state are

executed. The idle state is an unforced state and the enter executive of

the idle sates is blank, so after the process has entered this state, it

remains idle until it receives an interrupt.

47

Fig. 3.4 State transition diagram of the VirtualClock process model.

There are two interrupts that cause the process to move from init state to

either the enqueu or dequeue states. Depending on the origin of the

interrupt one of the outgoing conditions of the idle state is satisfied,

which will take the process to the next state. The interrupt may originate

from the ip_rte_v4 process model upon arrival of a packet from the upper

layer. This will cause the RECEIVE_PACKET condition to be satisfied and

takes the process to the euqueue state. In the enqueue state the packet

is assigned to one of the existing queues in the router’s output

interfaces according to the classification table that is defined in the IP

QoS configuration object. The process then returns to the idle state. The

interrupt might also originate from the process itself when it is time to

send a packet to the outgoing link. This interrupt is called a self-

interrupt and when it happens the SEND_PACKET condition is satisfied,

taking the process to the dequeue state. So, the process enters the

dequeue state when the last packet has just been transmitted to the

outgoing link. This state is in charge of choosing the queue from which

the next packet has to be transmitted according to the VirualClock

48

algorithm. The details of the VirtualClock implementation are described

step by step below as functions done in the enqueue and dequeue states.

3.3.2 Enqueue state

When a packet arrives from an upper layer process, it enters the

enqueue state. The function of the enqueue state is as follows:

Step 1. Get the incoming packet.

Step 2. Determine the queue to which the packet belongs according to

the flow associated with the incoming packets. The flow recognition

criteria are: packet source address, destination address, incoming port

number, outgoing port number, and required Type of Service (ToS).

Step 3. Check whether the packet is the first packet of its flow. This is

performed by setting a boolean flag for each queue. The flag is set to true

upon arrival of the very first packet, and is checked every time a packet

enters the enqueue state. If the packet is the first packet of the flow, VCi

and auxVCi of the queue corresponding to flowi are initialized with the

real time.

Step 4. Get the ARi of flowi and calculate Vticki for the packet’s queue.

Step 5. Advance VCi and auxVCi by Vticki and stamp the packet with

auxVCi. The stamping is implemented by using OPNET’s data type called

Interface Control Information (ICI). ICI contains fields for user-defined

parameters to be shared by multiple entities in the network. After

advancing the auxVC for each packet, the auxVC value is saved in the

a_Virtualcl_Clock_Stamp field in the ICI named ip_arp_req_v4. Then, the

ICI is associated with the packet, and remains with it as long as the

packet is waiting in the queue. The a_Virtual_Clock_Stamp field is

49

accessed in the dequeue state in order to choose the packet with the

lowest auxVC value to be sent to the output interface.

Step 6. If there are no packets waiting in other queues, the packet is

sent out immediately. Otherwise, it will remain in its associated queue

and the process control returns to the idle state.

3.3.3 Dequeue state

The packet enters the dequeue state when it is time for it to be

dequeued. The operations conducted in the dequeue state are:

Step 1. Send the packet to the network interface.

Step 2. Get the ICI named ip_arp_req_v4 associated with the packet, and

read its a_Virtual_Clock_Stamp field.

Step 3. If there are no packets in other queues, return to the idle state.

Otherwise, choose the next packet to be dequeued. In order to select the

correct packet to be serviced, check all the queues by looking at the

auxVC stamp value of the packets located at the head of the queues. The

packet with the lowest auxVC stamp value is chosen as the next packet

to be serviced. In case there is more than one packet with an identical

stamp value, the priority is given to the packet from the queue with the

lowest index.

Step 4. Schedule the time at which the selected packet should be

serviced, and return to the idle state. This time is calculated by dividing

the packet size (bits) by the link rate (bits/sec).

50

Fig. 3.5 Enqueue state flowchart of VirtualClock state transition

diagram.

Get incoming packet from
memory

Get the ICI coming with the
packet

ICI associated with the
packet?

End the simulation

Calculate time to send packet

Any connected interface
Destroy ICI associated with

the packet

Interface processor busy?

Get the defined AR value of the
queue from the QoS

Configuration data base object

Calculate Vtick variable for
packet according its queue's

Vtick

Update auxVC with maximum
of auxVC and current simulation

time

Calculate VC and auxVC for
packet

Insert VC and auxVC to the
packet's ICI

Calculate the time it takes to
process the packet

(packet size/ link speed)

Schedule an interrupt at time =
current time + packet processing

time

Mark the processor of the interface
as busy

Write statistics for VC and auxVC

Insert the packet into its
associated queue

First packet entering
queue?

Interface processor busy?

No

Insertion is done
successfully?

Set the Insert_ok flag to TRUE
or FALSE accordingly

Initialize the VC and auxVC
variables to the current

simulation time

yes

NoYes

Able to access packet? No

Yes

No

Destroy the packet

No

Register the statistics for the
queue

Queue statistics
registered?

No

Insert_ok = TRUE?

Write statistics for VC and
auxVC variables

Yes

No

Drop the packet and update
the dropped packets statistics

for the queue

Drop the packet and update the
dropped packets statistics for

the queue

Yes

No

Yes or
No

Get queue where packet has to
be enqueued according to the
classification table in the QoS

Configuration object

Yes

No

51

Fig. 3.6 Dequeue state flowchart of VirtualClock state transition

diagram.

Get the queue from which the
previouse packet has been sent

Mark the processor as idle

Any packets exists in the
queues?

Destory the ICI associated with
the packet

Queue statistics
registered?

No

No

Register statistics for the
queue

Get the ICI associated with the
packet and access the VC and

auxVC fields of the ICI

Write the value for VC and
auxVC statistics (this statistics is
collected upon packet departure

from the queue)

Write the value for the queuing
delay statistics

Yes

Increase the packet sent
statistic by one

Send the packet to the correct
outgoing interface

Loop through all the queues to
find the next non-empty queue

Get the queue index of the
packet

Get the ICI associated with the
packet

Access the packet at the head
of the queue

 Packet has smallest
auxVC stamp among

nonempty queus?

Any other packet with the
same auxVC stamp?

Loop through non-empty
queues

Choose the packet from the
queue with the smallest queue

index
No

No

Yes

Yes

Yes

Calculate the time it takes to
process the packet

Schedule an interrupt at time =
current time + packet processing

time

Update the total buffer size and
queue buffer size statistics

Extract the packet at the head of
the queue

Mark the processor as busy

Update the current total number
of buffered packets statistic

52

Figs. 3.5 and 3.6 show the flowcharts for the enqueue and dequeue

states of VirtualClock state transition diagram, respectively.

3.4 IP QoS Configuration object

IP QoS Configuration is an OPNET Common Attribute object that allows

the definition of a queuing profile for any of the QoS schemes used by IP

nodes in OPNET. The advantage of using this global object is that once

you define the scheme you can simply refer to the scheme on individual

IP objects [23].

3.4.1 Definition of the VC Profiles structured attribute

We added a new attribute (VC Profiles) for the VirtualClock algorithm in

qos_attribute_definer process model. This process model is used to define

the functionality of OPNET’s IP QoS Configuration object node model.

By assigning values to the sub-attributes of the VC Profiles attribute,

users will be able to define their own VirtualClock queuing profiles for

the outgoing interface. This attribute has three sub-attributes: Profile

Name, Buffer Capacity, and Queues Configuration. These attributes

define the queuing parameters of each interface.

 Profile Name is the name of the queuing management profile. The

queuing attributes of each interface are identified by a profile name.

Buffer Capacity shows the size of buffer for each interface. When the

value for this sub-attribute is reached, the interface enters the state of

congestion; otherwise the queues can still store packets.

53

Queues Configuration sub-attribute enables the users to define an

optional number of queues on each interface. This sub-attribute, which

is a compound attribute itself, is shown as a table with each row

representing a separate queue. The following attributes apply to each

queue: Arrival Rate, Classification Scheme, and Maximum Queue Size.

Arrival rate is the expected packet arrival rate of the flow entering the

queue. Maximum Queue Size is the maximum allowable number of

packets per queue. This is used when the interface is congested. It

means that when the total number of buffered packets in all the queues

is reached if the total number of packets in each queue exceeds this

value, packets will be dropped from that queue.

The Classification Scheme sub-attribute defines the criteria for the

packet in order to enqueue it. There are six distinct criteria: ToS,

protocol, source IP address, destination IP address, source port number,

destination port number, and the incoming interface from which the

packet entered the router.

Fig. 3.7 shows the structure and the hierarchy of the VC Profiles

attribute and its sub-attributes through an example. As an example we

have created a profile for VirtualClock algorithm called Flow Based

shown in Fig. 3.7 (a). Fig. 3.7 (b) shows that this profile has four queues

with different Arrival Rates and the same Maximum Queue Size of 500

(packets). The classification criteria for these queues are represented in

Fig. 3.7. (c). This figure shows that the packets originated from source

with an IP address of 1.1.1.1, or the packets that have entered the router

54

from Interface = 0 and have the ToS = Best Effort (0) are all allocated to

Q0.

(a)

(b)

(c)

Fig. 3.7 (a) VC Profiles, (b) Queues Configuration, and (c) Classification

Schemes tables of the IP QoS Configuration object.

and

or

55

3.4.2 Introducing the VC Profiles to the global database

In order to make the VC Profiles structured attribute and its sub-

attributes recognizable to the network-wide database, we have

implemented a function called attr_def_VC_profiles_info_parse(). This

function is implemented in the qos_attribute_definer process model,

where we previously defined the VC Profiles attribute and its sub-

attributes. The function parses the information defined in the compound

attribute VC Profiles. It also creates instances for the data structure QM

Information, allocates memory to these instances and stores the parsed

information in them. The QM Information structure contains general

queuing information for each interface. As mentioned before, the

queuing attributes of each interface is identified by a profile name. Each

profile contains many queues and each queue can have a list of queue

classification criteria. The QM Information structure contains the

following fields:

� name: name of the queuing profile interface

� no_queues: number of queues in the interface

� max_total_no_buff_pkts: maximum number of buffered packets

� queue_configuration: which is a structure itself and stores the

queues’ parameters

� classification_list_ptr: a pointer to the structure that stores criteria

to classify packets.

