
Lecture 15:

A few more NP-complete problems

Valentine Kabanets

November 15, 2016

1 Clique, IndependentSet, VertexCover, and HamCycle

A clique in a graph G is a subset of vertices of G such that every pair of nodes in the subset are
connected by an edge. An independent set in a graph is a set of vertices such that no two of them
are connected by an edge.

A vertex cover for a graph G is a set S of vertices such that every edge of G has at least one of
its endpoints in S (every edge of G is covered by S).

An st-path in a graph G is a path from a specified vertex s to a specified vertex t of G. A
Hamiltonian st-path in G is an st-path that visits each vertex of G exactly once. A Hamiltonian
cycle is a cycle in a graph that visits each vertex exactly once.

Define
Clique = {〈G, k〉 | graph G has a clique of size ≥ k},

IS = {〈G, k〉 | graph G has independent set of size ≥ k},

V C = {〈G, k〉 | graph G has vertex cover of size ≤ k},

st-HamPath = {〈G〉 | G has a Hamiltonian st-path},

HamCycle = {〈G〉 | G has a Hamiltonian cycle}

All of these problems are NP-complete. We’ll give reductions:

3SAT ≤p CLIQUE ≤p IS ≤p V C.

Recall the problem 3SAT: Given a 3cnf formula φ(x1, . . . , xn) (which is a conjunctions of
clauses, where each clause is an OR of 3 literals; each literal is a variable or the negation of a
variable), decide if φ is satisfiable.

Theorem 1. 3SAT ≤p CLIQUE

Proof. Given a 3cnf φ(x1, . . . , xn), let m be the number of clauses in φ. Define a graph G to be on
3m vertices, one triple of vertices for each clause of φ. Also, imagine labeling the vertices in each
triple by the literals of the corresponding clause. Add edges between every pair of vertices of the
graph except

• nodes in the same triple (corresponding to the same clause), and

1



• nodes labeled by the complementary literals (e.g., x and x̄).

We claim that if φ is satisfiable, then G has a clique of size m. Indeed, pick one true literal from
each clause. The corresponding set of m vertices forms a clique in G (because no complementary
literals are chosen, as we choose true literals only). For the other direction, if G has a clique of size
m, it must be the case that exactly one vertex from each triple/clause is in the clique. Moreover, no
conflicting literals can be in the clique. Therefore, it is possible to assign True to every literal/vertex
in the clique. But such an assignment will satisfy all clauses of φ, so φ is satisfiable.

For the other reductions, we rely on the following easy observations. Recall that the complement
Gc of a graph G is the graph on the same set of vertices such that edges of G are non-edges of Gc

and, conversely, non-edges of G are edges of Gc.

Lemma 1. Graph G has an clique of size k iff Gc has an independent set of size k.

Lemma 2. Graph G has an independent set of size k iff G has a vertex cover of size n− k.

For CLIQUE ≤p IS: the reduction maps 〈G, k〉 to 〈Gc, k〉, where Gc is the complement of the
graph G (the graph on the same set of vertices as G but such that (u, v) is an edge of Gc iff (u, v)
is not an edge of G). Correctness of the reduction is by Lemma 1.

For IS ≤p V C: the reduction maps 〈G, k〉 to 〈G,n − k〉, where n = the number of vertices in
G. Correctness is by Lemma 2.

The textbook shows that st-HamPath is NP-complete. Using this, we’ll show that HamCycle
is also NP-complete, via the reduction st-HamPath ≤p HamCycle. The reduction maps a graph
G on n nodes to a graph G′ which is the same as G plus a new vertex a with two edges (s, a) and
(t, a). It is not hard to see that this is a correct reduction.

2 NP-completeness of SubsetSum

Recall SubsetSum: Given natural numbers a1, . . . , an, T , decide if there is a subset S ⊆ {1, . . . , n}
such that

∑
i∈S ai = T .

Theorem 2. SubsetSum is NP-complete.

Proof. Clearly, SubsetSum is in NP. We will show that 3SAT ≤p SubsetSum.
The idea is to define a table whose rows will represent the numbers ai, in the decimal notation:

each position of the row holds a digit (between 0 and 9).
Given a 3-cnf on n variables and m clauses, we specify 2n “literal” rows (one row for each

literal), and 2m “clause” rows (two rows for each clause). There will be n+m columns in the table.
The first n columns correspond to the n variables x1, . . . , xn (variable columns), and the remaining
m columns correspond to clauses c1, . . . , cm (clause columns).

The row corresponding to variable xi has 1 in variable column i, and 1 in clause column cj for
every clause j containing literal xi. The row corresponding to literal x̄i has 1 in variable column i,
and 1 in clause column cj for every clause j containing literal x̄i. For each clause j, we’ll have two
clause rows that have 1 in the clause column j, and zero everywhere else. All unspecified entries
are 0.

Finally, we define the target row T to be 1 in each variable column i, 1 ≤ i ≤ n, and 3 in each
clause column j, 1 ≤ j ≤ m.

2



We claim that the input 3-cnf is satisfiable iff the constructed instance of SubsetSum has a
solution subset S.

For one direction, suppose 3-cnf is satisfiable. Let a be a satisfying assignment for the 3-cnf.
Define S to consist of those literal rows that are true under assignment a, plus add to S 0, 1, or 2
clause rows for each clause cj depending on whether the assignment a makes true 3, 2, or 1 literal
in cj . Observe that the defined set S of rows will add up to have 1 in each variable column, and 3
in each clause column, as required.

For the opposite direction, suppose we have a subset S of rows that adds up to T . The fact
that each variable column of T is 1 forces S to contain exactly one literal row for each variable xi
(either xi or x̄i). Thus, S encodes a legal truth assignment: we assign xi True if S contains row xi,
and False if S contains row x̄i.

We claim that this assignment is satisfying for each clause cj . Indeed, since S must add up to 3
in every clause column cj , we get that each clause column cj must contain at least one literal row
chosen in S (otherwise, we can’t get to the sum 3 in that column). But the latter means that cj
contains a literal that is assigned True by the assignment we extracted from the set S. Thus, each
clause contains at least one true literal, and so our 3-cnf is satisfiable.

Finally, it is easy to see that the described reduction is polytime. This concludes the proof.

3 Traveling Salesman Problem

Finally, define the Traveling Salesman Problem (TSP): given a complete graph on n vertices, an
assignment of positive integer weights to all edges, and an integer W , decide if there exists a
Hamiltonian cycle in G of weight at most W , where the weight of the cycle is the sum of the
weights of its edges.

We’ll show TSP is NP-complete, via the reduction HamCycle ≤p TSP . The reduction maps
a graph G on n nodes to a complete graph on n nodes, with the weights 1 for all edges of G, and
weights n+ 1 for all non-edges of G. We also set W = n.

Observe that if G has a Hamiltonian cycle, then this cycle is a tour of weight n in our TSP
instance. Conversely, if there is a tour of weight at most n, that tour can’t use any non-edges of
G (which would make its total weight at least n + 1). Thus, the original graph G must have a
Hamiltonian cycle.

3


