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Abstract: In this study, we examine event durations when study units may be

spatially correlated and the time origins of the events are missing. We develop

regression models based on the partly observed durations with the aid of available

longitudinal information. We use the first-hitting-time model to link the data of

event durations and the associated longitudinal measures with shared random ef-

fects. We present procedures for estimating the model parameters and an induced

estimator of the conditional distribution of the event duration. We apply the EM

algorithm and Monte Carlo methods to compute the proposed estimators. We es-

tablish the consistency and asymptotic normality of the estimators, and present

their variance estimation. We demonstrate the proposed approach using a collec-

tion of wildfire records from Alberta, Canada. We also examine its performance

numerically, and compare it with that of two competitors using simulation.

Key words and phrases: Asymptomatic event, EM algorithm and Monte Carlo

method, first hitting time, joint modelling, mixed effects model.

1. Introduction

Many research studies are primarily interested in relating an event dura-

tion with possible covariates for purposes of inference and/or prediction. We are

particularly interested in regressions based on event-duration observations with

missing time origins. Such observations arise in infectious disease research, wild-

fire management, and other areas. For example, many studies are concerned with

the incubation period of coronavirus disease 2019 (COVID-19); see, for example,

Qin et al. (2020). The incubation period is defined as the duration between the

infection time and the onset time of symptoms. However, the exact infection time

is usually unknown, and so the time based on the individual’s recollection is used

as a proxy of the true infection time. As another example, the interval from the

start time of a wildfire to when suppression activities (the so-called time of ini-
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tial attack) begin is sometimes used as a gauge of fire management effectiveness,

and provides important information for predicting the development of the fire.

Once a fire is detected and reported, resources such as a fire crew or an airtanker

are allocated to suppress the blaze (e.g., Martell (2007); Morin (2014)). Because

fires are not always detectable until they reach a certain size, the start time of a

wildfire is often unknown; instead, the time of report is often used as a surrogate

when assessing the time to the initial attack. Although various regression meth-

ods have been developed to evaluate the association of a single variable with its

covariates, most approaches are not directly applicable to such observations.

Xiong, Braun and Hu (2021) propose an approach for tackling the problem

of missing time origins using longitudinal measures of an associated quantity.

The well-known empirical distribution function of the event duration based on

independent and identically distributed (i.i.d.) observations is adapted as an es-

timator of the marginal distribution, using partly observed durations caused by

missing time origins. In the context of the wildfire management example, the

duration of interest, which we refer to as the ISA duration, is the interval be-

tween the time when a wildfire starts and the initial attack time. Xiong, Braun

and Hu (2021) apply the procedure to estimate the distribution of the ISA dura-

tion in each subregion. The estimated distributions appeared to vary regionally,

and the ISA durations depend on weather variables, such as relative humidity,

temperature, and wind speed. We expect fires in close proximity to burn similar

types of vegetation, in terms of both the understory and the canopy. Topog-

raphy also plays a role, because fires tend to burn faster up a slope. Thus, the

ISA durations are potentially spatially correlated. These considerations have par-

tially motivated the research presented in this paper. We are primarily concerned

with regression analyses in situations in which the response variable is an event

duration and the available observations have missing time origins.

When longitudinal data are available with time-to-event data, a joint model

is often considered. A typical model setting is a linear or nonlinear mixed-effects

model for the longitudinal measures, and a semiparametric or parametric regres-

sion model for the time-to-event data, with the two models sharing some random

effects or variables. Estimation methods for such joint models have received much

attention (e.g., Wulfsohn and Tsiatis (1997); Tseng, Hsieh and Wang (2005); Wu,

Liu and Hu (2010)); detailed reviews of recent works can be found in Furgal, Sen

and Taylor (2019) and Papageorgiou et al. (2019). However, no existing methods

can be applied when the time origin is missing for both the event process and the

longitudinal process.

