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Robustness and Information Processing

Kenneth Kasa

1 Introduction

This paper attempts to relate two apparently distinct literatures. One is the so-called ‘robust

control’ literature. Robust control methods were developed by engineers during the 1980s,

and are designed to make traditional Linear-Quadratic control more robust to model mis-

specification. Rather than specify an explicit distribution for a model’s disturbances, robust

control methods are based on a worst-case analysis of the disturbances, and can be imple-

mented by solving dynamic zero-sum games. Hansen and Sargent (2002) have pioneered

the application of these methods in economics. Economists are attracted by robust control

because it apparently provides a workable formalization of Knightian Uncertainty.3

The second literature is based on the work of Sims (1998, 2003). Sims argues that the

dynamic behavior of prices, wages, and macroeconomic aggregates is inconsistent with both

Classical and Keynesian models of the business cycle. Loosely speaking, prices and wages

seem to be too ‘sticky’ to be consistent with Classical flexible price models. At the same time,

quantities seem to be too sticky to be consistent with Keynesian models. Sims goes on to

argue that the traditional device of tacking on ‘adjustment costs’ is ad hoc and unconvincing.

As an alternative, he proposes that economists start thinking about the limited ability of

agents to process information. Sims shows that we can model these constraints by thinking

of agents as finite capacity information transmission channels. Like robust control, this

approach has the advantage of drawing on a well developed engineering literature. Although

still quite preliminary, the results of Sims suggest that information processing constraints

can potentially explain the simultaneous inertia of both prices and quantities.

Although apparently quite distinct, this paper will argue that these two literatures are

in fact quite closely related. In particular, I argue that in a sense they are duals of each

other, in the same sense that utility and expenditure functions are duals of each other.

This duality is based on their alternative interpretations of ‘measurement error’. Robust

filtering views measurement error as subject to misspecification. Since this misspecification

can in principle feedback on the dynamics of the underlying hidden states, it can produce

3See Hansen, Sargent, Turmuhambetova, and Williams (2001) and Epstein and Schneider (2001) for a
debate about the links between robust control and Knightian Uncertainty.
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a quite complicated nonlinear measurement error process, which can be poorly captured

by linear least squares projections. To guard against these misspecifications, a robust filter

minimizes maximum forecast errors, rather than mean-squared forecast errors. This can be

implemented by solving a dynamic zero-sum game, in which a malevalent nature (called

the ‘evil agent’ by Hansen and Sargent (2002)) chooses a measurement error sequence to

maximize state estimation errors, while at the same time the agent chooses a state estimate

to minimize them. The only constraint the evil agent faces is a bound on the relative entropy

of the errors.

Sims’ (2003) notion of Rational Inattention is based on a quite different interpretation

of measurement error. He points out that if we regard individuals as finite capacity infor-

mation transmission channels (in the sense of Shannon (1948)), then measurement error is

unavoidable and rational. Simply put, measuring a (real-valued) stochastic process without

error requires an infinite amount of information processing capacity. With a finite capacity,

the agent must tolerate measurement errors. The problem he faces is to minimize the sum of

squared forecast errors subject to a lower bound on the variance of the measurement error.

This bound decreases with channel capacity.

Notice the symmetry between these two very different interpretations of measurement

error. The evil agent in a robust filter maximizes forecast errors subject to an upper bound,

whereas a person with finite Shannon capacity minimizes forecast errors subject to a lower

bound. Under certain conditions these two problems produce the same observable behavior.

These conditions restrict the maximum degree of model uncertainty and the minimum degree

of Shannon capacity.

One payoff from making this connection is that it opens the door to an alternative

method of parameterizing a preference for robustness. Not surprisingly, the set of potential

models an agent insures himself against can have a major influence on his decision rules.

Moreover, as noted by Hansen, Sargent, and Tallarini (1999), the parameter which governs

the preference for robustness and the degree of model uncertainty can interact with other

behavioral parameters in a way that creates potential identification problems. Hence, one

would like to be able to restrict this parameter in some way.4 To date, the only way to do

this is by appealing to the ‘detection error probabilities’ of Anderson, Hansen, and Sargent

(2000).

4Remember Lucas’ admonition (as cited in Sargent (1993)) - ‘Beware of theorists bearing free parameters’.
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Anderson et. al. argue that agents should only consider potential misspecifications

that would have been difficult to detect using observed historical data. This detection

error probability decreases as one entertains a larger class of potential models (i.e., as the

preference for robustness increases). Essentially, as the class of admissable perturbations

increases, it becomes easier to detect them. Hence, given priors about what constitutes

a reasonable detection error probability, one can back out a reasonable degree of model

uncertainty.

Rather than linking robustness and model uncertainty to detection errors, this paper

suggests that we can link them to information processing capacity. The idea that individuals

have limits on their ability to process information, and that somehow we can estimate this

capacity, goes back at least to the 1950s. Psychologists, in particular, were quick to recognize

the potential value to them of Shannon’s path-breaking work.5 Largely due to the efforts of

Marschak (1971), economists have also thought about the applicability of Shannon’s work.

It’s probably fair to say, however, that at least so far these efforts have not born fruit.

One problem with estimating information processing capacity that came out of the psy-

chology literature is that this capacity tends to be highly specific to context and experience.

That is, we cannot expect to ever arrive at some sort of universal “bits-per-second” num-

ber that constrains all individuals in all circumstances.6 For example, concluding that a

given decision rule is consistent with a capacity of 10 bits per time period might be highly

dependent on the range of other decisions confronting the agent, assuming that capacity is

optimally allocated among decisions.7 Still, even a context specific number could be useful

for some questions, as long as this context remains invariant when predicting responses to

other changes.

Besides the work of Sims (1998, 2003), two other studies have recently applied the tools

of information theory to economics. Moscarini (2002) argues that information processing

constraints deliver an improved model of price stickiness. As in this paper, Moscarini works

in continuous-time. However, his observer equation implies that finite capacity agents must

5See Pierce (1980, chpt. 7) for a review.
6For example, the classic paper by Miller (1956) showed that channel capacity varies with the number of

underlying alternatives.
7Although the absolute scale is arbitrary, information is conventionally defined in base 2 units (called

bits), so that the uncertainty of an event or random sequence can be interpreted as the number of true/false
questions needed to fully resolve the uncertainty. For example, the result of a single coin flip conveys one bit
of information, while knowledge of a single letter conveys log2 26 = 4.7 bits. See, e.g., Cover and Thomas
(1991).
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sample discretely. Agents with higher capacity can sample more frequently. He points out

that this approach might be less susceptible to the Lucas Critique than existing models of

price stickiness, since channel capacity is more likely to remain invariant to policy changes.

