Lecture 15: A few more NP-complete problems

Valentine Kabanets

November 15, 2016

1 Clique, IndependentSet, VertexCover, and HamCycle

A *clique* in a graph G is a subset of vertices of G such that every pair of nodes in the subset are connected by an edge. An *independent set* in a graph is a set of vertices such that no two of them are connected by an edge.

A vertex cover for a graph G is a set S of vertices such that every edge of G has at least one of its endpoints in S (every edge of G is covered by S).

An st-path in a graph G is a path from a specified vertex s to a specified vertex t of G. A Hamiltonian st-path in G is an st-path that visits each vertex of G exactly once. A $Hamiltonian \ cycle$ is a cycle in a graph that visits each vertex exactly once.

Define

$$Clique = \{\langle G, k \rangle \mid \text{ graph } G \text{ has a clique of size } \geq k\},$$
 $IS = \{\langle G, k \rangle \mid \text{ graph } G \text{ has independent set of size } \geq k\},$
 $VC = \{\langle G, k \rangle \mid \text{ graph } G \text{ has vertex cover of size } \leq k\},$
 $st\text{-}HamPath = \{\langle G \rangle \mid G \text{ has a Hamiltonian } st\text{-path}\},$
 $HamCycle = \{\langle G \rangle \mid G \text{ has a Hamiltonian cycle}\}$

All of these problems are NP-complete. We'll give reductions:

$$3SAT \leq_p CLIQUE \leq_p IS \leq_p VC.$$

Recall the problem **3SAT:** Given a 3cnf formula $\phi(x_1, \ldots, x_n)$ (which is a conjunctions of clauses, where each clause is an OR of 3 literals; each literal is a variable or the negation of a variable), decide if ϕ is satisfiable.

Theorem 1. $3SAT \leq_p CLIQUE$

Proof. Given a 3cnf $\phi(x_1, \ldots, x_n)$, let m be the number of clauses in ϕ . Define a graph G to be on 3m vertices, one triple of vertices for each clause of ϕ . Also, imagine labeling the vertices in each triple by the literals of the corresponding clause. Add edges between every pair of vertices of the graph except

• nodes in the same triple (corresponding to the same clause), and

• nodes labeled by the complementary literals (e.g., x and \bar{x}).

We claim that if ϕ is satisfiable, then G has a clique of size m. Indeed, pick one true literal from each clause. The corresponding set of m vertices forms a clique in G (because no complementary literals are chosen, as we choose true literals only). For the other direction, if G has a clique of size m, it must be the case that exactly one vertex from each triple/clause is in the clique. Moreover, no conflicting literals can be in the clique. Therefore, it is possible to assign True to every literal/vertex in the clique. But such an assignment will satisfy all clauses of ϕ , so ϕ is satisfiable.

For the other reductions, we rely on the following easy observations. Recall that the *complement* G^c of a graph G is the graph on the same set of vertices such that edges of G are non-edges of G^c and, conversely, non-edges of G are edges of G^c .

Lemma 1. Graph G has an clique of size k iff G^c has an independent set of size k.

Lemma 2. Graph G has an independent set of size k iff G has a vertex cover of size n - k.

For $CLIQUE \leq_p IS$: the reduction maps $\langle G, k \rangle$ to $\langle G^c, k \rangle$, where G^c is the complement of the graph G (the graph on the same set of vertices as G but such that (u, v) is an edge of G^c iff (u, v) is not an edge of G). Correctness of the reduction is by Lemma 1.

For $IS \leq_p VC$: the reduction maps $\langle G, k \rangle$ to $\langle G, n - k \rangle$, where n = the number of vertices in G. Correctness is by Lemma 2.

The textbook shows that st-HamPath is NP-complete. Using this, we'll show that HamCycle is also NP-complete, via the reduction st-HamPath $\leq_p HamCycle$. The reduction maps a graph G on n nodes to a graph G' which is the same as G plus a new vertex a with two edges (s, a) and (t, a). It is not hard to see that this is a correct reduction.

2 NP-completeness of SubsetSum

Recall **SubsetSum:** Given natural numbers a_1, \ldots, a_n, T , decide if there is a subset $S \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in S} a_i = T$.

Theorem 2. SubsetSum is NP-complete.

Proof. Clearly, SubsetSum is in NP. We will show that $3SAT \leq_p SubsetSum$.

The idea is to define a table whose rows will represent the numbers a_i , in the decimal notation: each position of the row holds a digit (between 0 and 9).

Given a 3-cnf on n variables and m clauses, we specify 2n "literal" rows (one row for each literal), and 2m "clause" rows (two rows for each clause). There will be n+m columns in the table. The first n columns correspond to the n variables x_1, \ldots, x_n (variable columns), and the remaining m columns correspond to clauses c_1, \ldots, c_m (clause columns).

The row corresponding to variable x_i has 1 in variable column i, and 1 in clause column c_j for every clause j containing literal x_i . The row corresponding to literal \bar{x}_i has 1 in variable column i, and 1 in clause column c_j for every clause j containing literal \bar{x}_i . For each clause j, we'll have two clause rows that have 1 in the clause column j, and zero everywhere else. All unspecified entries are 0.

Finally, we define the target row T to be 1 in each variable column $i, 1 \le i \le n$, and 3 in each clause column $j, 1 \le j \le m$.

We claim that the input 3-cnf is satisfiable iff the constructed instance of SubsetSum has a solution subset S.

For one direction, suppose 3-cnf is satisfiable. Let a be a satisfying assignment for the 3-cnf. Define S to consist of those literal rows that are true under assignment a, plus add to S 0, 1, or 2 clause rows for each clause c_j depending on whether the assignment a makes true 3, 2, or 1 literal in c_j . Observe that the defined set S of rows will add up to have 1 in each variable column, and 3 in each clause column, as required.

For the opposite direction, suppose we have a subset S of rows that adds up to T. The fact that each variable column of T is 1 forces S to contain exactly one literal row for each variable x_i (either x_i or \bar{x}_i). Thus, S encodes a legal truth assignment: we assign x_i True if S contains row x_i , and False if S contains row \bar{x}_i .

We claim that this assignment is satisfying for each clause c_j . Indeed, since S must add up to 3 in every clause column c_j , we get that each clause column c_j must contain at least one literal row chosen in S (otherwise, we can't get to the sum 3 in that column). But the latter means that c_j contains a literal that is assigned True by the assignment we extracted from the set S. Thus, each clause contains at least one true literal, and so our 3-cnf is satisfiable.

Finally, it is easy to see that the described reduction is polytime. This concludes the proof. \Box

3 Traveling Salesman Problem

Finally, define the *Traveling Salesman Problem (TSP)*: **given** a complete graph on n vertices, an assignment of positive integer weights to all edges, and an integer W, **decide** if there exists a Hamiltonian cycle in G of weight at most W, where the weight of the cycle is the sum of the weights of its edges.

We'll show TSP is NP-complete, via the reduction $HamCycle \leq_p TSP$. The reduction maps a graph G on n nodes to a complete graph on n nodes, with the weights 1 for all edges of G, and weights n+1 for all non-edges of G. We also set W=n.

Observe that if G has a Hamiltonian cycle, then this cycle is a tour of weight n in our TSP instance. Conversely, if there is a tour of weight at most n, that tour can't use any non-edges of G (which would make its total weight at least n+1). Thus, the original graph G must have a Hamiltonian cycle.