We assume that the ISA duration follows a semiparametric accelerated failure
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time (AFT) regression model. This accounts for the potential spatial correlation

of the duration times, and adjusts for the missing time origins using available

longitudinal data. We specify the regression function in the AFT model as a linear

combination of some or all of the predictors, together with nonparametric terms

for the predictors that are nonlinearly related to the response. We follow Xiong,

Braun and Hu (2021) to overcome the challenge posed by the missing time origin

by employing associated longitudinal measures and specifying the longitudinal

process as a Brownian motion with random drift. Longitudinal measures provide

us with information about the missing time origin and assist with the inference

on the unknown duration. This approach also allows us to link the longitudinal

process and the regression model through shared random effects to accommodate

the spatial correlations between individuals. Our approach may be viewed as

an extension of the Buckley–James estimator (Buckley and James (1979)), which

adapts the classical least squares estimation (LSE) to right-censored observations

on the response. A similar effort is available in the interesting work of Ning, Qin

and Shen (2011).

The methodology of threshold regression (TR) provides an alternative to

the joint modeling of longitudinal and time-to-event data. In a TR, the event

durations are interpreted as the first hitting times (FHTs) of a boundary or

threshold state crossed by sample paths of a longitudinal process (Lee and Whit-

more (2006)). For example, in HIV studies, CD4 counts are commonly used as

markers for the health status of HIV-infected individuals, and the time at which

AIDS develops can be viewed as the time when the CD4 process first reaches

200 (Doksum and Normand (1995)). As another example, Xiong, Braun and Hu

(2021) estimate the distribution of the ISA duration by defining the FHT as the

reporting delay, which is the time taken for the burnt area to reach the reported

size.

Spatial correlation adds another layer of complexity to the analysis. Frailty

models are commonly employed with spatially correlated time-to-event data

(e.g., Li and Ryan (2002); Banerjee, Wall and Carlin (2003); Motarjem, Mo-

hammadzadeh and Abyar (2020)). As in frailty models, we embed the spatial

correlation in the random effects.

To facilitate the development of the proposed estimation procedure, we be-

gin by assuming independence between individuals. We estimate the parameters

of the longitudinal process based on the likelihood, and estimate the regression

function in the AFT model using an adaptation of the LSE integrated with kernel

smoothing. We also propose an estimator of the conditional distribution of the

duration, given covariates, in the presence of a missing time origin. We then ex-
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tend the procedure to spatially correlated study units. The approach is illustrated

using a data set of wildfires in Alberta, Canada.

The rest of the paper is organized as follows. In Section 2, we describe

the regression model of the duration and the stochastic model for longitudinal

measures of the area burned over time. In Section 3, we present the estimation

procedure for i.i.d. observations and its extension to spatial correlation, and derive

their asymptotic properties. In Section 4, we apply our approach by analyzing

wildfire records, and Section 5 presents simulation studies that examine the finite-

sample performance of the proposed approach. Section 6 concludes the paper.

2. Notation and Modeling

2.1. Notation

We follow the notation introduced in Xiong, Braun and Hu (2021). Consider

a wildfire with its start time, report time, and initial attack time denoted by

TS , TR, and TF , respectively. The aforementioned ISA duration is then L =

TF − TS . Let A(a) be the burnt area of a fire at the elapsed time a since the

start: A(0) = 0 and A(S) = B are the respective burnt areas at the start time

and report time where S = TR − TS represents the fire’s elapsed time till the

report time. Note that L = S + L∗, with L∗ = TF − TR. While L∗ may be

observed, the reporting delay S is usually unavailable, and thus so is L. Further,

let A(L)−A(S) = D be the increased burnt area over the interval (TR, TF ).

We denote the location where a fire is detected by ω = (ω1, ω2)′, and a

vector of environmental and spatial factors (e.g., wind speed, fuel type, and

region) associated with the fire at the report time by X. Figure 1 presents a

progression description of two hypothetical wildfires using the above notation.

The solid curve in each plot represents the burnt area over time of a fire that is

subject to suppression after detection.