Turmuhambetova (2003) develops a model of endogenous capacity constraints. She intro-

duces an “information processing cost” into the agent’s objective function, and allows the

agent to augment capacity subject to a (utility) cost. This makes capacity state- and time-

dependent, and can be interpreted as a formalization of Kahneman’s (1973) notion of ‘elastic

capacity’.

The remainder of the paper is organized as follows. The next section outlines Sims’

model of Rational Inattention, and provides some necessary background on information

theory. Section 3 develops and solves a standard Kalman filtering problem under alternative

assumptions about model uncertainty and information processing. Section 4 briefly discusses

how the duality between robustness and attention can be used to parameterize a preference

for robustness. Caveats and possible extension are discussed in the Conclusion, and an

Appendix contains proofs of some technical results.

2 Information Processing and Rational Inattention

2.1 Background

The word “seminal” is often used to describe influential scientific work. In few instances

is it as apt as in the case of Shannon’s (1948) work on information theory. Shannon’s

innovation was to view information as a stochastic process, which enabled him to quantify the

amount of information in terms of the probability distribution generating the data. Loosely

speaking, the greater the range of potential outcomes of an experiment or measurement,

the greater is the information conveyed by the results. This idea led him to define the key

concepts of an information transmission channel and channel capacity. According to

Shannon, a transmission channel can be viewed abstractly as any mapping between inputs

(e.g., analog voice data in a telephone receiver) and observed or measured outputs (e.g., what

you hear at the other end). From a statistical perspective, a channel is just a conditional

probability distribution. Since most real world channels are corrupted by noise, Shannon

went on to define the capacity of a channel to be the maximum rate at which signals can

be transmitted through the channel with arbitrarily small detection error. In the case of

Gaussian channels, where both the signal and the (additive) noise are normally distributed,
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capacity is proportional to the difference between the log of the unconditional variance of

the signal and the log of its variance conditional on the set of observed channel outputs.

Hence, it is closely related to the familiar concept of a signal-to-noise ratio.8

Besides its revolutionary impact on its intended field of application (i.e., telecommunica-

tions engineering), Shannon’s work has also deeply influenced such diverse fields as physics,

psychology, statistics, and linguistics. Wiener (1961) was the first to recognize its potential

use to social scientists. When combined with his own work on signal processing, Wiener

thought it would create an entirely new field of study, which he called “cybernetics”.

Despite being the offspring of such illustrious parents as Shannon and Wiener, cybernetics

has never really taken off in the social sciences. As it turns out, human beings are far more

complicated than telephones! Psychologists were the first to encounter the difficulties in

applying Shannon’s work to humans. Not surprisingly, debate arose very early about how to

map Shannon’s concepts of transmission channels and capacity into human decision-makers.

Broadbent (1958) took the natural first step. He assumed humans are exactly like Shan-

non’s telephone receivers. According to Broadbent, information processing ability is governed

by a single all-encompassing channel, which processes incoming data in a serial manner. This

approach quickly ran into empirical problems, however, since experiments often revealed that

capacity is not immutable. For example, practice and experience often increase the measured

capacity to perform various stimulus-response tasks.

Moray (1967) maintained the hypothesis of a single governing channel, but attempted to

account for the variability of measured capacity. He focused on the allocation problem that

arises when multiple tasks compete for access to a channel. He argued that since learning

leads to more efficient methods of performing a task, it “frees up” capacity for other tasks,

and therefore increases overall channel capacity.

The single channel model of human information processing is attractive because it is

consistent with the findings of a multitude of task interference experiments. Performance of

one task apparently interferes with the simultaneous performance of other tasks. Allport,

Antonis, and Reynolds (1972) presented experimental evidence which suggested that this

8If C is channel capacity, H(x) is the entropy rate of a source signal, and H(x|y) is the conditional
entropy rate of the signal given measured output, y, then by definition, C = max[H(x) − H(x|y)], where
the maximum is taken over all (admissable) source signals. The above statement then follows from the facts
that: (1) Gaussian processes maximize entropy subject to power constraints, and (2) Up to an additive
constant, the entropy rate of a Gaussian process is the logarithm of its (instantaneous) variance. See Cover
and Thomas (1991, chpts. 10 and 11).
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doesn’t necessarily imply the existence of a single channel. They instead argue that human

information processing is more accurately described as the parallel use of several specialized

channels. Their experiments revealed strong interference only when stimuli were presented

in similar ways. For example, recognition memory is seriously disrupted when stimuli are

presented solely in an auditory manner. However, when one stimulus is presented visually

and one presented auditorily, interference is greatly reduced (and hence, measured capacity

is increased). This led them to posit the existence of parallel channels, corresponding to

various physical systems, e.g., auditory, visual, etc.

Kahneman (1973) tried to unite these two models of human information processing. His

approach is perhaps most familiar to economists, since he regarded capacity as a scarce

resource that must be allocated among competing demands. This is consistent with Moray’s

earlier work, but makes the allocation process much more explicit. Kahneman was motivated

by the experimental results of Posner and Bois (1971), which suggested that people have

discretion over the allocation of information processing capacity. Kahneman argued that

capacity is “elastic” in the sense that it can expand in response to incentives. His model

was the first to explain a very simple but robust experimental finding, i.e., task performance

is seldom perfect, even for very easy tasks. According to Kahneman, this is explained

by the fact that in most experiments it simply isn’t worth it to perform the task perfectly.

Kahneman’s work implies that the presence of errors does not imply that all available capacity

is being utilized. This makes the measurement of capacity much more difficult.9

Thus far we have been discussing the “macroeconomics” of human information processing.

During the past two decades attention has shifted to the “micro-foundations” of information

processing. No doubt this switch was partially motivated by diminishing returns, but it was

also driven by breakthroughs in neurobiology and medical technology. The hope is that these

developments will eventually allow researchers to relate information processing to identifiable

and measurable brain activity. Unfortunately for those still interested in more macroscopic

questions, this research is still at too early a stage to be readily applied. However, the current

gap between the older “reduced form” approach and the newer neurobiological approach has

produced a new field called “cognitive neuroscience”, which is attempting to bridge the

gap. (See Parasuraman (1998) for a wide ranging survey). For the purposes of this paper,

however, these more recent literatures can be disregarded, since Sims (2003) appeals to the

9As noted in the Introduction, the recent work of Turmuhambetova (2003) can be interpreted as a
formalization of these ideas.
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older reduced form approach.

2.2 Sims’ Model

Motivated by the observed inertia of both prices and quantities, Sims (2003) incorporates an

information-processing constraint into a standard Linear-Quadratic Regulator. Like Broad-

bent and Moray, he assumes the agent has a single channel with a fixed capacity, expressed

in bits per time period. Although Sims provides some analysis of the multivariate case and

the implied capacity allocation problem, here I present a version of the simple univariate

Permanent Income model developed in section 6 of his paper. In this model, the agent only

has to decide how much to save each period. Keeping track of his wealth requires some

information processing effort.