The information parsed from the VC Profiles table is stored in the first

three fields of the QM Information Structure. Parsed information from

the Queues Configuration and Classification Scheme tables are stored in

56

queue_configuration and classification_list_ptr fields of the structure,

respectively. After storing the parsed information into the allocated

memory, the attr_def_VC_profiles_info_parse() function registers the

information into the attribute database in order to provide access from

network objects to the information. Flow chart shown in Fig. 3.8

represents the step-by-step operations of this function.

3.4.3 Configuration of the IP objects

After defining the common attributes in the global database, we should

create an interface to these attributes in all the OPNET IP objects that

desire to use the VirtualClock as a scheduling technique on their output

interfaces. Thus, we have defined the attribute values shown in Fig. 3.9

in the IP layer process model of the IP objects. These attribute values are

defined for two sub-attributes of the IP Address Information compound

attribute of the ip_rte_v4 process model. The IP Address Information

attribute allows the configuration of the object’s output interfaces.

Fig. 3.9 (a) depicts the Ip Address Information compound attribute. Each

row in the table is related to one interface and each column in the table

defines the attributes of the interface. As revealed in Fig. 3.9 (b) the QoS

info sub-attribute of each interface shows the QoS related parameters

such and management scheme used for that certain interface. This sub-

attribute includes: scheduling mechanism (FIFO, WFQ, Priority

Queuing, Custom Queuing, and VirtualClock), queuing profile, queue

management mechanism (RED, WRED), bandwidth management

mechanism (Committed Access Rate), and if RSVP is supported on the

interface, the attributes of RSVP. For the queuing profile filed, one of the

57

profiles that have previously been defined for each queuing scheme in

the QoS Configuration Object can be chosen.

Access the compound attribute
VC Profiles

All the queuing profiles are
parsed?

Determine the number of
queuing profiles

Access the row indicating the
queuing profile

Allocate memory of size QM
Information structure to store

the information about the
current profile

Allocate memory for the queues
of size:

number of queus x size of
queue_configuration sturcture

Access the profile name and
store it in the name field of QM

Information sturcture

Access the Buffer Capacity and
store it in the

max_total_no_buff_pkts field of
QM Information structure

Determine the number of
queues

Create a list for storing the
queue classification schemes

Access the Queues
Configuration Structure

Access and Store the queue
attirbutes in the

queue_configuration fields of
QM Information structure

Access all the classification
criteria for the queue

Queue_index > number of
queues?

Queue_index = 0

Store the Classification Criteria
to the classification list

Queue_index + = 1

Register the data to the
network-wide database by
passing the pointer to QM

Information

Yes

No

Yes

Fig. 3.8 Flowchart of the attr_def_VC_profiles_info_parse() function.

58

(a)

(b)

 (c) (d)

Fig. 3.9 (a) IP Address Information, (b) QoS Information, (c) Queuing

Profile, and (d) Queuing Scheme tables of the IP router objects.

59

As illustrated in Fig. 3.9 (d), We have added VC as a possible value for

the Queuing Scheme sub-attribute and also Flow Based as a sample VC

Profile value for the queuing profile sub-attribute, shown in Fig. 3.9 (c).

60

Chapter 4

 VirtualClock Model Verification

In this Chapter we will show the correctness and the functionality of the

implemented VirtualClock model by running simulations. For this

purpose, we use OPNET software tool version 7.0.L. We introduce two

scenarios: a simple scenario in which there are two sources creating

conforming traffic with a constant packet generation rate. In this

scenario, we keep track of the packets’ arrival and departure times into

and from the ip_output_iface process model. We also examine the

packets’ Virtual Clock and aux Virtual Clock stamps to see how the

VirtualClock algorithm selects and forwards packets according to the

stamps. In the second scenario, which is a more complex one, we

examine the functionality of the VirtualClock algorithm during

conforming and nonconforming periods of time.

4.1 Model verification

In order to evaluate the performance of the VirtualClock process model,

we have created the simple network model in the OPNET’s network

editor. The network model is shown in Fig. 4.1.

This is an ideal scenario in which both sources are generating packets

according to their specified packet rates. The Ethernet network consists

of two clients sending traffic to associated servers via switches and

routers. Clients 1 and 2 generate 1,024 byte IP packets at a constant

rate of 10 and 5 packets/sec, respectively.

61

All the nodes in the network are connected with 10BaseT links with a 10

Mbps data rate. The only link in the network that has a lower capacity is

the link between Routers 1 and 2, chosen to be a DS0 link with a 64

Kbps data rate. The bottleneck link is positioned immediately before the

output interface of Router 1 where the VirtualClock scheduling

algorithm is implemented. Hence, we can observe the order in which the

packets are dequeued by the VirtualClock algorithm.

Figure 4.1 Network model for performance verification of the

VirtualClock algorithm.

Incoming packets from Clients 1 and 2 are destined for Servers 1 and 2,

respectively. The packets are sorted into two distinct queues and ordered

out of the queues according to their specified packet rates.

In the VC Profile of the IP QoS Configuration object, we defined a new

queuing profile named Flow Based. This profile has two rows. Each row

represents a queue with the following parameter settings:

• Arrival Rate0 = 10, Queue Size0 = 500

62

• Arrival Rate1 = 5, Queue Size1 = 500.

The following figures are simulation results, obtained from OPNET, to

show the validity of the algorithm. Incoming packets from Client 1 are

recognized as a flow and are assigned to the first queue (Q0).

Figure 4.2 Incoming traffic to queues: Q0 (top) and Q1 (bottom), in

(packets/sec) vs. time.

Packets from the second flow, coming from Client 2, are assigned to the

second queue (Q1). The incoming traffic to queues Q0 and Q1 is shown

in Fig. 4.2.

Fig. 4.3 illustrates the VC stamp values of the packets in queues Q0 and

Q1, respectively. The stamp values are calculated upon packet arrivals to

the enqueue state of the scheduling process. As expected, when a packet

arrives to a particular queue, the queue’s VC increases by 1/AR of the

63

particular queue (0.1 for Q0, and 0.2 for Q1), and the arriving packet is

stamped with the value VC.

Fig. 4.3 Virtual Clock (VC) stamp vs. packet arrival time (sec) for

queues: Q0 (top) and Q1 (bottom).

Fig. 4.4 shows the auxiliary Virtual Clock (auxVC) stamp values of the

packets in queues Q0 and Q1 that are sent to the outgoing interface. We

expect the VirtualClock algorithm to be a fair algorithm that assigns the

bandwidth fairly to the flows according to their negotiated packet

generation rates. Because the specified arrival rate of the first flow is

twice that of the second flow, we expect that the scheduling algorithm

will send two packets from Q0 for each packet sent from Q1, as

illustrated in Figure 4.5.

64

Fig. 4.4 Auxiliary Virtual Clock (auxVC) vs. packet departure time (sec)

for queues Q0 (dark) and Q1 (light).

Fig. 4.5 Outgoing traffic from queues: Q0 (top) and Q1 (bottom), in

(packets/sec) vs. time (sec).

65

Time Action State auxVC Queue

5 Q1 packet arrives and scheduled for t = 5.12 enqueue 5.2 Q1

5.1 Q0 packet arrives and queued enqueue 5.2 Q0

5.12 Q1 packet is sent dequeue 5.2 Q1

5.12 Q0 packet is selected and scheduled for t = 5.24 dequeue 5.2 Q0

5.2 Q0 packet arrives and queued enqueue 5.3 Q0

5.2 Q1 packet arrives and queued enqueue 5.2 Q1

5.24 Q0 packet is sent dequeue 5.2 Q0

5.24 Q0 packet is selected and scheduled for t = 5.36 dequeue 5.3 Q0

5.3 Q0 packet arrives and queued enqueue 5.4 Q0

5.36 Q0 packet is sent dequeue 5.3 Q0

5.36 Q1 packet is selected and scheduled for t = 5.48 dequeue 5.4 Q1

5.4 Q0 packet arrives and queued 5.48 enqueue 5.5 Q0

5.4 Q1 packet arrives and queued enqueue 5.6 Q1

5.48 Q1 packet is sent dequeue 5.4 Q1

5.48 Q0 packet arrives and scheduled for t = 5.6 enqueue 5.4 Q0

5.5 Q0 packet arrives and queued enqueue 5.6 Q0

5.6 Q0 packet arrives and queued enqueue 5.7 Q0

5.6 Q1 packet arrives and queued enqueue 5.8 Q1

5.6 Q0 packet is sent dequeue 5.4 Q0

5.6 Q0 packet is selected and scheduled at t = 5.72 dequeue 5.5 Q0

5.7 Q0 packet arrives and queued enqueue 5.8 Q0

5.72 Q0 packet is sent dequeue 5.5 Q0

5.72 Q0 packet is selected and scheduled at t = 5.8 dequeue 5.6 Q0

5.8 Q0 packet arrives and queued enqueue 5.9 Q0

Table 4.1 Timetable for state transition diagram of VirtualClock.

66

Pkt

Pkt

arrival

time

Expected

VC

upon pkt

arrival

VC

upon

pkt

arrival

Expected

auxVC upon pkt

arrival

Pkt

departur

e time

Expected

auxVC

upon pkt

departur

e

1 5.1 5.0 + 0.1 = 5.2 5.2 5.0 + 0.1 = 5.2

5.2 >5.1 (real time)

5.2 5.2

2 5.2 5.2+ 0.1 = 5.3 5.3 5.2 + 0.1 = 5.3

5.3 > 5.2 (real time)

5.4 5.3

3 5.3 5.3 + 0.1 = 5.4 5.4 5.3 + 0.1 = 5.4

5.4 > 5.3 (real time)

5.5 5.4

4 5.4 5.4 + 0.1 = 5.5 5.5 5.4 + 0.1 = 5.5

5.5 > 5.4 (real time)

5.6 5.5

5 5.5 5.5 + 0.1 = 5.6 5.6 5.5 + 0.1 = 5.6

5.6 > 5.5 (real time)

5.6 5.6

6 5.6 5.6 + 0.1 = 5.7 5.7 5.6 + 0.1 = 5.7

5.7 > 5.6 (real time)

5.8 5.7

7 5.7 5.7 + 0.1 = 5.8 5.8 5.7 + 0.1 = 5.8

5.8 > 5.7 (real time)

5.9 5.8

8 5.8 5.8 + 0.1 = 5.9 5.9 5.8 + 0.1 = 5.9

5.9 > 5.8 (real time)

6.1 5.9

9 5.9 5.9 + 0.1 = 6.0 6 5.9 + 0.1 = 6.0

6.0> 5.9 (real time)

6.2 6.0

10 6.0 6.0 + 0.1 = 6.1 6.1 6.0 + 0.1 = 6.1

6.1> 6.0 (real time)

6.4 6.1

Table 4.2 Verification table for Q0, AR = 10 (packets/sec).