Suppose that a collection of records on i = 1, . . . , n wildfires is available,

denoted by

O =

n⋃⋃⋃
i=1

Oi =
{

(TRi, TFi, Bi, Di,Xi,ωi) : i = 1, 2, . . . , n
}
. (2.1)

Our primary statistical interest is in estimating the conditional distribution of

the ISA duration L given the covariate vector X, P (L ≤ t|X = x), using the

available data. The estimated P (L ≤ t|X = x) may reveal how the ISA duration

L = S + L∗ is associated with the covariate vector X, and can be applied for
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Fire 1 Fire 2

Figure 1. Hypothetical description of the progression through fire management phases
for two fires with different covariate values

prediction.

Note that the available data O =
⋃⋃⋃n
i=1Oi in (2.1) include observations on

L∗ = TF −TR rather than on L. The burnt area records may provide information

about the reporting delay S, and thus the ISA duration L. In the following

subsections, we present our model of the conditional distribution P (L ≤ t|X = x),

along with component models that link the burnt areas to the reporting delay.

2.2. Longitudinal model for repeated measures

We first use a time-indexed stochastic process Ai(·) to model the longitudinal

measures associated with each study unit i. In the wildfire application, these are

the burnt areas of fire i over time. We assume that, conditional on the covariates

Xi and random effects (δ1i, δ2i), the area burned by time u follows the mixed-

effect model

Ai(u) = νiu+ σWi(u), i = 1, 2, . . . , n, (2.2)

where νi = ν exp{δ1i + X′iγ +X∗i δ2i} with constants ν > 0 and σ > 0, and Wi(·)
is the standard Wiener process. Note that we model only the burnt areas before

the initial attack in the wildfire application. As presented in Figure 1, the dashed

curve in each plot shows the expected trajectory of the fire’s burnt area if it had

continued to burn without any suppression or intervention. Prior to the initial

attack, the dashed curve coincides with the solid curve, and the growth of the

fire’s burnt areas can be approximated, as assumed in (2.2).
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Here, δ1i with ν yields the random intercept term log ν + δ1i of log νi, X
∗
i

is one of the components of the covariate vector Xi, and δ2i is its (random)

coefficient. This model allows the drifts νi to accommodate individual-specific

covariate effects. We assume that δ1i and δ2i are independent of each other and

independent of Wi(·), for i = 1, . . . , n. Furthermore, δ1 = (δ11, . . . , δ1n)′ and

δ2 = (δ21, . . . , δ2n)′ are assumed to follow the distributions MVN(0,Σ1) and

MVN(0,Σ2), respectively. We consider the following two specifications for the

covariance matrices Σ1 and Σ2:

• Independent Study Units. Let Σ1 = ψ2
1In×n and Σ2 = ψ2

2In×n, where

In×n is the identity matrix of size n. Then, δ1i ∼ N(0, ψ2
1) and δ2i ∼

N(0, ψ2
2), for i = 1, 2, . . . , n. Denote the density functions by φ1(·;ψ1) and

φ2(·;ψ2), respectively.

• Spatially Correlated Study Units. Define the (i, j) element of Σ1 and

Σ2 as

(Σk)ij = ψ2
k exp

(
−||ωi− ωj ||

ρk

)
for k = 1, 2, (2.3)

where || · || is the Euclidean norm. In the rest of this paper, the covariance

matrices Σk are denoted by Σ(ψk, ρk), for k = 1, 2. The spatial correla-

tion is assumed to decay as the geographic distance increases, and ρk = 0

corresponds to the situation where the δki are independent with variance

ψk.

2.3. Regression models for event duration

We consider the following regression model of the transformed ISA durations

Yi = logLi:

Yi = h(Xi, δ1i, δ2i) + εi, (2.4)

where the random errors εi are independent of the covariates Xi and the random

effects (δ1i, δ2i), and follow an unspecified distribution function Fε(·), with E[εi] =

0. The random intercept δ1i and the random slope δ2i are shared terms in the

longitudinal model (2.2). When study units are spatially correlated, the vector

δk = (δk1, . . . , δkn)′, for k = 1, 2, follow a multivariate normal distribution, with

the covariance matrix specified in (2.3). When study units are assumed to be

independent, δ1i
i.i.d.∼ N(0, ψ2

1) and δ2i
i.i.d.∼ N(0, ψ2

2), for i = 1, 2, . . . , n. Then,

model (2.4) reduces to Yi = h(Xi) + εi, for i = 1, 2, . . . , n.