Viewed as a general LQR problem, the agent wants to control fluctuations in both a state

variable and a control variable. However, it is assumed that some information processing

effort must be expended to monitor changes in the state variable. With a capacity constraint,

there is a maximum effort that can be devoted to observing the state variable. Hence,

“measurement errors” emerge endogenously, with a variance that is inversely related to the

channel capacity. These measurement errors then confront the agent with a signal extraction

problem, which produces exactly the kind of damped, delayed, and smoothed response to

shocks that is so commonly seen in the data. Economists usually resort to ad hoc adjustment

cost functions to explain this inertia. (See Sims (1998)).

To be specific, assume the agent wants to solve the following problem:

min
{ut}

E0

∞∑
j=0

βj(Rx2
t+j +Qu2

t+j) (1)

where xt is a state variable and ut is the control variable. The state evolves according to the

transition equation:

xt = Axt−1 +But−1 + εt (2)

where εt ∼ N(0, ω2). At this point an exogenously specified ‘measurement equation’ is

typically added to the model. Sims’s model of Rational Inattention dispenses with the

measurement equation, and instead adds an information-processing constraint.

The Linear-Quadratic structure here continues to deliver Certainty-Equivalence, so the
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optimal feedback policy is:

ut = −Fx̂t (3)

where F is determined by discounted versions of the usual formulas:

F = β
ABP

Q+ βB2P

P = R + βPA2Q(Q+ βB2P )−1 (4)

The novelty of the Rational Inattention model, therefore, is in the construction of the state

estimate, x̂t.

Sims proceeds in the following two steps. First, the minimum conditional variance of the

state that is consistent with the capacity constraint is calculated. From this, we can then

use Kalman filtering along with the state transition equation to infer a minimum implicit

measurement error variance.

To solve the first step, remember that based on the work of Shannon we can define the

flow of information each period to be the reduction in the entropy of the xt process. Since εt

is Gaussian, this entropy differential turns out to be just the difference in (log) conditional

variances. If σ2
t represents the beginning of period conditional variance of xt, then in the

absence of any information processing, the conditional variance of xt+1 is:

vart(xt+1) = A2σ2
t + ω2 (5)

The agent can reduce this conditional variance by expending some monitoring effort. This

effort is limited, however, by the constraint that the flow of information, as defined by the

reduction in log conditional variances, must not exceed the channel capacity. Letting κ be

the channel capacity (in bits per period), we have:10

1

2

[
log(A2σ2

t + ω2) − log(σ2
t+1)

]
≤ κ (6)

Setting σ2
t = σ2

t+1, this constraint implies the following bound on the steady state variance

of the state, denoted by σ̄2:

σ̄2 ≥ ω2

e2κ − A2
(7)

Note that if |A| > 1 then channel capacity must be at least log(A), otherwise the variance

of the state explodes. Violation of this bound can be interpreted as being a situation where

10The scale factor, 1/2, is not really essential. It comes from the 1/2 term in the Gaussian density.
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stabilization of the system requires more attention and effort than the agent is capable

of.11 Thus, as in Robust Control, which imposes a lower bound on θ (sometimes called the

‘breakdown point’), there are limits to how far we can push the agent away from the standard

frictionless benchmark. Likewise, note that as capacity becomes unbounded (κ → ∞), the

constraint becomes vacuous. In principle, an infinite capacity agent could eliminate state

uncertainty entirely, although this would not be optimal unless Q = 0.

The second step is to now use Kalman filtering formulas to infer a minimum measure-

ment error variance. That is, we view the agent as observing yt = xt + εt, where εt is an

implicit i.i.d. measurement error. The agent can get a more precise estimate by expending

some information processing capacity. However, given the bound, κ, he cannot reduce the

conditional variance of the state below the right-hand side of (7). If we let Σ̄ be the steady

state variance of the state estimate, then Kalman filtering delivers the following implicit

equation for Σ̄:

Σ̄ = [A2Σ̄ + ω2]

[
var(ε)

A2Σ̄ + ω2 + var(ε)

]
(8)

Solving for var(ε) and setting Σ̄ = σ̄2 yields the following bound on the variance of the

implicit measurement error:

var(ε) ≥ σ̄2(A2σ̄2 + ω2)

(A2 − 1)σ̄2 + ω2
(9)

where σ̄2 is given by the right-hand side of (7). It can be verified from (7) and (9) that as

information processing capacity shrinks, the agent must tolerate greater measurement error.

3 Filtering

To highlight the relationship between robustness and attention, this section studies an even

more stripped down version of Sims’ model, which abstracts from control and just focuses

on the filtering half of the problem. In particular, a standard Kalman filtering problem is

analyzed under alternative assumptions about model uncertainty and information processing.

Later I discuss how control can be re-introduced.

The analysis proceeds in four steps. First, as a benchmark, I lay out the standard

continuous-time Kalman-Bucy filtering problem. The next step then incorporates model

uncertainty. Following Anderson, Hansen, and Sargent (2003), model uncertainty is repre-

sented by a set of candidate models, parameterized by their relative entropies vis-a-vis an

11Of course, if |A| < 1 the bound is irrelevant, since then the system is stable by itself.
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exogenous reference model. The key result here is to show that the filtering algorithm’s gain

parameter is increasing in model uncertainty. The third section restores confidence in the

model, but then introduces a capacity constraint on information processing. A preliminary

result first shows that channel capacity is directly proportional to the variance of the state

estimate. It is this result that makes continuous-time such a convenient assumption. As a

direct corollary, it is then easy to show that the filtering gain increases with channel capac-

ity. Taken together, the results of sections 3.2 and 3.3 point to an observational equivalence

between a preference for robustness and an increased capacity to process information. This

suggests some potentially intriguing psychological links between uncertainty and information

processing. The fourth part explores these connections by incorporating both model uncer-

tainty and information processing constraints. It is argued that we can interpret a desire for

robustness as giving rise to a demand for information processing, which is constrained by

the available channel capacity.

3.1 The Kalman-Bucy Filter

Consider the following pair of stochastic differential equations:

dX = −aXdt+ σdW 1 (10)

dY = Xdt+ dW 2 (11)

where W 1(t) and W 2(t) are independent standard Wiener processes defined on a complete

probability space (Ω,F , P ), on which is defined the filtration Ft = σ(X0,W
1(s),W 2(s); 0 ≤

s ≤ t), where X0 : Ω → R1 is a Gaussian random variable representing the unknown initial

value ofX, which is assumed to be independent ofW 1 andW 2. {Ft} is assumed to satisfy the

‘usual conditions’, e.g., right-continuity and augmentation by P -negligible sets. All processes

are assumed to be Ft-adapted.