67

Pkt

Pkt

arrival

time

Expected

VC

upon pkt

arrival

VC

upon

pkt

arrival

Expected

auxVC upon pkt

arrival

Pkt

departur

e time

Expected

auxVC

upon pkt

departur

e

1 5.0 5.0 + 0.2 = 5.2 5.2 5.0 + 0.2= 5.2

5.2 >5.0 (real time)

5.1 5.2

2 5.2 5.2+ 0.2 = 5.4 5.4 5.2 + 0.2= 5.4

5.4> 5.2 (real time)

5.4 5.4

3 5.4 5.4 + 0.2 = 5.6 5.6 5.4 + 0.1 = 5.6

5.6> 5.4 (real time)

5.8 5.6

4 5.6 5.6 + 0.2 = 5.8 5.8 5.6 + 0.2 = 5.8

5.8 > 5.6 (real time)

6.2 5.8

5 5.8 5.8 + 0.2 = 6.0 6.0 5.8 + 0.2 = 6.2

6.0 > 5.8 (real time)

6.5 6.0

6 6.0 6.0 + 0.2 = 6.2 6.2 6.0 + 0.2 = 6.2

6.2 > 6.0 (real time)

6.9 6.2

7 6.2 6.2 + 0.2 = 6.4 6.4 6.2 + 0.2 = 6.4

6.4 > 6.2 (real time)

7.2 6.4

8 6.4 6.4 + 0.2 = 6.6 5.6 6.4 + 0.2 = 6.6

6.6 > 6.4 (real time)

7.6 6.6

9 6.6 6.6 + 0.2 = 6.8 6.8 6.6 + 0.2 = 6.8

6.8 > 6.6 (real time)

8.0 6.8

10 6.8 6.8 + 0.2 = 7 7.0 6.8 + 0.2 = 7.0

7.0 > 6.8 (real time)

8.3 7.0

Table 4.3 Verification table for Q1, AR = 5 (packets/sec).

Tables 4.1 shows the timetable of VirtualClock state transition diagram.

Tables 4.2 and 4.3 are used to verify the values of VC and auxVC

variables for queues:Q0 and Q1.

68

4.2 Functionality test

We use OPNET simulation tool to evaluate the performance of the

VirtualClock algorithm in the simulation scenario similar to the scenario

described in Fig. 4.1. The VirtualClock scheduler model is used inside

the IP router node.

In our scenario, we consider two conforming and one nonconforming

sources. The first conforming source has constant packet generation

rate. The third source which is also conforming, generates traffic with

self-similar characteristics, which fluctuates around its specified average

packet arrival rate. The nonconforming source generates packets with a

constant rate. For a short period of time, it conforms to its negotiated

packet generation rate. After this short period, the source decreases its

rate for a while in order to gather credits for sending a burst of packets

at a rate that is four times its expected rate. This behavior for the

nonconforming source is chosen so that we could examine the reaction

of the VirtualClock algorithm in situations when a misbehaving source

wants to use the credits gained for sending a burst of traffic.

The network topology is similar to the topology shown in Fig. 4.1, with

an additional source and destination. In this scenario, we use three

Ethernet clients to send traffic to three Ethernet servers. All the nodes

are connected with 10BaseT links, except the DS0 link between Routers

1 and 2. The specified packet arrival rates of Clients 1, 2, and 3 are 4, 2,

and 2 packets/sec, respectively. These rates are assigned in the VC

Profile of the IP QoS Configuration object. In the VC Profile, we defined a

69

queuing profile Flow Based1 that contains three rows. Each row

represents a queue with the following parameter settings:

• Arrival Rate0 = 4, Queue Size0 = 500

• Arrival Rate1 = 2, Queue Size1 = 500

• Arrival Rate2 = 2, Queue Size2 = 500.

Client 1 starts sending packets at time 20 sec. Using an exponential

process, It generates IP packets of size 1,024 bytes at a constant rate of 4

packets/sec, and stops at 555 sec. Client 2 also generates 1,024 bytes IP

packets. It begins generating traffic at a constant rate of 2 packets/sec at

20 sec. At time = 142.5 sec, it reduces the traffic rate and keeps on

sending packets at a rate of 0.5 packets/sec for 250 sec. At 392.5 sec, it

increases its rate and continues sending packets at a rate of 8

packets/sec until time 455 sec. Client 3 is an OPNET

ethernet_rpg_wkstn_adv source node model. This source is chosen from

OPNET’s Raw Packet Generator (RPG) model [24]. RPG is a traffic source

model that is used to generate self-similar traffic [30].

The reason for choosing a self-similar traffic generator in our scenario is

that we wanted to make our network congested with a traffic that

behaves like today’s genuine networks traffic. Measurements conducted

on Bellcore Ethernet traffic first indicated the self-similar characteristic

of the traffic. The measurements showed that traffic pattern seemed

similar over the large time scales (hours and minutes) and small time

scales (seconds and milliseconds) [15, 19]. Later on, the self-similar

behavior has been observed in the traffic of a number of other network

applications like HTTP traffic, video traffic, and Motion Pictures Experts

70

Group (MPEG) traffic [15]. The self-similar traffic model is used to

capture the fractal properties of Internet traffic.

Client 3 starts at 5 sec and sends traffic with the following specifications:

• Average arrival rate = 2 (packets/sec)

• Hurst parameter = 0.9

• Fractal onset time scale = 0.1.

Fig. 4.6 shows the incoming traffic from Clients 1, 2, and 3 to Router 1’s

queues Q0, Q1, and Q2, respectively. Fig. 4.7 depicts the Virtual Clock

(VC) stamp values of the packets in queues Q0, Q1, and Q2. The slope of

the (VC) graph for Qi is calculated as: slope i = Vticki / (1/ ARi).

If a flow is conforming to its expected packet generation rate, the values

of Vtick and 1/AR are identical. Hence, its VC slope is equal to 1. As it

can be seen in Fig. 4.7 (top), flow0 adheres to its specified packet arrival

rate. Thus, the slope of the Virtual Clock graph is 1. Fig. 4.7 (middle)

indicates that the slope of the graph changes at instances when packet

arrival rate of the flow changes. For the periods during which traffic has

a lower arrival rate (142.5 sec ­ 392.5 sec), Virtual Clock line has slope <

1. For higher arrival rate periods (392.5 sec - 455 sec), we observe a

steeper line with slope > 1. Fig. 4.7 (bottom) shows that, for a flow

fluctuating around its specified arrival rate, the Virtual Clock graph is

close to a line with slope 1.

71

Fig. 4.6 Incoming traffic to queues: Q0 (top), Q1 (middle), and Q2

(bottom) in (packets/sec) vs. time.

Fig. 4.7 Virtual Clock (VC) stamps vs. packet arrival time (sec) for

queues: Q0 (top), Q1 (middle), and Q2 (bottom).

72

Fig. 4.8 displays the auxiliary Virtual Clock stamp values (auxVC) of

packets in queues Q0, Q1, and Q2. The role of this variable is to prevent

the flows from gathering credits by not sending traffic for a period of

time and then suddenly sending a burst of traffic. This is achieved by

upgrading the auxiliary Virtual Clock value to the larger value between

auxVC and real time.

Figs. 4.7 and 4.8, show that the Virtual Clock and auxiliary Virtual Clock

graphs of packets coming to Q0 (top) and Q2 (bottom) have the same

slope, because the flows have been conforming to their expected sending

rate. In contrast, the traffic to Q1 reduces its rate at 142.5 sec. This is

shown as the difference between the slopes of the Virtual Clock and

auxiliary Virtual Clock in Figs. 4.7 and 4.8 (bottom) from 142.5 sec to

392 sec.

Fig. 4.8 Auxiliary Virtual Clock (auxVC) stamps vs. packet arrival time

(sec) for queues: Q0 (top), Q1 (middle), and Q2 (bottom).

73

Fig. 4.9 Auxiliary Virtual Clock (auxVC) stamps vs. packet departure

time (sec) for queues: Q0 (top), Q1 (middle), and Q2 (bottom).

Fig. 4.9 shows the auxiliary Virtual Clock (auxVC) stamp values of the

packets in queues Q0, Q1, and Q2 that are being sent to the outgoing

interface.

Fig. 4.10 shows the outgoing traffic from queues Q0, Q1, and Q2 of

Router 1, after being scheduled by the VirtualClock algorithm. In case

the total link traffic does not exceed the link’s capacity, the algorithm

allocates bandwidth to flows according to their specified packet arrival

rates. If there is no available bandwidth, the traffic from a flow that is

exceeding its specified arrival rate will be queued and serviced with the

flow’s specified arrival rate. The packets are dropped when the queue

becomes full.

74

Fig. 4.10 Outgoing traffic from queues: Q0 (top), Q1 (middle), Q2

(bottom) in (packets/sec) vs. time (sec).

It can be seen from Figs. 4.6 and 4.10 (top) that since Client 1 is sending

traffic according to its specified arrival rate of 4 packets/sec, the queue

Q0 is served with the same rate.

As seen from Figs. 4.6 and 4.10 (middle), traffic from Client 2 is serviced

with its arrival rate while it conforms to its specified packet rate (2

packets/sec until 142.5 sec and 0.5 packets/sec from 142.5 sec to 392.5

sec). When the client starts sending packets with arrival rate of 8

packets/sec, which is four times the expected rate, the VirtualClock

schedules packets with the flow’s expected packet rate (2 packets/sec).

The total bandwidth is used by the three sources until 555 sec, when

Client 1 stops sending traffic. At that time, part of the bandwidth will be

freed and the traffic from Q1 will be serviced at a higher rate.