By specifying h(·) as a linear function or a partially linear function, we have

the following special cases of model (2.4) with independent and correlated study

units:
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• Special cases of model (2.4) for independent study units.

LRM-Indpt: Yi = β0 + X′iβ1 + εi, (2.5)

PLRM-Indpt: Yi = X†i
′
β† + h0(X‡i ) + εi, (2.6)

where LRM and PLRM stand for linear regression model and partially linear

regression model, respectively.

• Special cases of model (2.4) for correlated study units.

LRM-Corrltd: Yi = β0 + X′iβ1 + δ1iβ2 + δ2iβ3 + εi, (2.7)

PLRM-Corrltd: Yi = β0 + X†i
′
β†1 + δ1iβ

†
2 + δ2iβ

†
3 + h0(X‡i ) + εi, (2.8)

where X†i and X‡i are subsets of the covariates Xi.

2.4. Induced distribution of first hitting time

Under the Wiener process model (2.2), the reporting delay Si may be viewed

as the FHT, that is, the time when the process Ai(·) first reaches the threshold

Bi, which is the area burned at the report time: Si = inf{u : u > 0, Ai(u) > Bi},
which is the same as sup{u : u > 0, Ai(u) < Bi}, almost surely. The FHT Si
follows an inverse Gaussian (IG) distribution (e.g., Chhikara and Folks (1989))

with the cumulative distribution function G(u|Bi,Xi;µi, λi):

Φ

(√
λi
u

[
u

µi
− 1

])
+ exp

(
2λi
µi

)
Φ

(
−
√
λi
u

[
u

µi
+ 1

])
, (2.9)

where µi = Bi/(νe
X′iγ+X∗i δ2i+δ1i), λi = B2

i /σ
2, and Φ(·) is the cumulative distri-

bution function of the standard normal distribution. We denote the cumulative

distribution of Si by G(u|Bi,Xi, δ1i, δ2i, ν, σ,γ).

On the other hand, the unobserved reporting delay Si is a portion of the

event duration Li, the response variable in the desired regression analysis. By

using the related longitudinal measures and the induced distribution of the first

hitting time, we can overcome the inherent difficulty of the unobserved duration

in the regression analysis. Moreover, (δ1i, δ2i), the shared random effects/frailty

variables, are used to connect the event duration and longitudinal measures and

to capture the spatial correlations between individuals.
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3. Estimation in the Presence of Missing Time Origins

In this section, we estimate the conditional distribution of the event duration

F (t|x) = P (L ≤ t|x) when the study units are independent or spatially corre-

lated. We must estimate the regression function h(·) and the distribution of the

random error. We start with the estimation procedure with independent units,

and then adapt the procedure for spatially correlated units.

3.1. Estimation with independent study units

The following two assumptions are made throughout this section:

Assumption 1. {(TSi, TRi, TFi, Bi, Di,Xi,ωi) : i = 1, 2, . . . , n} is a collection of

i.i.d. realizations of
(
TS , TR, TF , B,D,X,ω

)
.

Assumption 2. For i = 1, 2, . . . , n, L∗i = TFi−TRi = Li−Si and Si = TRi−TSi
are conditionally independent given (δ1i, δ2i) and Xi. In addition, Bi and (δ1i, δ2i)

are conditionally independent given Xi.

In the wildfire application, the conditional independence assumption for Si
and L∗i in Assumption 2 is plausible, because a fire agency often assesses a re-

ported fire in terms of its spread rate (νi), and then plans the initial attack

accordingly. Because νi is specified depending on Xi and (δ1i, δ2i), L
∗
i is likely

associated with Si solely through Xi and (δ1i, δ2i).