Equation (10) defines the law of motion for an unobserved state variable, X(t), and

equation (11) defines the measurement, or observer, equation. In what follows, let Yt =

σ(Y (s); 0 ≤ s ≤ t) be the filtration generated by the history of the Y (t) process.

Usually it wouldn’t matter if we wrote the measurement equation in a slightly different

way, relating X to the level of Y as opposed to its ‘derivative’,

Y (t) = X(t) +W 2(t) (12)
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In the context of information processing, however, there is a substantive difference between

these two specifications. Writing the observer equation as in (12) would imply an infinite

rate of information transimission. In continuous-time, the signal must be ‘smoother’ than

the noise (see, e.g., Sims (1998)). One way to respect this limitation is to assume the

agent samples the process at discrete intervals. This is the route taken by Moscarini (2002).

In this paper, I pursue an alternative approach. I write the observer equation as in (11)

and assume the current signal influences the instantaneous rate of change in the measured

output. This ensures the signal is smoother than the noise, which becomes clear when we

interpret the observer equation as an integral equation (which is the mathematically preferred

interpretation):

Y (t) = Y (0) +
∫ t

0
X(s)ds+ σ

∫ t

0
dW 2

s (13)

The agent’s filtering problem can now be expressed as the following minimum norm

problem:

inf
X̂t∈Xt

‖Xt − X̂t‖2 = inf
X̂t∈Xt

∫
Ω
(Xt − X̂t)

2dP (14)

where the set of admissable estimators is given by:

Xt := {X̂t : Ω → R1; X̂t ∈ L2(P ) and X̂t is Yt-measurable}

The solution of this problem is well known (see Liptser and Shiryaev (2000a) for a deriva-

tion). It can be written as the following recursion:

dX̂ = −aX̂dt+K(t)[dY − X̂dt] (15)

with initial condition given by the prior mean of X0, and where the ‘Kalman gain’ satisfies

the Riccati equation:

K̇ = −2aK −K2 + σ2 (16)

with initial condition given by the prior variance of X0. Equations (15) and (16) comprise

the famous Kalman-Bucy filter. Notice that as t → ∞ K(t) converges to the following

unique positive solution of the algebraic Riccati equation, 0 = −2aK −K2 + σ2,

K̄ = −a+
√
a2 + σ2 (17)

As you would expect, the agent revises his forecasts more in response to new information

when the signal-to-noise ratio, σ2, increases.
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3.2 Robust Filtering

The previous analysis was based on the assumption that the model was correctly specified,

and the agent knew this. What if this isn’t the case? What if the agent entertains doubts

about the model? The presumed linear law of motion for the unobserved state variable,

X(t), might not only be a poor approximation, but the nature of the misspecification could

well be difficult to diagnose. This wouldn’t be a serious problem if Kalman filters were robust

to such misspecification. Unfortunately, this isn’t the case. (See Petersen and Savkin (1999)

for examples).

In response to this lack of robustness, engineers have devised control and filtering methods

that are more robust to misspecification. The breakthrough came in the control context,

with the work of Zames (1981), who showed how to derive policies that guarantee a given

performance level. His idea was to switch objective functions, from the H2 sum-of-squares

norm to the H∞ supremum norm. Rather than optimize the average behavior of a system

based on a presumed statistical model for the disturbances, H∞-control and filtering is based

on a deterministic, worst-case analysis of the disturbances. This permits a model’s error

term to capture a complex amalgam of potential misspecifications, e.g., omitted variables,

neglected nonlinearities, or misspecified statistical distributions.

Recently, Hansen and Sargent (2002) have begun to import and adapt these methods to

economics. Although the formal decision theory justifying their use in economics remains

the subject of some dispute (see, e.g., the debate between Epstein and Schneider (2001) and

Hansen, Sargent, Turmuhambetova, and Williams (2001)), the hope is that robust control

offers a convenient dynamic extension of Gilboa and Schmeidler’s (1989) axiomatization of

Knightian Uncertainty. This axiomatization is motivated by the desire to explain experi-

mental findings that apparently violate Savage’s axioms, especially the Ellsberg Paradox.

Gilboa and Schmeidler show that the Ellsberg Paradox can be resolved if the ‘Sure Thing

Principle’ is relaxed.12

One aspect of the engineering approach to robust control and filtering that economists

have had to modify is its deterministic interpretation of a model’s disturbance process.

Deterministic errors produce stochastic singularities and make it difficult to compare models.

Engineers don’t need to worry about this since the appropriate degree of robustness is usually

dictated by externally imposed performance or stress requirements. In economics, however,

12The Sure Thing Principle is the analog of the independence axiom in models of subjective probability.
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agents presumably get to decide the appropriate degree of robustness based on observations

of historical data. The greater the range of potential models that are consistent with the

data, the greater the degree of model uncertainty.

A stochastic approach to model uncertainty has been developed by Anderson, Hansen,

and Sargent (2003).13 In this approach model uncertainty is introduced by thinking of the

agent as being unsure about the true probability measure generating the data. Equations

(10) and (11) now constitute only a benchmark, or reference, probability measure around

which a class of perturbed probability measures are contemplated. The distance between

the reference model and the alternatives is measured by their relative entropies:

Definition 1: Let (Ω,F) be a measurable space, and let M(Ω) be a set of probability measures

on (Ω,F). Given any two probability measures Q,P ∈ M(Ω), the relative entropy of the

probability measure Q with respect to the probability measure P is defined by:

h(Q‖P ) :=

{ ∫
log

(
dQ
dP

)
dQ if Q	 P

+∞ otherwise

where Q 	 P denotes absolute continuity of the measure Q with respect to the measure P,

and dQ
dP

is the Radon-Nikodym derivative of Q with respect to P.

Hence, relative entropy is akin to a log-likelihood ratio statistic. The absolute continuity

condition implies that Q and P share the same measure zero events. This is a reasonable

condition to impose on the set of admissable perturbations. If they weren’t absolutely

continuous, they would be easy to distinguish.