75

As seen in Figs. 4.6 and 4.10 (bottom), Client 3 generates self-similar

traffic. The Virtual Clock algorithm forwards packets at a rate of 2

packets/sec, which is the average traffic generation rate of the source.

76

Chapter 5

Simulation Results

In this section we describe a series of simulation experiments. These

simulation experiments are conducted in order to compare the

functionality of the VirtualClock scheduling algorithm with several other

scheduling mechanisms, such as First In First Out (FIFO), Weighted Fair

Queuing (WFQ), Custom Queuing (CQ), and Priority Queuing (PQ). The

selected mechanisms are commonly used as congestion management

techniques in today’s IP routers. These routers are mainly produced by

manufacturers like Cisco, Inc. and Juniper Networks, which are the

leaders in network backbone router manufacturing. WFQ is Cisco’s

premier queuing mechanism. The other two algorithms (CQ and PQ) are

also being used in its routers [5]. “For example Cisco Uses PQ to ensure

that important Oracle-Based sales reporting data gets serviced ahead of

other less critical traffic [5].” CQ is the queuing mechanism that Juniper

Networks uses in its products [16, 17].

Our simulation experiments are conducted using two different scenarios

for analysis and comparison of various performance aspects of the

VirtualClock scheduling mechanism. The first scenario emulates an

ideal situation in which sources follow their expected packet generation

rates, except for the periods during which they do not conform to these

rates. We look at the functionality of the scheduling mechanisms during

the whole simulation time, specifically the nonconformance periods. In

the second scenario we emulate a network, running traffic from real

Internet applications: Hypertext Transfer Protocol (HTTP), File Transfer

77

Protocol (FTP), IP Telephony, and videoconferencing. We will study the

impact of VirtualClock and other scheduling mechanisms on the

performance of these applications during congestion periods. Following

we describe the above mentioned simulation Scenarios 1 and 2 and

explain the performance results driven by running simulations using

the OPNET simulation tool.

5.1 Simulation Scenario 1

The purpose of this scenario is to compare the functionality of the

VirtualClock scheduling mechanism with the above mentioned

scheduling mechanisms. We look at the performance of these algorithms

in comparison to VirtualClock for the time periods during which: 1) all

sources conform to their specified traffic generation rate, 2) some

sources decrease their traffic generation rate in order to collect credit for

the periods with high traffic generation rate, and 3) sources try to use

the collected credit for sending traffic with a rate larger than their

expected traffic rate.

We compare the fairness of the algorithms in terms of allocating

bandwidth to these sources at the congested point in the network and

also the amount of buffer usage, number of dropped packets, and

queuing delay in the allocated queues to each source.

This scenario is identical to the functionality test scenario in Chapter 4,

page 67 of this document. As described before, there are three Ethernet

clients 1, 2, and 3 sending traffic to three Ethernet servers 1, 2, and 3

respectively. Source 1 is non-conforming and sources 2 and 3 are

78

conforming to their expected traffic generation rates. The network model

for this scenario is shown in Fig. 5.1.

Fig. 5.1 Network Model for Scenario 1.

All nodes in the network are connected with 10BaseT links with the

capacity of 10Mbps. The link between Routers 1 and 2 is the network

bottleneck and is a DS0 link with 64Kbps data rate. Thus, Router 1 does

not have the ability to forward all the traffic that arrives to the outgoing

link. For this reason the scheduling mechanisms are performed at the

beginning point of the bottleneck link (Router 1). These mechanisms are

defined as attributes of the IP QoS Configuration Object, which has to be

used in our network if we want to perform scheduling in one of the

routers. Fig. 5.2 shows the attributes of this object. In case of

congestion, by employing any of the above scheduling algorithms, the

received traffic from Clients 1, 2, and 3 are categorized and stored in

Router 1’s output queues: Q0, Q1, and Q2, respectively. Fig. 5.3 shows

the Incoming traffic to Q0, Q1, and Q2. All the traffic generation

79

parameters of the sources are the same as those in the network of the

functionality scenario and are specified in page 68 and 69.

Fig. 5.2 Attributes of the IP QoS Configuration object.

Fig. 5.3 Incoming traffic to queues: Q0 (top), Q1 (middle), and Q2

(bottom) in (packets/sec) vs. time (min).

80

In the following sub-sections, we repeat the simulation with the same

network configuration and traffic generation parameters for the

mentioned schedulers and compare the simulation results with the

results of the VirtualClock scheduler.

In order to configure the VirtualClock queue parameters we use the

queuing profile Flow Based1, defined in the VC Profile attribute of the IP

QoS Configuration object and stated on pages 67 and 68 of this

document.

5.1.1 VirtualClock vs. WFQ

In this section, first we explain the configuration of the WFQ algorithm

in OPNET. Then we show the simulation results of WFQ compared with

VirtualClock.

WFQ queue parameters are defined as sub-attributes of the WFQ Profile

attribute of the IP QoS Configuration Object. In order to set appropriate

values for the WFQ queue parameters, we define a new profile Flow

Based in the WFQ Profile. This profile has three rows, and each row

represents a queue with the following queue parameter settings:

� Weight0 = 4, Queue Size0 = 500

� Weight1 = 2, Queue Size1 = 500

� Weight2 = 2, Queue Size2 = 500.

WFQ assigns a weight to each flow, which determines the percentage of

the link bandwidth assigned to each flow. Since the average arrival rate

81

to queues Q0, Q1, and Q2 are 4, 2, and 2 respectively, and the packet

sizes are equal for all the flows, we assign queue weights in proportion to

the packet arrival rate to these queues. Thus, the bottleneck link

bandwidth allocations to queues Q0, Q1, and Q2 are 50%, 25%, and

25%. The maximum length of each queue is defined by Queue Size

attribute. When a queue is longer than the Queue Size, all the additional

packets are dropped.

Fig. 5.4 shows the outgoing traffic from queues Q0, Q1, and Q2 of

Router 1 after being scheduled by the VirtualClock (dark graph) and

WFQ (light graph) algorithms.

Fig. 5.4 VirtualClock vs. WFQ, outgoing traffic from queues: Q0 (top), Q1

(middle), and Q2 (bottom) in (packets/sec) vs. time (min).

82

In this scenario, if all three clients send traffic according to their

specified traffic generation rate, the total capacity of the bottleneck link

will be fully utilized. Otherwise, if a fair scheduling algorithm is being

used at the congestion point, only nonconforming sources will be

punished.

Since Client 1 is conforming to its specified traffic generation rate (4

packets/sec), it can be seen from the Fig. 5.4 (top) that both

VirtualClock and WFQ serve the traffic from Q0 with the same rate. The

middle graph in this figure shows that traffic from Q1 is serviced by both

VirtualClock and WFQ with its arrival rate, while it conforms to its

expected average arrival rate (from the beginning of the simulation until

time 6 minutes and 32 seconds). This graph also indicates how

VirtualClock and WFQ treat the flows fairly. This is done by reducing

the traffic burst from Client 2 to its specified rate when it tries to make

use of its collected share of bandwidth during time = 2 minutes and 22

seconds to time= 6 minutes and 32 sec in order to send a burst of traffic.

The bottom graph shows that although Client 3 is fluctuating around its

average traffic rate, both VirtualClock and WFQ serve Q3 with a constant

rate equal to its specified rate (2 packets/sec).

WFQ scheduling is a well-known algorithm for its high degree of fairness

[25, 26]. By comparing the VirtualClock and WFQ outgoing traffic from

queues Q0, Q1, and Q2, it can be concluded that VirtualClock can also

be considered as fair as the WFQ algorithm, since these graphs for each

queue are tightly following each other, and have exactly the same

behavior during sources’ conforming and nonconforming periods.

83

Fig. 5.5 VirtualClock vs. WFQ, buffer usage for Q0 (top), Q1 (middle),

and Q2 (bottom) in (packets) vs. time (min).

Fig. 5.5 shows the amount of buffer usage for VirtualClock and WFQ

queues: Q0, Q1, and Q2. The graphs: (top), (middle), and (bottom) show

that the maximum buffer usage for all three queues occur during the

bursty period of Client 2. By comparing the amount of the buffer usage

in these queues, it can be seen that the buffer usage in Q0 (top graph)

in comparison to the other queues is the lowest. The reason for this is

that the incoming traffic to this queue has a constant rate, that is similar

to the outgoing traffic rate. Thus, the packets from this flow do not need

to get buffered in Q0. Although the average incoming traffic is equal to

the average outgoing traffic from this queue, Q2 has a higher number of

buffer usage. The reason is that since, the actual incoming traffic rate

fluctuate around its average value, packets need to be buffered in Q2 to

be serviced by the scheduler with a constant rate.

84

Fig. 5.6 VirtualClock vs. WFQ, total buffer usage in (bytes) vs. time

(min).

Fig. 5.7 VirtualClock vs. WFQ, traffic dropped from queues: Q0 (top), Q1

(middle), and Q2 (bottom) in (packets/sec) vs. time (min).

85

Fig. 5.6 shows the total buffer usage for VirtualClock and WFQ queues. It

can be seen from the graph that all of the queues for these two

algorithms are using exactly the same amount of buffer. By looking at

Figs. 5.5 and 5.6 and comparing the amount of buffer usage (total

amount and individually for each queue) for VirtualClock and WFQ

queues, it can be concluded that both algorithms have the same

behavior for buffer usage. Comparison of dropped packets from queues:

Q0, Q1, and Q2 is shown in Fig. 5.7.

Fig. 5.8 VirtualClock vs. WFQ, queuing delay in queues: Q0 (top), Q1

(middle), and Q2 (bottom) in (sec) vs. time (min).

VirtualClock does not directly reduce queuing delay; however, it

indirectly contributes to the queuing delay reduction. This is done by

servicing individual traffic flows with their specified traffic generation

86

rates so that traffic from each source will experience minimal queuing

delay if it is transmitting with its expected rate [38] Fig. 5.8 (top),

(middle), and (bottom) show the queuing delay in VirtualClock and WFQ

queues for traffic from Clients 1, 2, and 3, respectively. The graphs show

that, the highest delay among three queues is encountered by Q1

during the bursty period. On the other hand, the lowest delay is

encountered by Q0, which stores the conforming flow. With a traffic rate

that varies around its expected value, Q2 experiences higher delay

during times when this variation is higher and lower delay during lower

variation periods.