3.1.1. Proposed estimator for F (·|x)

From the regression models LRM-Indpt (2.5) and PLRM-Indpt (2.6), P (L ≤
t|X = x) = Fε

(
log(t)− h(x)

)
. When all the durations Li are observed, Fε(·) can

be estimated using the empirical function Fε,n(ζ) = n−1
∑n

i=1 I(εi ≤ ζ), and can

be written as n−1
∑n

i=1 I(Si ≤ eζ+h(Xi) − L∗i ).
Note that E{I(εi ≤ ζ)|Oi} = P (εi ≤ ζ|Oi) = P (Si ≤ eζ+h(Xi) − L∗i |Oi).

With model (2.2) and Assumption 2, P (Si ≤ eζ+h(Xi) − L∗i |Oi) is∫∫
G
(
eζ+h(Xi) − L∗i |Bi,Xi, δ1, δ2; ν, σ,γ

)
φ1(δ1|Oi;θ)φ2(δ2|Oi;θ)dδ1dδ2, (3.1)

where θ = (ν, σ,γ, ψ1, ψ2)′, and φ1(·|Oi;θ) and φ2(·|Oi;θ) are the conditional

distributions of δ1 and δ2, respectively, given the observed data Oi. If θ and

h(·) are known, we can estimate Fε(ζ) by F̃ε,n
(
ζ;θ, h(·)

)
= n−1

∑n
i=1 P (Si ≤

eζ+h(Xi) − L∗i |Oi). Thus, P (L ≤ t|X = x) = Fε
(

log t − h(x)
)

can be estimated

by F̃n
(
t|x;θ, h(·)

)
= F̃ε,n

(
log t− h(x);θ, h(·)

)
. After substituting the estimators

for θ and h(·), we obtain the following estimator for F (t|x):
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F̂n(t|x) = F̃n
(
t|x; θ̂, ĥ(·)

)
= F̃ε,n

(
log t− h(x); θ̂, ĥ(·)

)
. (3.2)

We present the procedure for estimating θ and h(·) in the next subsection.

3.1.2. Estimation procedure for θ and h(·)
We now present a two-stage procedure for estimating θ and h(·) under the

independence assumption.

Stage I. Estimation of θ. Let θ = (ν, σ,γ, ψ1, ψ2). Conditional on the covari-

ates X, the log-likelihood function with the observed data (2.1) is

ln(θ) =

n∑
i=1

log

∫∫∫ {
Lobs,i|S,δ1,δ2,Xi

}
d[S, δ1, δ2|Xi], (3.3)

where Lobs,i|S,δ1,δ2,Xi
= [Di|Bi, L∗i , δ1, δ2,Xi][Bi|S, δ1, δ2,Xi].

Let the “full data set” be the observed data (2.1), augmented by S = {Si, i =

1, 2, . . . , n}, δ1 = {δ1i, i = 1, 2, . . . , n}, and δ2 = {δ2i, i = 1, 2, . . . , n}. The log-

likelihood function conditional on the covariates X with the full data is given

by lF (θ|Observed-data, S, δ1, δ2) = lF1
(ν, σ,γ|S, δ1, δ2) + lF2

(θ;S, δ1, δ2), where

lF1
(ν, σ,γ|S, δ1, δ2) is

−n log σ2 −
n∑
i=1

(
Di − νeX

′
iγ+X∗i δ2i+δ1iL∗i

)2
2σ2L∗i

−
n∑
i=1

(
Bi − νeX

′
iγ+X∗i δ2i+δ1iSi

)2
2σ2Si

,

and

lF2
(θ;S, δ1, δ2) =

n∑
i=1

log[Si|δ1i, δ2i,Xi] +

n∑
i=1

log φ1(δ1i;ψ1) +

n∑
i=1

log φ2(δ2i;ψ2).

The following Monte Carlo EM algorithm is used to compute the MLE θ̂n.

Because [Si|δ1i, δ2i,Xi] in lF2
(θ;S, δ1, δ2) does not have much additional infor-

mation on the parameters ν, σ and γ, the objective function lF (θ|Observed-data,

S, δ1, δ2) can be replaced by lF1
(ν, σ,γ|S, δ1, δ2) + log φ1(ψ1; δ1) + log φ2(ψ2; δ2).