A key advantage of measuring model uncertainty by relative entropy is that Girsanov’s

Theorem delivers a very convenient parameterization of the alternative models. Let (ξi(t),Ft),

0 ≤ t ≤ T be a random process satisfying the following (Novikov) conditions:

P

(∫ T

0
|ξi(s)|2ds <∞

)
= 1

EP exp

(
1

2

∫ T

0
|ξi(s)|2ds

)
< ∞

From this process, construct the following process,

ζi(t) = exp
(∫ t

0
ξi(s)dWs − 1

2

∫ t

0
|ξi(s)|2ds

)
13Interestingly, engineers are starting to adopt a stochastic approach as well. In fact, the robust filtering

approach of Petersen and Ugrinovskii (2002) is actually closer to my approach than is Anderson et. al.
(2003).
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It can be shown that ζi(t) is a positive, continuous martingale, with EP (ζi(t)) = 1 ∀t (see,

e.g., Liptser and Shirayev (2000a, ch. 6)), and hence, from Girsanov’s Theorem, we have

the following relationship between the reference probability measure P and a perturbed

probability measure, Qi, as parameterized by the process ξi(t),

dQi(ω) = ζi(ω)dP (ω)

Notice that if ξi(t) = 0 ∀t then ζi(t) = 1 and Qi = P . More generally, the process ξi(t)

parameterizes the distance between Qi and P . In fact, we have

h(Qi‖P ) = EQi

∫ T

0
|ξi(s)|2ds

Applying this change of measure to both the state transition equation in (10) and the mea-

surement equation in (11) produces the following set of drift distorted models:

dX = −(aX − σξ1(t))dt+ σdW̃ 1 (18)

dY = (X + ξ2(t))dt+ dW̃ 2 (19)

where W̃ 1(t) and W̃ 2(t) are Wiener processes on (Ω,F , Q), with Q = Q1 × Q2, which are

related to the reference processes as follows:

W̃ 1(t) = W 1(t) −
∫ t

0
ξ1(s)ds

W̃ 2(t) = W 2(t) −
∫ t

0
ξ2(s)ds

Now, to design a robust filter, the agent employs the device of an ‘evil agent’, who

attempts to subvert the agent’s filtering efforts by choosing the worst model for any given

filter. In doing this, the only constraint the evil agent faces is a bound on the relative entropy

between the reference model and the distorted worst-case model. That is, the agent makes

no a priori assumptions about the parametric form of potential model misspecification. To

allow for an infinite horizon without discounting, I express the relative entropy bound as the

following limiting time average:

h∞(Q‖P ) ≡ lim sup
T→∞

1

T
EQ

∫ T

0
(|ξ1(s)|2 + |ξ2(s)|2)ds < U (20)

As U increases the agent is effectively allowing for more model uncertainty. Conversely, as

U ↓ 0, the agent becomes fully confident in the specification of the reference model.

14



A robust filter can now be characterized as the Nash equilibrium of the following dynamic

zero-sum game,14

Vt = inf
{X̂s}

sup
Q

{
lim sup
T→∞

1

2T
EQ

∫ T

0
|Xs − X̂s|2ds− 1

2
θh∞(Q‖P )

}
(21)

subject to the distorted model in (18) and (19). The parameter θ can be interpreted as a

Lagrange Multiplier on the relative entropy constraint in (20). (As noted by Hansen and

Sargent (2002), we can omit the θU term since it does not influence behavior). Hence, θ

indexes the degree of robustness. As θ increases, robustness decreases. In the limit, as

θ → ∞, the problem becomes identical to the standard Kalman-Bucy filtering problem

studied in the previous section. Conversely, the smallest value of θ that is consistent with

the existence of a bounded solution to (21) can be interpreted as a stochastic H∞ filter,

providing the maximal degree of robustness for a given reference model. As emphasized by

Anderson, Hansen, and Sargent (2003) this may or may not be an empirically plausible filter.

If the implied detection error probability is regarded as being implausibly low, then θ should

be increased.

Before computing the equilibrium of this game there is an important feature of (21) that

should be highlighted. Notice that the lower limit of integration in (21) is 0, not t, implying

the agent cares about past forecast errors. Whether this is reasonable is likely to be case

specific. As noted by Hansen and Sargent (2002), assuming agents care about past forecast

errors is reasonable when agents must commit in advance to a given filter. On the other

hand, if agents ignore past forecast errors, letting bygones be bygones, then it turns out that

the standard Kalman filter is robust, in the sense that it minimizes the maximum one-step

ahead forecast error.15 In the next section we’ll see that a nonrecursive robust filter can be

interpreted as requiring extra information processing. This suggests that when agents must

commit in advance to a filter they will allocate more information processing to the task.

When solving the robust filtering problem in (21) it proves convenient to exploit the

following Legendre-type duality relationship between relative entropy and a risk-sensitive

version our criterion function:

14Hansen and Sargent (2002) call this the ‘multiplier game’, while Basar and Bernhard (1995) call it the
‘soft-constrained game’.

15See Hansen and Sargent (2002) or Basar and Bernhard (1995, ch. 7) for a proof. This result is perhaps
most easily understood in the frequency domain. A recursive robust filter minimizes the maximum of the
spectral density of one-step ahead forecast errors. However, by construction, the Kalman filter produces a
white noise forecast error, which is flat already, and hence, maximally robust.
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Lemma 3.1: Let P ∈ M(Ω), and ψ : Ω → R1 be a measurable function. Then for every

Q ∈ M(Ω) we have the following Legendre transform relationships between h(Q‖P ) and the

log moment generating function of ψ:

h(Q‖P ) = sup
ψ∈B(Ω)

{∫
ψdQ− log

(∫
eψdP

)}
(22)

log
(∫

eψdP
)

= sup
Q∈M(Ω)

{∫
ψdQ− h(Q‖P )

}
(23)

where B(Ω) denotes the set of bounded F-measurable functions on Ω.

This duality relationship is useful because it allows us to transform our entropy con-

strained robust filtering problem into an equivalent risk-sensitive control problem. In partic-

ular, we shall use the version in (23) with ψ ≡ (Xs − X̂s)
2 to replace the ‘inner part’ of the

minmax filtering problem with a conventional risk-sensitive objective function. Although

the ψ function in our case is quadratic, and hence unbounded, Dai Pra, Meneghini, and

Runggaldier (1996) show that the duality in lemma 3.1 can be extended to cover this case

as well. Solving the resulting risk-sensitive filtering problem yields,

Proposition 3.1: If θ > 1 there is a unique solution of the the robust filtering problem in

(21) given by

dX̂ = −aX̂dt+Kr(t)[dY − X̂dt] (24)

K̇r = −2aKr −
(
1 − 1

θ

)
K2
r + σ2 (25)

where the robust Kalman gain, Kr(t), converges to the following solution of the algebraic

Riccati equation, K̇r = 0:

K̄r =
−a+

√
a2 + (1 − θ−1)σ2

1 − θ−1
(26)

If θ < 1 there does not exist a solution of the robust filtering problem.

Proof: To prove this we can follow Ugrinovskii and Petersen (2002). The basic idea is to scale

both sides of (23) by θ, and then define ψ̃ = θψ. The right-hand side becomes an entropy

constrained filtering problem in terms of the scaled objective function, ψ̃. The left-hand side
becomes a risk-sensitive control problem, also in terms of ψ̃, with risk-sensitivity parameter
1/θ. The solution of this problem is a special case of Theorem 3 in Pan and Basar (1996).
�

There are a couple of interesting things to note about the robust Kalman gain in (26).