Fig. 5.9 VirtualClock vs. WFQ, traffic dropped from queues: Q0 (top), Q1

(middle), and Q2 (bottom) in (packets/sec) vs. time (min).

In order to evaluate the traffic loss behavior of the VirtualClock algorithm

in comparison to WFQ, we reduce the value of the Queue Size attribute

87

to 30 (packets) for the three queues in both algorithms and perform the

simulation again. The reason for initially selecting Queue Size = 500 was

that we could completely capture the packet forwarding behavior of the

algorithms without losing any traffic in the queues. Fig. 5.9 shows the

dropped traffic from VirtualClock and WFQ algorithms from the queues.

The top graph shows that since Client 1 is a conforming source and

sends traffic with a constant rate, the traffic entering Q0 is sent out of

the queue with its incoming rate, thus no loss happens in this queue.

The middle graph shows that the higher number of loss happens during

Client 2’s burst period and the amount of loss is similar for both of the

algorithms. And the bottom figure shows that since the queue buffers

are mostly being deployed during periods with higher variation around

the average rate value, consequently these periods posse higher traffic

loss.

From Figs. 5.2 to 5.9 we can observe that the functionality of

VirtualClock in terms of fairness, resource (buffer) usage, and loss is very

close to the WFQ algorithm.

5.1.2 VirtualClock vs. Custom Queuing

In this section we repeat Scenario 1 using Custom Queuing as the

scheduling mechanism in Router 1. Following that we first describe the

configuration of Custom Queuing algorithm in OPNET, then compare the

driven simulation results from Custom Queuing with those of

VirtualClock algorithm.

88

As mentioned earlier, Custom Queuing assigns a certain percentage of

the bandwidth to each queue at a potential congestion point of the

network. This particular percentage of the bandwidth can be indirectly

specified in terms of the Byte Count variable defined for each queue. The

scheduler cycles through the queues in a round-robin order. At each

queue’s turn packets are sent until the Byte Count value is exceeded, or

the queue becomes empty. Once the Byte Count value is exceeded the

packet that is currently being transmitted will be completely sent.

Similar to WFQ and VirtualClock, Custom Queuing queue parameters

are defined as sub-attributes of the CQ Profile attribute of the IP QoS

Configuration object. Custom Queuing queue parameters are identified

by defining a Flow Based Profile in the CQ Profile. Each row of this

profile shows a queue with the following queue parameter settings:

� ByteCount0 = 2048, Queue Size0 = 500

� ByteCount1 = 1024, Queue Size1 = 500

� ByteCount2 = 1024, Queue Size2 = 500.

We assign values to the queue Byte Count variables in proportion to the

expected packet arrival rate of the flows entering these queues.

Following are the steps to be taken for determining the Byte Count value

[5]:

- Step 1: For each queue, divide the desired percentage of

bandwidth allocation to each queue by the packet size

(byte).

- Step 2: Normalize the calculated numbers in step 1 by

dividing them by their lowest number.

89

- Step 3: Round up the calculated values in step 2 to the next

whole number. If the ratio values have a fraction, an

additional packet should be sent. This step calculates the

actual Packet Count.

- Step 4: Multiply the calculated Packet Counts for each

queue by that queues packet size. This step converts the

Packet Count numbers to Byte Counts.

In order to calculate the bandwidth distribution that the above

Byte Count ratio allocates do the following next two steps:

- Step 5: calculate the total number of bytes sent after the

algorithms serves each queue once by adding up the Byte

Counts for each queue.

- Step 6: Calculate the percentage of number of bytes sent

from each queue, and finally,

- Step 7: If this number is not close enough to the desired

bandwidth, multiply the normalized values calculated in

step 2 by the best value and do the other steps until getting

close enough to the desired bandwidth percentage.

The average expected arrival rate to queues Q0, Q1, and Q2 are 4, 2, and

2 and all the packets are of the same size (1024 bytes). Thus, the

bandwidth percentage for queues Q0, Q1, and Q2 is 50%, 25%, and

25%, respectively. The Byte Count values for the three queues are

calculated by following the above steps. The number of serviced packets

from queues Q0, Q1, and Q2 are 2, 1, and 1 in each round.

90

Fig 5.10 VirtualClock vs. Custom Queuing, outgoing traffic from queues:

Q0 (top), Q1 (middle), and Q2 (bottom) in (packets/sec) vs. time (min).

Fig. 5.10 shows the outgoing traffic from queues Q0, Q1, and Q2 of

Router 1 after being scheduled by the VirtualClock and Custom

Queuing algorithms. The graphs (top), (middle), and (bottom) show that

although the average outgoing traffic during different periods

(conforming and nonconforming) is the same for both algorithms (as

described in section 5.1), the outgoing traffic from the Custom Queuing

algorithm has a different pattern.

Graphs show that the traffic is sent from the VirtualClock queues with a

constant rate equal to the specified traffic rate of the flows entering the

queues. On the other hand, the traffic from Custom Queuing queues is

sent out with a rate, which oscillates around this specified rate.

91

Therefore, the graphs illustrate that VirtualClock treats the conforming

flows more fairly than Custom Queuing.

Buffer usage individually for Q0, Q1, and Q2 and totally for VirtualClock

and Custom Queuing queues is shown in Figs. 5.11 and 5.12,

respectively. Fig. 5.13 shows the queuing delay that the traffic from each

of the three sources encounter in queues Q0, Q1, and Q2. Dropped

packets from each of these queues are illustrated in Fig. 5.14. For

measuring the traffic dropped statistic, we set the Queue Size = 30, the

same as stated in section 5.1.

Fig. 5.11 VirtualClock vs. Custom Queuing, buffer Usage for queues: Q0

(top), Q1 (middle), and Q2 (bottom) in (packets) vs. time (min).

92

Fig. 5.12 VirtualClock vs. Custom Queuing, total buffer usage for

queues in (bytes) vs. time (min).

Fig. 5.13 VirtualClock vs. Custom Queuing, queuing delay in queues:

Q0 (top), Q1 (middle), and Q2 (bottom) in (sec) vs. time (min).

93

Fig. 5.14 VirtualClock vs. Custom Queuing, traffic dropped from queues:

Q0 (top), Q1 (middle), and Q2 (bottom) in (packets/sec) vs. time (min).

Comparing the performance of VirtualClock and Custom Queuing in our

simulation scenario by looking at Figs. 5.10 to 5.14, we can conclude

that VirtualClock behaves more fairly than Custom Queuing. The

constant pattern of traffic being scheduled by VirtualClock from different

queues in comparison to the oscillating pattern of traffic from Custom

Queuing proves this. On the other hand the functionality of these

algorithms in terms of Buffer usage, queuing delay, and packet loss is

very similar. However, WFQ and Custom Queuing behave more similarly

in terms of the mentioned performance measurements.

5.1.3 VirtualClock vs. Priority Queuing

We replicate Scenario 1, employing the Priority Queuing scheduling

algorithm at the output queues of Router 1 and re-running the

94

simulations. In this section, we will explain the allocation of priority

queues to flows from different sources. Then we observe the performance

similarities and dissimilarities between VirtualClock and Priority

Queuing.

In Chapter 2.5.2, we described the basic idea behind the Priority

Queuing (PQ) mechanism. Using this mechanism, traffic can be

prioritized into 4 priority classes: High, Medium, Normal and Low. For

PQ implementation in OPNET, there is one queue associated with each

priority group. Unclassified packets assigned into the normal queue. The

traffic from higher priority queues will get preferential service over lower

priority queues.

In this scenario we allocate traffic from Clients 1, 2, and 3 to low,

medium, and high priority queues respectively. Similar to VirtualClock,

WFQ, and Custom Queuing, PQ queue parameters are defined as sub-

attributes of PQ Profile attribute of the IP QoS Configuration Object. The

Flow Based Profile defines the three priority queues and their priorities.

The priority of the queues is assigned by their location order and

increases by increasing the queue number, meaning that Q2 has the

highest and Q0 has the lowest priority.

� Low Priority, Queue Size0 = 500

� Medium Priority, Queue Size1 = 500

� High priority, Queue Size2 = 500.

95

Fig 5.15 shows the outgoing traffic from VirtualClock and PQ queues.

The bottom graph shows the traffic sent from Q2, the PQ’s highest

priority queue. The sent and received traffic of this queue using PQ are

exactly the same, since the highest priority queue has access to the total

link bandwidth. On the other hand, while the incoming traffic to this

queue has variation around its specified traffic rate, VirtualClock

regulates the outgoing traffic with a constant rate equal to the flow’s

specified rate.

Fig 5.15 VirtualClock vs. Priority Queuing, outgoing traffic from queues:

Q0 (top), Q1 (middle), and Q2 (bottom) in (packets/sec) vs. time (min).

The middle graph shows the outgoing traffic from Q1 (PQ’s medium

priority queue). Only during the traffic’s nonconformance period the

outgoing traffic is forwarded with a lower rate than incoming traffic to

96

this queue. The medium priority queue can use the rest of the

bandwidth left unused by the high priority queue. Therefore, the

transmit rate during the nonconformance period is the maximum rate

the flow can transmit until the total link bandwidth is occupied. The

difference between the traffic sent from VirtualClock and Priority

Queuing is also observable during this period. The top graph illustrates

the outgoing traffic from Q3, the low priority queue of PQ scheduler. We

can observe that the PQ scheduler assigns the remaining link

bandwidth, not utilized by other priority queues, to Q0. Because during

client 2’s nonconformance period the total bandwidth is used by the

high and medium priority queue, Q0 will not send any traffic. By

comparing the Outgoing traffic emplying the two algorithms, it can be

concluded that the VirtualClock is still transmitting traffic from Q0 with

the flow’s negotiated rate; however PQ can only transmit according to the

remaining link bandwidth. It might also starve during certain periods.

Figs. 5.16 and 5.17 show the buffer usage in VirtualClock and PQ

queues. The bottom graphs of this figures show that, since PQ forwards

the packets to the outgoing link immediately after they arrive to Q2,

these packets do not use the buffer and encounter no delay in the

queue. The middle graphs show that the buffer is only occupied in Q1

during the traffic’s nonconformance period. Thus the traffic is also being

delayed in Q1 during this period. And finally the low priority queue (Q0)

has a high amount of buffer occupancy during the simulation,

particularly while client 1 is sending a burst of traffic. The buffer usage

by this queue with PQ algorithm is almost five times the value of the

97

VirtualClock algorithm. Consequently, the traffic entering Q0 has a long

queuing delay. Observe Fig. 5.17 (bottom graph).