This maximization procedure leads to θ̃n, a close approximation to the MLE θ̂n.

Therefore, the M-step can be implemented by solving
∑J

j=1(∂lF1
/∂(ν, σ,γ))(ν, σ,

γ|S(j), δ1
(j), δ2

(j))/J = 0,
∑J

j=1

∑n
i=1(∂ log φ1/∂ψ1)(δ

(j)
1i ;ψ1)/J = 0 and

∑J
j=1∑n

i=1(∂ log φ2/∂ψ2)(δ
(j)
2i ;ψ2)/J = 0. This algorithm yields in θ̃n, a close approx-

imation to the MLE θ̂n.
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Algorithm 1

1. Assume that we have the estimate θ(m) at the mth iteration (m ≥ 0), with θ(0) for
the initial value.

2. repeat
2.1. E-step. Approximate Q(θ,θ(m)) = E{lF (θ|Observed-data, S, δ1, δ2)|O;θ(m)} us-

ing the sample mean (1/J)
∑J
j=1 lF (θ|Observed-data, S(j), δ1

(j), δ2
(j)), which is given

by

1

J

J∑
j=1

lF1
(ν, σ,γ|S(j), δ1

(j), δ2
(j)) +

1

J

J∑
j=1

lF2
(θ;S(j), δ1

(j), δ2
(j)), (3.4)

for j = 1, . . . , J , and (S(j), δ1
(j), δ2

(j)) is generated from the conditional distribution

given the observed data [S, δ1, δ2|O;θ(m)]. This distribution can also be written as

[S|δ1, δ2,O;θ(m)][δ1, δ2|O;θ(m)].

• E-step (i). Generate (δ
(j)
1i , δ

(j)
2i )′ from φ

(m+1)
i (δ1, δ2|Oi;θ(m)), which is the condi-

tional distribution of (δ1, δ2), given the observed data with the current parameter
estimate θ(m),

Lobs,i|δ1,δ2,Xi
(ν(m), σ(m),γ(m); δ1, δ2)φ1(δ1;ψ

(m)
1 )φ2(δ2;ψ

(m)
2 )∫∫

Lobs,i|δ1,δ2,Xi
(ν(m), σ(m),γ(m); δ)φ1(δ1;ψ

(m)
1 )φ2(δ2;ψ

(m)
2 )dδ1dδ2

,

with Lobs,i|δ1,δ2,Xi
=
∫
{Lobs,i|S,δ1,δ2,Xi

}d[S|δ1, δ2,Xi]. The Metropolis–Hastings
algorithm (Hastings (1970); Metropolis et al. (1953)) can be applied to

generate (δ
(j)
1i , δ

(j)
2i ) with the proposed distribution being (δ

(new)
1i , δ

(new)
2i )′ ∼

MVN((δ
(old)
1i , δ

(old)
2i )′, 0.52I2×2).

• E-step (ii). Under Assumption 1, we can generate S
(j)
i , the ith component of S(j),

independently from the conditional distribution of Si, given the observed data

with θ(m) and δ
(j)
1i , δ

(j)
2i . This distribution, [Si|δ1i, δ2i,Oi;θ(m)], is in fact the IG

distribution given in (2.9), with ν = ν(m), σ = σ(m),γ = γ(m).

2.2. M-step. Obtain the updated θ(m+1) by maximizing (3.4).
3. until {θ(m) : m = 1, 2, . . .} converges.

Stage II. Estimation of h(·). Given that Model LRM-Indpt (2.5) uses a lin-

ear function of the covariates to approximate h(·), the estimator of h(·) only

requires an estimation of the parameter β = (β0,β1). If all the durations Li
were observed, a consistent estimator for β would be the least squares estimator

β̂LSE = (X′X)−1X′Y, where Y = (logL1, . . . , logLn)′ and X is a matrix with

the ith row being Xi = (1,X′i)
′. Although Li is not available in the data, we

have Li = Si + L∗i , with L∗i observed, and the distribution of Si conditional on

the observed data being the IG distribution. We then consider the estimator

β̃(θ) = E[β̂LSE |O;θ]. We replace θ with the estimator θ̂n from Algorithm 1 to

obtain the estimator β̃(θ̂n) = E[β̂LSE |O; θ̂n], denoted as β̂n. Algorithm 2, based
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Algorithm 2

Assume that we have θ̂n = (ν̂n, σ̂n, γ̂n, ψ̂1n, ψ̂2n) obtained from Algorithm 1.