First, it is identical to the robust filter in Theorem 7.6 of Basar and Bernhard (1995),
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which is based on a deterministic interpretation of the disturbances. Hence, adopting a

stochastic approach does not produce different results, but it does aid in the calibration of

the θ parameter. Second, comparing (26) to the standard Kalman gain in (17) reveals, as

expected, that Kr → K when θ → ∞. More generally, we have:

Corollary 3.1: The gain of the robust filter increases with model uncertainty.

Proof: Differentiate (26) with respect to θ and verify ∂Kr/∂θ < 0. �

Since this is the main result from the perspective of relating robustness and information

processing, it is useful to have some intuition for it. To do this, suppose for simplicity that

the state transition equation is the only source of uncertainty, so that ξ2(t) = 0 ∀t. Also,

without loss of generality (see, Hansen and Sargent (2002)), confine attention to a Markov

Perfect Nash equilibrium in which the filterer selects a feedback rule (ie., a Kalman gain

parameter, K) at the same time his evil agent selects a feedback rule for ξ1(t) = Ge(t),

where e(t) is the forecast error (X − X̂). Given choices of K and G we get the following

Ornstein-Uhlenbeck process for the forecast errors:

de = −(a− σG+K)edt+ σdW̃1 −KdW2

which produces the following expression for the steady state variance of the forecast error:

var(e) =
σ2 +K2

2(a− σG+K)

Subtracting the relative entropy constraint, θG2var(e), and then differentiating with respect

to K and G yields the following two reaction functions:

K(G) : 2K(a− σG+K) = σ2 +K2 (27)

G(K) : σG = (a+K) −
√

(a+K)2 − σ2/θ (28)

These two functions are plotted in Figure 1.16 Starting at the standard Kalman gain, the evil

agent can produce a higher forecast error variance by choosing a disturbance process that

feeds back positively on e. This increases the persistence and variance of the forecast errors.

To ward off this possibility, the agent picks a higher, more vigilant, gain parameter. This

16Note, figure 1 just depicts the essential aspects of the situation. K(G) is actually concave (when K is
on the horizontal axis) and G(K) is convex.
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makes him less susceptible to low frequency misspecifications, which are especially damaging.

The agent raises the gain parameter up until the point that an evil agent would no longer

have an incentive to increase the persistence of the forecast errors. Clearly, making the evil

agent’s actions more costly by increasing θ causes the G(K) reaction function to shift down

and to the left (as well as becoming flatter). This allows the agent to relax a bit and reduce

the filter gain.

A natural question at this point is whether there is any evidence of heightened sensitivity

to prediction errors in the presence of model uncertainty. Unfortunately, while there is a

vast psychology literature debating whether agents update according to Bayes Rule, it does

not directly examine the effects of model uncertainty. The early literature actually found

evidence of conservatism (Edwards (1968)). In what is perhaps the only analysis of the

implications of model uncertainty for Bayesian updating, Navon (1978) argued that apparent

conservatism could be explained if agents suspect the data are subject to measurement error

or mean reversion. While this would indeed rationalize conservative updating, it would not

be robust. An agent with a preference for robustness should be concerned that the data are

less mean reverting than it appears. Failure to respond to hidden persistence is far more

costly than failure to detect mean reversion. As it turns out, however, the recent literature

has focused much more on the tendency of agents to overreact to new information in a variety

of settings (e.g., Kahneman and Tversky (1973) and Grether (1980)). This should probably

not be construed as evidence in favor of robust filtering, however, since this same evidence

points to more radical departures from Bayesian updating. At this point all one can safely

conclude is that the jury is still out.17

3.3 Capacity Constrained Filtering

Let’s now restore the agent’s faith in the model. Instead of being unsure about the model,

assume he has limits on his ability to process information. The objective is to formalize and

generalize the analysis of information processing that was presented earlier in the context

of Sims’ (2003) model of Rational Inattention. To do this we now regard the state space

model in (10) and (11) as an information transmission channel, with output Y and input

signal X. Our first task is to provide a rigorous definition of the information about X that

17Interestingly, Mullainathan (2002) shows that memory limitations can also produce overreaction to
forecast errors. This occurs when new information triggers memories that convey similar information.
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is contained in Y .

Definition 2: Let Y and X be two random processes on [0, T ], with joint probability measure

µX,Y and marginal probability measures µY and µX . If µX,Y 	 µX × µY then the mutual

information, IT (X,Y ), between Y and X is:

IT (X,Y ) =
∫

ln

(
dµX,Y

d[µX × µY ]

)
dµX,Y

Referring back to Definition 1, we can see that mutual information is just the relative

entropy between the joint density and the product of the marginals. Clearly, if Y and X are

independent, so that dµX,Y = d[µX × µY ], then IT (X,Y ) = 0.

Having defined mutual information, we can now define in general terms the capacity of

an information transmission channel between Y and X:

Definition 3: Let Y and X be two random processes on [0, T ], with mutual information,

IT (X,Y ). Then the capacity, C, of a channel between X and Y is:

C := sup
X∈Λ

IT (X,Y )

where Λ defines a set of admissable X processes.

In most applications, the admissable set Λ is defined by power or amplitude constraints.

A classic result in information theory, first established by Shannon (1948), is that if Y is

Gaussian and Λ is defined by a power constraint then X is also Gaussian. More generally,

however, calculating capacity is a challenging calculus of variations problem. Fortunately,

for our purposes this is not an issue, since I regard X as exogenous, i.e., outside the agent’s

control. With this assumption, capacity and mutual information become synonomous.

Our task now is to apply Definition 2 to the particular channel defined by equations (10)

and (11). This gives us:

Proposition 3.2: The mutual information (and capacity) of the transmission channel de-

fined by equations (10) and (11) is given by:

IT (X,Y ) =
1

2
E
∫ T

0
(Xs − X̂s)

2ds (29)

where X̂s = E(Xs|Yu, 0 ≤ u ≤ s) and is given by the Kalman-Bucy filter in equation (15).
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Proof: For our special case of linear diffusion processes, this result was first proved by Duncan
(1970). However, I follow the proof in Liptser and Shiryaev (2000b, ch. 16). The details are
in the appendix. �

As you would expect from standard signal extraction logic, the information in Y about

X is an increasing function of the conditional variance of X. For example, if the conditional

variance of X is small then movements in Y likely reflect measurement error, and do not

convey much information about X. We can use this result along with equation (17) to derive

the following expression for the asymptotic rate of information flow (per unit time) in terms

of the steady state Kalman gain:

Corollary 3.2: The steady state rate of information conveyed by Y about X is given by

lim
T→∞

1

T
IT (X,Y ) =

1

2
K̄ =

1

2
(−a+

√
a2 + σ2)

Proof: K(T ) converges to K̄ as T → ∞. �

If we now denote channel capacity by κ, the information processing constraint simply

becomes K̄ < 2κ. There is certainly no guarantee that this be binding. If the parameters

are such that the optimal Kalman gain satisfies this constraint then information processing

constraints are irrelevant. Since for our purposes this is not an interesting case, in what

follows I make the following assumption about the parameters:

Assumption 1: The parameter values satisfy the inequality, κ < 1
2
(−a+

√
a2 + σ2)

Hence, decisions characterized by a low signal-to-noise ratio are assumed to have a low

channel capacity. Not only is this a reasonable assumption, but it is likely to be the equi-

librium outcome in any problem permitting the endogenous allocation of capacity across

multiple decisions (eg., Turmuhambetova (2003)).