Fig. 5.16 VirtualClock vs. Priority Queuing, buffer Usage for queues: Q0

(top), Q1 (middle), and Q2 (bottom) in (packets) vs. time (min).

The traffic loss behavior of the PQ algorithm in comparison to

VirtualClock is shown in Fig. 5.18 Similar to sections 5.1 and 5.2, we

reduce the Queue size value of all the queues to 30 packets and repeat

the simulation for observing the queues’ loss behavior. It is observed

from the bottom figure that since Q2’s buffer occupancy is zero, no

traffic is lost due to the buffer overflow in this queue. The middle graphs

shows packet loss for Q1 only during its flow’s nonconformance period

and the top graph shows highest loss behavior during the simulation.

98

Fig. 5.17 VirtualClock vs. Priority Queuing, queuing delay in queues:

Q0 (top), Q1 (middle), and Q2 (bottom) in (sec) vs. time (min).

Fig. 5.18 VirtualClock vs. Priority Queuing, traffic dropped from queues:

Q0 (top), Q1 (middle), and Q2 (bottom) in (packets/sec) vs. time (min).

99

5.2 Simulation Scenario 2

In this scenario we compare the effect of VirtualClock with the WFQ,

Custom Queuing, and Priority Queuing scheduling mechanisms on the

performance of four common Internet applications: Hypertext Transfer

Protocol (HTTP), File Transfer Protocol (FTP), IP Telephony, and

videoconferencing. Following there is a brief description about these

protocols:

� HTTP is an application level data transfer protocol that forms the

foundation of the Web. It is the protocol language that enables Web

browsers (clients) to access files on Web servers. Thus, HTTP is

implemented in two programs: the client program and the server

program. The client program and server programs talk to each other

by exchanging HTTP messages. HTTP defines the structure of these

messages and how the client and server exchange the messages. In

an HTTP session, Web clients (i.e., browsers) request Web pages from

web servers and servers transfer Web pages to clients. HTTP

communication usually takes place over TCP/IP connections.

� FTP is a protocol for transferring files from one host to another host.

In an FTP session, the user is sitting in front of the local host and

wants to transfer files to or from a remote host. In order for the user

to access the remote account, the user has to provide a user

identification and a password. After providing this authorization

information, the user can transfer files from the local file system to

the remote file system and vice versa [27]. In contrast to HTTP that

100

uses one TCP connection, FTP uses two TCP connections: a control

connection to send control information and a data connection to

transfer files. When the user requests a file transfer (either to or from

the remote host), FTP opens a TCP connection on server port. FTP

sends one file over this connection and then closes the connection. If,

during the same session, the user wants to transfer another file, FTP

opens another data TCP connection.

� IP Telephony refers to services that transport audio or facsimile

traffic over the Internet, rather than the public switched telephone

network, employing the Internet Protocol. When an Internet

telephone call originates, the analog voice signal is converted to a

digital format and the signal is compressed into the Internet protocol

(IP) packets for transmission over the Internet. A reverse process is

performed at the receiving end. IP telephony, also called Voice Over IP

(VoIP), requires certain bounds on packet end-to-end delay and delay

jitter to ensure a voice quality similar to the conventional phone calls.

Delay is an important factor that affects the quality of the

conversation. Humans can tolerate about 250 msec of delay before it

is noticed. Today audio quality has been observed to become quite

poor in a pure best-effort network, especially in congested periods

because it exceeds this delay. So, in order to improve the delay

problem, QoS routers are used in the networks to allocate sufficient

bandwidth to voice traffic by giving it a high service priority. Also voice

compression standards like G.729 (8:1) and G.723 (10:1) are used to

minimize the bandwidth required for voice. Without compression, a

voice signal requires 64 Kbps of bandwidth to maintain good quality.

101

G.723, for instance, is the maximum compression rate and requires

only 5.3 Kbps (plus an added 7.8 Kbps for IP overhead) [8, 20]. Table

5.1 shows the IP telephony QoS requirements.

Quality Packet loss (%) Max delay jitter (ms)

Perfect 0 0

Good 3 75

Medium 10 125

Poor 25 225

Table 5.1 IP Telephony QoS requirements.

� Videoconferencing is a technology that allows the transmission of

digital voice conversations and video pictures over the Internet. The

QoS requirements for transmitting voice and video are much different

than for data. The required bandwidth for data signals depends on

the amount of tolerable delay in receiving the file. However, voice and

video need more synchronization to move pieces of the information at

a constant rate so it can be heard and seen in real time. Also

bandwidth requirements for voice and video are more critical than for

data. As mentioned before, without compression, a good quality voice

signal requires 64 Kbps of bandwidth. However, video signals require

a much larger bandwidth without compression. The amount of

required bandwidth for video depends on expected image resolution,

frame rate, and compression technique. Image resolution is the

image’s clarity and is based on the number of available pixels that

represent the image. The frame rate is how often the image is

captured and sent out to the network. Among compression

102

techniques, JPEG (Joint Photographic Experts Group) and MPEG

(Moving Pictures Experts Group) are two ISO/ITU (International

Telecommunication Union) standards for lossy compression. JPEG

compresses each frame independently in a video sequence, providing

compression ratio of 100:1 that decreases bandwidth requirements by

a factor of 100. MPEG compresses each frame dependent on previous

frames. It means that the information will not be repeated in the

current frame if the frame includes similar information from the

previous one. Thus, the compression ratio is improved to 300:1 in this

technique.

In this scenario we have an HTTP Client downloading and uploading

from an HTTP Server and an FTP Client that transfers and receives files

from an FTP Server. In addition we have two voice parties talking through

a voice session and two videoconferencing parties connected with a

videoconferencing session. The topology in this scenario is similar to

Scenario 1 i.e., HTTP client, FTP Client, Voice Party1, and

Videoconferencing Party1 are connected to an Ethernet switch. The

HTTP and FTP Servers together with Voice Party2 and Videoconferencing

Party2 are connected to another Ethernet switch. Each of the switches is

connected to an IP router. All the links in the network are 10BaseT

(10Mbps) except the link between the IP routers, which is a DS1 link of

capacity 1.544 Mbps. Because unlike Scenario 1, a bi-directional traffic

is flowing through the link between router A and router B (bottleneck

link), the scheduling mechanisms are being employed at both of the

routers. Fig. 5.19 shows the network model for Scenario 2. We will

describe the traffic specification for each of the application sessions next.

103

Fig. 5.19 Network model for Scenario 2.

Tables 5.2 Traffic specification for HTTP application: (a) HTTP table, (b)

Page Properties table, and (c) Server Selection table.

The traffic specification for HTTP application is defined in the above

tables. In the top table, the HTTP Specification attribute defines the

version of HTTP [9]. The Page Interarrival Time value shows the

(C)

(b)

(a)

104

distribution name and argument to be used for generating random

outcomes for page Interarrival times. The Page Properties table (b)

specifies the page properties. Each page contains some objects and each

object is represented by a row in this table. The first row represents the

page itself and the subsequent rows represent the objects within the

page. For each object the first column shows the distribution and

arguments for size of each object in bytes and the second column shows

the number of objects. Table (c) defines the Server Selection table. Since

HTML pages have links to other pages either on the same server or on

the remote server, this affects the server selection. Different values for

the Initial Repeat Probability attribute can emulate different user

behaviors. The browsing value for this attribute means a user goes to a

site and access many links on that site before moving to another site.

The second row in the table defines the number of pages per each server

[23].

Table 5.3 FTP application table.

Table 5.3 shows the parameters for the FTP application. The client

downloads one file per FTP session. The Command Mix (Get/Total)

attribute denotes the percentage of file get command to the total FTP

commands. The remaining percentage is file put transactions. The

second and third row show the distribution name and argument used for

generating time between file transfers and file size.

105

Tables 5.4 Traffic specification for IP Telephony application: (a) HTTP

table, (b) Spurt Length, and (c) Talk Spurt Length.

The traffic specification for IP Telephony application is defined in tables

5.4 (b) and (c). These tables specify the distribution and arguments to be

used for random outcome generation for Silence and Talk Spurt Length,

respectively. The Silence Length table specifies the time spent by the

called party (incoming) and the calling party (outgoing) in a silence mode

during a speech-silence cycle. The Talk Spurt Length table (c) specified

the time spent by the called (incoming) and calling party (outgoing) in

the speech mode. The fourth row in table 5.4 (a) shows the encoding

scheme to be used by called and calling parties [23]. Coding techniques

for telephony and voice packet are standardized by the ITU-T

(International Telecommunication Union-Telecommunication

Standardization Sector) in its G-series recommendations. We choose

(a)

(b)

(c)

106

G.729, an encoder scheme where voice is coded into 8-kbps streams.

This scheme has an algorithmic delay of less than 16 ms. [6]. The last

row in table (a) determines the number of encoded voice frames grouped

into a voice packet before being sent by the application to the lower

layers.

Tables 5.5 Traffic specification for videoconferencing application: (a)

videoconferencing table, and (b) Frame Interarrival Time Information

table.

Tables 5.5 define the traffic specifications for the videoconferencing

application. The Frame Interarrival Time Information table (b) shows the

frame rate in frames/sec for the incoming and outgoing video streams.

The second row in table (a) shows the frame size of the incoming and

outgoing traffic streams [23].

We will replicate the above simulation scenario with the same network

configuration and traffic generation parameters for the applications, with

different scheduling mechanisms: VirtualClock, WFQ, CQ, and Priority

Queuing. In each sub-section, we will compare the performance of these

applications using the above scheduling mechanisms with the

(a)

(b)

107

application performance using VirtualClock. The queue allocation for all

the algorithms in both router A and B is the same i.e., HTTP, FTP, IP

Telephony, and videoconferencing packets are assigned to Q0, Q1, Q2,

and Q3, respectively. Next we will define the queue parameters for the

VirtualClock queues.

