Lecture 15:
A few more NP-complete problems

Valentine Kabanets

November 15, 2016

1 Clique, IndependentSet, VertexCover, and HamCycle

A clique in a graph G is a subset of vertices of G such that every pair of nodes in the subset are
connected by an edge. An independent set in a graph is a set of vertices such that no two of them
are connected by an edge.

A wvertex cover for a graph G is a set S of vertices such that every edge of G has at least one of
its endpoints in S (every edge of G is covered by 5).

An st-path in a graph G is a path from a specified vertex s to a specified vertex t of G. A
Hamiltonian st-path in G is an st-path that visits each vertex of G exactly once. A Hamiltonian
cycle is a cycle in a graph that visits each vertex exactly once.

Define

Clique = {(G,k) | graph G has a clique of size > k},

IS = {(G,k) | graph G has independent set of size > k},
VC = {(G, k) | graph G has vertex cover of size < k},
st-HamPath = {(G) | G has a Hamiltonian st-path},
HamCycle = {(G) | G has a Hamiltonian cycle}
All of these problems are NP-complete. We’ll give reductions:

3SAT <, CLIQUE <, IS <, VC.

Recall the problem 3SAT: Given a 3cnf formula ¢(z1,...,2,) (which is a conjunctions of
clauses, where each clause is an OR of 3 literals; each literal is a variable or the negation of a
variable), decide if ¢ is satisfiable.

Theorem 1. 3SAT <, CLIQUE

Proof. Given a 3cnf ¢(x1,...,2,), let m be the number of clauses in ¢. Define a graph G to be on
3m vertices, one triple of vertices for each clause of ¢. Also, imagine labeling the vertices in each
triple by the literals of the corresponding clause. Add edges between every pair of vertices of the
graph except

e nodes in the same triple (corresponding to the same clause), and



e nodes labeled by the complementary literals (e.g., z and ).

We claim that if ¢ is satisfiable, then G has a clique of size m. Indeed, pick one true literal from
each clause. The corresponding set of m vertices forms a clique in G' (because no complementary
literals are chosen, as we choose true literals only). For the other direction, if G has a clique of size
m, it must be the case that exactly one vertex from each triple/clause is in the clique. Moreover, no
conflicting literals can be in the clique. Therefore, it is possible to assign True to every literal /vertex
in the clique. But such an assignment will satisfy all clauses of ¢, so ¢ is satisfiable. O

For the other reductions, we rely on the following easy observations. Recall that the complement
G¢ of a graph G is the graph on the same set of vertices such that edges of G are non-edges of G¢
and, conversely, non-edges of G are edges of G°.

Lemma 1. Graph G has an clique of size k iff G¢ has an independent set of size k.
Lemma 2. Graph G has an independent set of size k iff G has a vertex cover of size n — k.

For CLIQUE <, IS: the reduction maps (G, k) to (G, k), where G is the complement of the
graph G (the graph on the same set of vertices as G but such that (u,v) is an edge of G iff (u,v)
is not an edge of (). Correctness of the reduction is by Lemma 1.

For IS <, VC': the reduction maps (G, k) to (G,n — k), where n = the number of vertices in
G. Correctness is by Lemma 2.

The textbook shows that st-HamPath is NP-complete. Using this, we’ll show that HamCycle
is also NP-complete, via the reduction st-HamPath <, HamCycle. The reduction maps a graph
G on n nodes to a graph G’ which is the same as G plus a new vertex a with two edges (s,a) and
(t,a). It is not hard to see that this is a correct reduction.

2 NP-completeness of SubsetSum

Recall SubsetSum: Given natural numbers ay, ..., ap, T, decide if there is a subset S C {1,...,n}
such that >, ga; =T.

Theorem 2. SubsetSum is NP-complete.

Proof. Clearly, SubsetSum is in NP. We will show that 3SAT <, SubsetSum.

The idea is to define a table whose rows will represent the numbers a;, in the decimal notation:
each position of the row holds a digit (between 0 and 9).

Given a 3-cnf on n variables and m clauses, we specify 2n “literal” rows (one row for each
literal), and 2m “clause” rows (two rows for each clause). There will be n+m columns in the table.
The first n columns correspond to the n variables z1, ..., z, (variable columns), and the remaining
m columns correspond to clauses ci, ..., ¢, (clause columns).

The row corresponding to variable x; has 1 in variable column 7, and 1 in clause column c¢; for
every clause j containing literal x;. The row corresponding to literal &; has 1 in variable column ¢,
and 1 in clause column ¢; for every clause j containing literal ;. For each clause j, we’ll have two
clause rows that have 1 in the clause column j, and zero everywhere else. All unspecified entries
are 0.

Finally, we define the target row T to be 1 in each variable column 4, 1 < ¢ < n, and 3 in each
clause column j, 1 < j < m.



We claim that the input 3-cnf is satisfiable iff the constructed instance of SubsetSum has a
solution subset S.

For one direction, suppose 3-cnf is satisfiable. Let a be a satisfying assignment for the 3-cnf.
Define S to consist of those literal rows that are true under assignment a, plus add to S 0, 1, or 2
clause rows for each clause ¢; depending on whether the assignment a makes true 3, 2, or 1 literal
in ¢;. Observe that the defined set S of rows will add up to have 1 in each variable column, and 3
in each clause column, as required.

For the opposite direction, suppose we have a subset S of rows that adds up to 1. The fact
that each variable column of T is 1 forces S to contain exactly one literal row for each variable x;
(either x; or &;). Thus, S encodes a legal truth assignment: we assign x; True if S contains row x;,
and False if S contains row ;.

We claim that this assignment is satisfying for each clause ¢;. Indeed, since S must add up to 3
in every clause column c;, we get that each clause column c; must contain at least one literal row
chosen in S (otherwise, we can’t get to the sum 3 in that column). But the latter means that c;
contains a literal that is assigned True by the assignment we extracted from the set S. Thus, each
clause contains at least one true literal, and so our 3-cnf is satisfiable.

Finally, it is easy to see that the described reduction is polytime. This concludes the proof. [J

3 Traveling Salesman Problem

Finally, define the Traveling Salesman Problem (TSP): given a complete graph on n vertices, an
assignment of positive integer weights to all edges, and an integer W, decide if there exists a
Hamiltonian cycle in G of weight at most W, where the weight of the cycle is the sum of the
weights of its edges.

We’ll show TSP is NP-complete, via the reduction HamCycle <, T'SP. The reduction maps
a graph G on n nodes to a complete graph on n nodes, with the weights 1 for all edges of G, and
weights n + 1 for all non-edges of G. We also set W = n.

Observe that if G has a Hamiltonian cycle, then this cycle is a tour of weight n in our TSP
instance. Conversely, if there is a tour of weight at most n, that tour can’t use any non-edges of
G (which would make its total weight at least n + 1). Thus, the original graph G must have a
Hamiltonian cycle.