If Assumption 1 holds then we get the following characterization of capacity constrained

filtering.

Proposition 3.3: If Assumption 1 holds then the filter gain is 2κ, and an increase in channel

capacity increases the filter gain.

Proof: If Assumption 1 holds then the capacity constraint binds. Since the loss function is
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globally convex with a minimum at (−a +
√
a2 + σ2), if the constraint is binding then it is

optimal to increase the filter gain in response to an increased channel capacity. �

Relating Proposition 3.3 back to Corollary 3.1 produces the following observational equiv-

alence result, which is the main result of this section.

Corollary 3.3: If Assumption 1 holds then Rational Inattention and Robust Filtering are

observationally equivalent, in the sense that a higher filter gain can either be interpreted as

an increased preference for robustness or an increased ability to process information.

3.4 Capacity Constrained Robust Filtering

The previous two sections examined robust filtering and capacity constrained filtering

separately. What if model uncertainty and information processing constraints are present

simultaneously? The observational equivalence result in Corollary 3.3 points to a potentially

intriguing connection between these two concepts. In particular, since robustness and channel

capacity both increase the gain of the filter, the previous results suggest that one way agents

might actually implement a robust filter is by re-allocating some of their scarce information

processing capacity to decisions that demand a relatively high degree of robustness, either

because they have a relatively high degree of model uncertainty associated with them, or

because they are especially risk-sensitive.

Figure 2 illustrates the essential aspects of the situation. The robust filter gain in equation

(26) can be interpreted as giving rise to a ‘demand’ for information processing as a function

of θ. Letting κd(θ) denote this function, we have

κd(θ) =
−a+

√
a2 + σ2(1 − θ−1)

2(1 − θ−1)
(30)

As θ decreases the filter gain increases, and along with it the implied mutual information

rate and information processing demand. Conversely, as θ → ∞ the filter converges to the

standard Kalman filter, with an implied information rate equal to 1
2
K̄.

Clearly, if Assumption 1 holds, the agent is unable to achieve any robustness. He’s

already at his limit. Hence, Figure 2 depicts a situation where channel capacity exceeds the

nonrobust demand (i.e., κ > 1
2
(−a+

√
a2 + σ2)). When this is the case the agent can enhance

the robustness of the filter, but only up to the point where κd(θ) intersects the constraint.

Hence, channel capacity limits the achievable robustness of the filter.
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4 Using Channel Capacity to Parameterize a Prefer-

ence for Robustness

One common criticism of robust control and filtering is that it imputes an excessive degree

of pessimism to agents. Why base decisions on the worst potential outcome? Didn’t Savage

show that even when events are unique and nonreplicable we can still model agents as if they

were formulating subjective probabilities over them and maximizing expected utility?

To a Bayesian this is the end of the story.18 To make sense of robust control and filtering

you must doubt the validity of the Savage axioms. Cause for doubt has come on two fronts.

First, a growing experimental literature has repeatedly confirmed and generalized the results

of the Ellsberg paradox, which is fundamentally in conflict with the existence of a (unique)

subjective prior probability distribution. Second, and perhaps more persuasive to those

who doubt the generality of experimental results, models which incorporate a preference

for robustness seem better able to explain observed market data, particularly asset market

data.19

Of course, a Bayesian response to these results is: How could they do worse? Robust

control and filtering models come with an extra free parameter (i.e., θ) that can be tuned

to explain anything. Hence, to make robust control methods persuasive it is essential that

some discipline be placed on the calibration of θ. Setting θ too low can indeed produce an

excessive degree of pessimism.

Fortunately, Anderson, Hansen, and Sargent (2003) have developed a useful strategy

for calibrating this parameter. Their strategy exploits a connection between the worst-

case shocks and conditional relative entropy on the one hand, and a connection between

conditional relative entropy and Bayesian detection error probabilities on the other hand.

Given a prior about what constitutes a reasonable detection error probability, they show

how to back out a value for θ that generates this probability. With this methodology, one

can set θ so that agents only hedge against models that could have plausibly generated past

observed data. This disciplines the choice of θ, and answers the criticism that a minimax

objective makes people unduly pessimistic.

18See Sims (2001) for a critique of robust control along standard Bayesian lines. He argues that while a
minimax approach might provide a convenient method for generating a useful prior in some applications, it
should not be regarded as a normative decision theory.

19See, e.g., Hansen, Sargent, and Tallarini (1999) and Anderson, Hansen, and Sargent (2003), and the
references they provide.
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Interestingly, information processing constraints suggest an alternative, complementary

strategy for calibrating θ. If we actually knew what channel capacity was then equation (30)

would deliver an immediate parameterization of θ, as long as we assumed that the capacity

constraint was binding. Unfortunately, as noted earlier, it is not likely that we could ever

expect to measure directly and persuasively a generally applicable value of κ. This hope was

pretty much dead by the early 1960s.20 However, I will now argue that we can exploit the

insights of Anderson, Hansen, and Sargent (2003) to devise an indirect strategy for linking

θ to channel capacity.

The calibration consists of two steps. The first step is to relate channel capacity to

detection error probabilities. This can be done using the results of Kailath (1969) and Evans

(1974). The second step is to then use equation (30) to link κ to θ. Hence, as in Anderson,

Hansen, and Sargent (2003), we can calibrate θ to detection error probabilities, but we do

so through the intermediate step of relating each to channel capacity. As long as you are

willing to assume the capacity constraint binds, this indirect strategy can provide some

computational advantages.

To see this, let’s start with Kailath’s (1969) expression for the likelihood ratio between

the following two diffusion processes:

H0 : dY = X0tdt+ dWt

H1 : dY = X1tdt+ dWt

where our task is to decide which of the two unobserved diffusion processes, X0t or X1t, is

generating the observed Y data. The likelihood ratio can be written as follows:

LR ≡ Λ(T ) = exp

{∫ T

0
(X̂1t − X̂0t)dY − 1

2

∫ T

0
(X̂2

1t − X̂2
0t)dt

}
(31)

where X̂it is a Yt-measurable least squares estimate of Xit assuming that hypothesis Hi is

true. These too are diffusions, generated by the Kalman-Bucy filter derived in section 3.1.