Initially we run the simulation for the network with the VirtualClock

algorithm deployed at the routers. The parameters for VirtualClock

queues, defined in VC Profile, are as follows:

� ArrivalRate0 = 0.3, Queue Size0 = 500

� ArrivalRate1 = 1.5, Queue Size1 = 500

� ArrivalRate2 = 110, Queue Size2 = 500

� ArrivalRate3 = 140, Queue Size3= 500.

The ArrivalRate value for each queue is equal to the measured average

Packet arrival rate (packets/sec) from the applications to that queue. It

has to be taken into consideration that since VirtualClock algorithm

services the flows in a packet by packet basis, the Arrival Rate should be

measured in packets/sec.

5.2.1 VirtualClock vs. WFQ

In this section we will show the simulation results of WFQ in comparison

with VirtualClock for Scenario 2. The WFQ queue configuration is

defined below with each row representing a queue having the following

queue parameter settings:

� Weight0 = 0.02, Queue Size0 = 500

� Weight1 = 0.58, Queue Size1 = 500

108

� Weight2 = 1.94, Queue Size2 = 500

� Weight3 = 97.45, Queue Size3 = 500.

For calculating the associated weight to each queue, the percentage of

the link bandwidth consumption by each application flow has to be

determined. This is done by measuring the average traffic rate

(bytes/sec) from each flow. The average packet arrival rate to queues, Q0,

Q1, Q2, and Q3 is 0.3, 1,5, 100, and 140 (packets/sec) with the average

packet size (bytes) 154, 767.2, 37, and 1325, respectively. Therefore, the

above queue weights show the percentage of required bandwidth by

each queue.

Fig. 5.19 shows the HTTP page response time and average page response

by VirtualClock and WFQ algorithms. The page response time is

measured from the time the client requests a page from the server until

the time the page is downloaded to the client’s computer. By comparing

the amount of this variable for VirtualClock and WFQ, it can be seen that

WFQ provides a lower average page response time for HTTP than

VirtualClock. The top graph shows that, although the page response

time difference using the two algorithms is very high for a short period at

the beginning of the simulation, for the rest of the simulation this

difference disappears.

109

Fig 5.19 VirtualClock vs. WFQ, HTTP page response time (top) and

average page response time (bottom) in (sec) vs. time (min).

Fig. 5.20 shows the FTP download response time and average download

response time using VirtualClock and WFQ algorithms. Download time is

measured from the time a client application sends a request to the

server to the time it receives the requested file. The bottom graph shows

110

that VirtualClock has a lower average FTP download response time than

WFQ. However, the top graph shows that both algorithms provide the

same download time during the simulation. The difference in FTP

average download response time between the two algorithms (seen in

the top graph) is caused by different delays encountered by security

packets at the beginning of the simulation.

111

Fig 5.20 VirtualClock vs. WFQ, FTP downloads response time (top) and

average download response time (bottom) in (sec) vs. time (min).

Fig 5.21 VirtualClock vs. WFQ, IP Telephony, voice packet end-to-end

delay in (sec) vs. time (min).

112

Fig 5.22 VirtualClock vs. WFQ, IP Telephony, voice packet delay

variation (sec) vs. time (min).

The voice packet end-to-end delay from the IP Telephony application is

shown in Fig. 5.21. It can be seen that the effect of both VirtualClock

and WFQ on the voice packets end-to-end delays is very similar. Fig.

5.22 compares the delay variation encountered by voice packets using

the two algorithms. It shows that the VirtualClock causes a much lower

delay variation for voice packets. However, delay variation which is an

essential factor for a good quality voice connection has a very high value

for both of the algorithms due to the high congestion in the network.

The highest tolerable delay variation for the poorest quality voice is 225

msec.

Fig 5.23 VirtualClock vs. WFQ, Videoconferencing packet end-to-end

delay in (sec) vs. time (min).

113

In a videoconferencing session if the packets arrive late but their

lateness is even and predictable by the receiving terminal the quality of

the conference can still be retained. The important factor is variation in

delay that results in an uneven and unpredictable quality within a video

conference [36]. However, excessive delay increases the chances of

people talking over one another because they do not realize that the

person at the other end has started speaking too. Fig. 5.23 shows the

videoconferencing end-to-end delay for VirtualClock and WFQ

algorithms. The graph shows that the end-to-end delay value is similar

for both WFQ and VirtualClock. It can also be observed that the amount

of delay variation is low for both of the algorithms, although this delay is

high.

5.2.2 VirtualClock vs. Custom Queuing

We repeat Scenario 2 with the Custom Queuing mechanism at the

routers and look at the performance of the applications using

VirtualClock in comparison to Custom Queuing. What follows are the

queue Custom Queuing parameter settings. The Byte Count values for

the Custom Queuing queues are calculated by measuring the average

bandwidth requirement (bits or bytes) and average packet size (bytes) for

each application flow and following the described steps in section 5.1.2.

The computed queue parameter setting for the Custom Queuing queues

are as follows:

� ByteCount0 = 154, Queue Size0 = 500

� ByteCount1 = 7020, Queue Size1 = 500

� ByteCount2 = 14907, Queue Size2 = 500

� ByteCount3 = 719475, Queue Size2 = 500.

114

HTTP page response time and average page response time is shown in

Fig. 2.24 It can be seen that the average page response time for both

VirtualClock and Custom Queuing is relatively similar. Fig. 5.25

illustrates the FTP download and average download response time. The

bottom graphs show that VirtualClock provides a lower average file

download time than Custom Queuing.

115

Fig 5.24 VirtualClock vs. Custom Queuing, HTTP page response time

(top) and average page response time (bottom) in (sec) vs. time (min).

Fig 5.25 VirtualClock vs. Custom Queuing, FTP download response time

(top) and average download

response time (bottom) in (sec) vs. time (min).

116

The performance of voice is shown in Figs. 5.26 and 5.27, in terms of

voice packet end-to-end delay and packet delay variation. It can be seen

there that VirtualClock has a considerably lower value for both packet

end-to-end delay and packet delay variation than Custom Queuing.

Fig. 5.26 VirtualClock vs. Custom Queuing, IP Telephony, voice packet

end-to-end delay in (sec) vs. time (min).

The videoconferencing application packet end-to-end delay for

VirtualClock and Custom Queuing is shown in Fig. 28. The figure shows

that the end-to-end delay encountered by videoconferencing packets

using Custom Queuing is almost half of that value using VirtualClock.

Although Custom Queuing provides a poor performance for IP

Telephony, it supplies a better-quality functionality for a

videoconferencing application. Therefore, it can be concluded that a

117

higher quality for videoconferencing is achieved by paying the price of

gaining a worse quality for IP Telephony.

Fig 5.27 VirtualClock vs. Custom Queuing, IP Telephony, voice packet

delay variation (sec) vs. time (min).

118

Fig 5.28 VirtualClock vs. Custom Queuing, Videoconferencing packet

end-to-end delay in (sec) vs. time (min).

As seen in Figs.5.26, 5.27, and 5.28 VirtualClock and CQ are providing

different end-to-end delay and delay jitter for IP Telephony and

videoconferencing applications. Since voice and videoconferencing end-

to-end delay provided by VirtualClock and WFQ are identical and WFQ is

proven to be a fair algorithm, it can be concluded that CQ is not treating

thesis applications fairly. As discussed earlier, CQ behaves unfair when

traffic flows have variable packet sizes and average packet sizes of the

flows are unpredictable.

In our simulation scenario, the average packet size of a flow entering a

CQ queue is one of the main parameters for calculating the Byte Count

value associated with that queue. Since voice and videoconferencing

packet sizes are of different sizes, the solution we choose to estimate the

average packet size of those flows is to monitor the incoming packets to

thesis queues, collect the statistic for the size of the packets, plot the

average value of these statistics in a graph, and choose the best guess

for the average packet size. Thus, the chosen average packet size is not a

precise value and explains the observed dissimilarities in the

performance of voice and videoconferencing applications using

VirtualClock and CQ. We also see that since the average packet size of

the flows is not unknown for in our simulation scenario, CQ behaves

unfair.

119

5.2.3 VirtualClock vs. Priority Queuing

In this section we look at the performance dissimilarities of the

applications when employing VirtualClock and Priority Queuing at the

output queues of the routers. Priority Queuing enables us to give

absolute preferential service to high priority applications instead equally

treating the applications according to their required bandwidth

(VirtualClock). We allocate the traffic from FTP, voice, videoconferencing,

and HTTP applications to High, Medium, Normal, and Low priority

queues defined in section 2.5.2, respectively. In the real networks, both

HTTP, and FTP are considered as applications with non-critical

performance requirements. On the other hand, both IP Telephony and

videoconferencing are known as mission critical applications. In this

scenario since we are also interested in observing and comparing the

effect of Priority Queuing in comparison to VirtualClock on low volume

traffic such as HTTP and HTTP, we assign FTP to the highest priority

queue. Otherwise the total link bandwidth would be consumed by high

volume, mission critical applications (voice, and videoconferencing).

The queue allocation to the applications is defined in PQ Profile attribute

of IP QoS Configuration object as follows:

� Low Priority, Queue Size0 = 500 (HTTP)

� Medium Priority, Queue Size1 = 500 (Videoconferencing)

� Normal priority, Queue Size2 = 500 (IP Telephony)

� High priority, Queue Size3 = 500 (FTP).

Because the HTTP application is assigned to the lowest priority queue,

and the other three applications utilize all the bandwidth in the

120

bottleneck link, no HTTP traffic can be transferred through this link.

Thus, the HTTP traffic isn’t serviced and will be starved in this network.

Fig 5.29 VirtualClock vs. Priority Queuing, FTP download response time

(top) and average download

response time (bottom) in (sec) vs. time (min).

121

Fig. 5.29 shows the FTP download response time and average download

response time of VirtualClock vs. Priority Queuing. It can be verified that

since the FTP has highest priority among the other applications, it is

encountering a very low FTP download response time (average of 0.55

sec.) in contrast to the high file download time of the VirtualClock.

Fig. 5.30 VirtualClock vs. Priority Queuing, IP Telephony, voice packet

end-to-end delay in (sec) vs. time (min).

Fig. 5.30 shows the end-to-end delay of voice packets using VirtualClock

and PQ. It can be seen that the average delay value encountered by voice

packets for both algorithms is very similar. However, the figure shows

that delay variation, using Priority Queuing is higher than using

VirtualClock.

122

Figure 5.31 shows the packet end-to-end delay of a videoconferencing

application. It can be seen from the graphs that the two algorithms load

the same end-to-end delay for videoconferencing packets. It can be

concluded from the driven simulation results of Scenario 2 that

VirtualClock behaves very similarly to WFQ in providing service to

applications with various priorities and different performance

requirements.

Fig 5.31 VirtualClock vs. Custom Queuing, Videoconferencing packet

end-to-end delay in (sec) vs. time (min).

It can also be observed that VirtualClock provides similar service

performances as Custom Queuing to the low volume applications (HTTP

and FTP). However, it services the higher volume, more mission critical

applications differently than Custom Queuing. VirtualClock provides

123

better service for voice application in terms of packet end-to-end delay

and delay variation, but poorer service for videoconferencing. It has to be

taken into consideration that the performance of the algorithms is being

evaluated by choosing the algorithm specific queue parameters, which

leads to the same network bandwidth allocation to the queues.

124

Chapter 6

Conclusion

With more and more multimedia applications currently running on the

Internet, Internet is expected to support a wide range of applications in

the future. The applications with different QoS requirements in terms of

bandwidth, delay, delay jitter, and traffic loss. Traffic scheduling in

network switching nodes is used as a means of avoiding congestion in

order to provide QoS to different traffic classes.

In this thesis we described the implementation of the VirtualClock

scheduling mechanism employing the OPNET simulation tool. The

algorithm is implemented in the output queues of the IP router node

objects in OPNET. We show how we incorporate the algorithm in the IP

layer of the router’s network hierarchy so that it can communicate with

the upper and lower network layers of this object. We verified the

correctness and the functionality of the VirtualClock model by

conducting simulations on two network scenarios. In the first network

scenario, we measured the arrival and departure times of packets

entering and leaving the router’s queues. We verified that the measured

values match the scheduled packet departure times by the VirtualClock

scheduler. In the second network scenario, we examined the

functionality of the model during the sources’ conforming and

nonconforming periods. We verified the algorithm by examining the

conformance of the two main variables of the algorithm measured during

simulation with their expected calculated values during both conforming

and non-conforming traffic periods.

125

Finally we compared the performance of the VirtualClock algorithm with

several other scheduling algorithms: WFQ, CQ, and PQ. These

algorithms are used in current IP routers, which are manufactured by

Cisco system Inc. and Juniper networks. The comparison is performed

through two sets of simulation scenarios. Our driven simulation results

from the first scenario showed that the VirtualClock algorithm performs

closely to WFQ and CQ during both conforming and nonconforming

periods. However, the VirtualClock algorithm behaves differently than

PQ. VirtualClock allocates bandwidth fairly to traffic from different flows

according to their specified traffic generation rates, but PQ provides

preferential priority to selected traffic queues at the price of starvation of

other low priority queues. We also compare the effect of VirtualClock

with the above algorithms on the performance of four Internet

applications: HTTP, FTP, IP Telephony, and Video Conferencing. It can be

indicated from the results that applications with a predictable,

consistent traffic generation rate like voice have a rich performance

under the effect of VirtualClock and CQ and WFQ has a similar effect on

the mentioned Internet applications. On the other hand, PQ has a better

influence on the performance of unpredictable, mission critical

applications that need to get preferential service over the other

applications like videoconferencing.

126

References

[1] N. Alborz, M. Keyvani, M. Nikolic, and Lj. Trajkovic, “Simulation of
packet data networks using OPNET,” OPNETWORK ‘00,
Washington, DC, Aug. 2000.

[2] N. Alborz and Lj. Trajkovic, “Implementation of VirtualClock
scheduling algorithm in OPNET,” OPNETWORK ‘01, Washington,
DC, Aug. 2001.

[3] M. Andrews, “Probabilistic end-to-end delay bounds for Earliest
Deadline First scheduling,” in Proc. of INFOCOM ‘00, Mar. 2000.

[4] G. Armitage, Quality of Service in IP Networks: Foundation for a
Multi -Service Internet. Indianapolis, IN: Macmillan Technical
Publishing, 2000.

[5] Cisco Systems, Inc. documentation on QoS:
http://www.cisco.com/warp/public/732/Tech/qos (accessed Apr.
2002).

[6] Cisco Systems, Inc. documentation on Voice Over IP:
http://www.cisco.com/univercd/cc/td/doc/product/access/acs_m
od/1700/1750/1750voip/intro.htm (accessed Feb. 2002).

[7] A. Demers, S. Keshav, and S. Shenkar, “Analysis and simulation of
a fair queuing algorithm,” in Proc. of ACM SIGCOMM ‘89, pp. 3-12,
Sept. 1989.

[8] P. Fasano, “QoS for IP Telephony,” Presentation at ISIT'99,
Vancouver, June 1999.

[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, “Hypertext Transfer Protocol (HTTP/1.1),” RFC
2616, June. 1999: http://www.faqs.org/rfcs/rfc2616.html
(accessed Feb. 2002).

[10] N. Giroux and S. Ganti, QoS in ATM Networks: State-of-the-Art
Traffic Management. Upper Saddle River, NJ: Prentice-Hall Inc.,
1999.

[11] S. J. Golestani, “A Self-Clocked fair queuing scheme for
broadband applications,” in Proc. of IEEE INFOCOM ‘94, pp. 636-
646, Apr. 1994.

[12] R. Guering and V. Peris, “Quality-of-Service in packet networks:
basic mechanisms and directions,” Computer Networks, vol. 31,
no. 3, pp. 169-189, Feb. 1999.

[13] V. Jacobson, “Congestion avoidance and control,” in Proc. of the
ACM SIGCOMM ‘98, pp. 314-329, Aug. 1998.

127

[14] R. Jain, “Congestion control in computer networks: issues and
trends,” IEEE Network, vol. 4, no. 3, pp. 24-30, May 1990.

[15] M. Z. Jiang, “Analysis of Wireless Data Network Traffic,” M.A.Sc.
Thesis, Engineering Science Department, Simon Fraser University,
Apr. 2000.

[16] Juniper Networks, solutions and technology application note,
Applying Class of Service:
http://www.juniper.net/techcenter/app_note/350004.html
(accessed Feb. 2002).

[17] Juniper Networks, products and services datasheet, FPCs for the
M160 Router:
http://www.juniper.net/products/dsheet/pdfs/100042.pdf
(accessed Mar. 2001).

[18] S. Keshav, An Engineering Approach to Computer Networking.
Reading, MA: Addison Wesley, 1998.

[19] W. Leland. M. Taqqu, W. Willinger, and D. Wilson, “On the self-
similarity of Ethernet traffic (extended version),” IEEE/ACM
Transactions on Networking, vol. 2, no. 1, pp. 1-15, Feb. 1994.

[20] Nortel Networks, technology overview series for small and medium
businesses, IP Telephony Basics:
http://www.nortelnetworks.com/solutions/smb/nbrc/collateral/ip
_tel_basics.pdf (accessed Feb. 2002).

[21] A. Oodan, K. E. Ward, and A.W. Mullee, Quality of Service in
Telecommunications. London: The Institution of Electrical
Engineers, 1997.

[22] OPNET Technologies, Inc., Washington DC, OPNET documentation
V.7.0.L.

[23] OPNET Technologies, Inc., Washington DC, OPNET
documentations on Configuring Applications and Profiles, The
Custom Application Model, Standard Network Applications, and
Simulation Methodology for the Analysis of QoS, July 2000.

[24] OPNET Technologies, Inc., Washington DC, OPNET documentation
on RPG model description, Feb. 2001.

[25] A. K. Parekh and R. G. Gallager, “Generalized processor sharing
approach to flow control in integrated services networks: the
single node case”, IEEE/ACM Transactions on Networking, vol. 1,
no. 3, pp. 344-357, June 1993.

[26] A. K. Parekh and R. G. Gallager, “Generalized processor sharing
approach to flow control in integrated services networks: the
multiple node case”, IEEE/ACM Transactions on Networking, vol. 2,
no. 2, pp. 137-150, Apr. 1994.

128

[27] J. Postel and J. Reynolds, “File Transfer Protocol (FTP),” RFC 959,
Oct. 1985: http://www.faqs.org/rfcs/rfc959.html (accessed Feb.
2002).

[28] QoSforum.com, IP QoS FAQ: http://www.qosforum.com/docs/faq
(accessed Dec. 2001).

[29] F. Risso, “Quality of Service on packet switched networks,” Ph.D
Thesis, Dept. of Computer Science, Torino Polytechnic, Jan. 2000.

[30] B. Ryo, “A tutorial on fractal traffic generators in OPNET for
Internet simulation,” OPNETWORK ‘00, Washington DC, Aug.
2000.

[31] M. Shreedhar and G. Varghese, “Efficient fair queuing using
Deficit Round Robin,” IEEE/ACM Transitions on Networking, vol. 4,
no. 3, pp. 375- 385, June. 1996.

[32] S. Suri, G. Varghese, and G. Chandranmenon, “Leap Forward
Virtual Clock: A new fair queuing scheme with guaranteed delays
and throughput fairness,” in Proc. of IEEE INFOCOM ‘97, pp. 557-
562, Apr. 1997.

[33] A. S. Tanenbum, Computer Networks, Third edition. Upper Saddle
River, NJ: Prentice-Hall Inc., 1996, pp. 374-396.

[34] J. Walrand and P. Varaiya, High-performance Communication
Networks, Second edition. San Francisco, CA: Morgan Kaufman
Publishers Inc., 2000, pp. 26-32 and pp. 261-293.

[35] X. Xiao and L.M. Ni, “Internet QoS: a big picture,” IEEE Network,
vol. 13, no. 2, pp. 8-18, Mar. 1999.

[36] G. G. Xie and S. Lam, “Delay guarantee of VirtualClock server,”
IEEE/ACM Transitions on Networking, vol. 3, no. 6, pp. 683-689,
Dec. 1995.

[37] H. Zhang, “Service disciplines for guaranteed performance service
in packet-switching networks,” in Proc. of the IEEE, vol. 83, no. 10,
Oct. 1995.

[38] L. Zhang, “VirtualClock: a new traffic control algorithm for packet
switching networks,” in Proc. of ACM SIGCOM ‘90, Sept. 1990.