Given this, the decision rule is standard:

�(T ) ≡ ln Λ(T ) < γ ⇒ H1

> γ ⇒ H0

20Despite this, a still active subfield in psychology (i.e., psychophysics) continues to provide measures of
channel capacity in very specific, narrowly defined contexts.
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where γ is a threshold determined by the relative importance of Type I and Type II errors.

In what follows, I treat the two errors symmetrically and set γ = 0.

In principle, we could at this point derive a diffusion process for �(T ) and calculate the

probabilities that �(T ) < 0 when H0 is true and �(T ) > 0 when H1 is true. This would give

us the overall detection error probability. Unfortunately, exact expressions are hard to come

by. In practice, it is much easier to calculate bounds on the detection errors. Essentially, we

need to calculate the probability that a diffusion with positive drift ends up at a negative

value. This is a ‘large deviations’ problem, with the escape probability being an exponentially

decreasing function of the sample size and a ‘rate function’ determined by the parameters of

the problem. This is basically the route taken by Evans (1974), although he works with the

Fokker-Planck equation for the moment generating function of �(T ) rather than its Legendre

transform.

Specifically, if we define the moment-generating function of �(T ) as follows,

Mi(s) = E{exp[s�(T )|Hi]} = E[Λ(T )s|Hi]

then a standard Chernoff bound calcuation yields,

P (error|Hi) ≤Mi(s)

The trick is to evaluate Mi(s). By first writing the prediction error decompositions of Y

under each hypothesis, and then substituting into (31), we get:

Λs
t ≡ φ(t) = exp

[
s
∫

(X̂1t − X̂0t)dv − s

2

∫
(X̂1t − X̂0t)

2dt
]

where dv is a Brownian motion prediction error process. Applying Ito’s lemma to this yields:

dφ =
s2 − s

2
(X̂1t − X̂0t)

2φdt+ s(X̂1t − X̂0t)φdv (32)

Using (32) along with the hypothesized diffusions for X1 and X2 delivers

MT (s) = exp

[
s2 − s

2

∫ T

0
P (t)dt

]

where P (t) is the solution of a Riccati equation. Finally, noting that s = 1/2 is the bound-

minimizing choice of s, and letting T → ∞ gives us the following detection error probability:

P (error) ≤ exp
[
−1

8
P∞T

]
(33)

24



where P∞ is the steady state value of P (t).

Now the punch-line is that by following the logic of section 3.3 we can regard P∞ as the

capacity of a re-defined information transmission channel. As this capacity increases the

maximal detection error probability decreases. This suggests an upper bound on P∞ which,

from (30), implies a lower bound on θ (assuming κd(θ) < P∞). Notice that we have not had

to calculate relative entropy as a function θ. Although it’s lurking in the background as an

element of P∞, as long as we assume that channel capacity is binding we do not have to

explicitly calculate it. This may be advantageous in some applications.

5 Conclusion

This paper has illustrated some potential connections between Robust Filtering and Ratio-

nal Inattention. It has shown that under certain conditions a greater responsiveness to new

information can either be interpreted as an increased concern for robustness in the presence

of model uncertainty, or an increase in information processing ability when agents are re-

garded as finite capacity information transmission channels. By making these connections,

this paper raises questions about the deeper psychological links between uncertainty and

information processing. Following up on the early work of Kahneman (1973), perhaps one

way agents actually formulate and implement robust policies is by reallocating their limited

channel capacity to highly uncertain or risk-sensitive situations.

Besides exploring these links in greater detail, there are a number of other more straight-

forward extensions that could be pursued in future work. First, while it is usually the case

that there is little conceptual loss of generality in confining attention to univariate cases,

that is not true in models of Rational Inattention. As noted by Sims, and discussed in more

detail by Kahneman, with Rational Inattention there may be possibilities to reallocate ca-

pacity among variables, and focus attention where it has the greatest payoff. This calls for

a multivariate extension of these results. Second, this paper has focused on filtering and ab-

stracted from control. Information processing constraints also have implications for control

that merit future research. As noted by Hansen and Sargent (2002) and Basar and Bernhard

(1995), with model uncertainty the usual separation between filtering and control no longer

applies, and it is likely that information processing constraints also produce some interest-

ing interactions between these two problems. In addition to the work of Sims, interesting

starts along this dimension have been made by Turmuhambetova (2003) and Kuznetsov,
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Liptser, and Serebrovskii (1980). Finally, the observational equivalence derived here bears

some resemblance to the result of Hansen, Sargent, and Tallarini (1999). They showed in

the context of a Permanent Income model that the quantity implications of robustness are

observationally equivalent to a reduced rate of time preference. They argue that the effects

of robustness and model uncertainty manifest themselves most clearly in asset prices. This

suggests that information processing constraints might also have important implications for

security market data and the resolution of various asset price anomalies.
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APPENDIX

This appendix fills in some of the details of the proof of Proposition 3.2. First, one can
readily verify that equations (10) and (11) satisfy conditions (A) - (E) in chapter 7 of Liptser
and Shiryaev (2000a).21 Given this, the fact that µX,Y 	 µX × µW and µY 	 µW implies

dµX,Y
d[µX × µY ]

=
dµX,Y /d[µX × µW ]

dµY /dµW
(A1)

Next, we can apply lemmas 7.6 and 7.7 in Lipster and Shiryaev (2000a) to conclude,

dµX,Y
d[µX × µW ]

= exp

[∫ T

0
XtdYt − 1

2

∫ T

0
X2
t dt

]
(A2)

dµY
dµW

= exp

[∫ T

0
X̂tdYt − 1

2

∫ T

0
X̂2
t dt

]
(A3)

Substituting (A2) and (A3) into (A1) yields,

ln
dµX,Y

d[µX × µY ]
=

∫ T

0
[Xt − X̂t]dYt − 1

2

∫ T

0
[X2

t − X̂2
t ]dt

=
∫ T

0

(
[Xt − X̂t]Xt − 1

2
[X2

t − X̂2
t ]
)
dt+

∫ T

0
[Xt − X̂t]dWt (A4)

Finally, taking expectations in (A4), collecting terms, and exploiting the properties of
stochastic integrals to eliminate the last term in (A4) yields,

E

[
ln

dµX,Y
d[µX × µY ]

]
=

1

2
E
∫ T

0
(Xt − X̂t)

2dt

21These conditions include the following: (A), existence of a strong (i.e., FX,W
t -measurable) solution of

(11); (B), Nonanticipative drift and diffusion coefficients in (11); (C), A growth condition on the diffusion
coefficient in (11) (satisfied trivially here); and boundedness assumptions on the drift term in (11). Actually,
since W 2 and X are assumed independent, we can (from the note to Theorem 7.23 in Lipster and Shiryaev)
dispense with conditions (A) and (C).
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