Step 1. Generate (δ
(j)
1i , δ

(j)
2i ) from φi(δ1, δ2|Oi; θ̂n), for i = 1, 2, . . . , n and j = 1, 2, . . . , J∗.

Step 2. Generate S̃
(j)
i from the IG distribution with µi = Bi/(ν̂ne

X′iγ̂n+X
∗
i δ

(j)
2i +δ

(j)
1i ),

λi = B2
i /σ̂

2
n.

Step 3. Obtain Ỹ(j) =
(

log(L∗1 + S̃
(j)
1 ), . . . , log(L∗n + S̃

(j)
n )
)′

, for j = 1, . . . , J∗, and

compute the estimator E[β̂LSE |O; θ̂n] using β̂n,J∗ = (X′X)−1X′(
∑J∗

j=1 Ỹ(j)
/
J∗).

on the Monte Carlo method, is used to compute β̂n. The output of this algo-

rithm, β̂n,J∗ , is a close approximation to the estimator β̂n when J∗ is sufficiently

large.

Under model PLRM-Indpt (2.6), estimation of h(·) requires estimating both

the parametric component, the parameter β†, and the nonparametric function

h0(·). When all the durations are available, we can follow Speckman (1988)

to derive estimators of the parametric and nonparametric components using

an LSE with kernel smoothing: β̂†speck = (X̆†
′

d X̆
†
d)−1X̆†dY̆d, and ĥ0,speck(x

‡) =∑n
i=1Kd(x‡ −X‡i )(Yi −X†

′

i β̂
†
speck)/

∑n
i=1Kd(x‡ −X‡i ), where X† is a matrix with

the ith row being X†
′

i , X̆†d = (I − Hd)X†, and Y̆d = (I − Hd)Y. Here, Kd(·)
is a kernel function with bandwidth d, and Hd is a smoothing matrix with

the (i, j)th element being Kd(X‡i −X‡j)/
∑n

j=1Kd(X‡i −X‡j). The fitted values

Ŷ = (Ŷ1, . . . , Ŷn)′ can be obtained by Ŷ = (Hd + X̆†d(X̆†
′

d X̆
†
d)−1X̆†

′

d (I −Hd))Y.

Let Ad be the smoothing matrix calculated with the bandwidth d and Ad =(
Hd+X̆†d(X̆†

′

d X̆
†
d)−1X̆†

′

d (I−Hd)
)
. We use the generalized cross-validation (GCV)

criterion (e.g., Loader (1999)) to select the bandwidth. The GCV function is

GCV (d) =
||(I−Ad)Y||2

[1− n−1trace(Ad)]2
. (3.5)

Following the idea of Algorithm 2, we can also consider estimators β̂†n = E[β̂†speck|
O; θ̂n] and ĥ0n(·) = E[ĥ0,speck(·)|O; θ̂n] when the duration is not observed. We

can then adapt Step 3 in Algorithm 2 to the PLRM-Indpt (2.6). This yields the

following algorithm, Algorithm 3. When J∗ is sufficiently large, the estimators

β̂†n,J∗ and ĥ0n,J∗ are close approximations to β̂†n and ĥ0n(·).
Alternatively, we can estimate the nonparametric function h0(·) using splines.

For example, to estimate h0(x‡) using a natural cubic spline with M knots, we

may use h0(x‡) =
∑M

j=1 αjbj(x
‡). The associated spline coefficients α1, . . . , αM

can then be estimated together with β† in the regression function by the LSE.

This yields an estimator of F (t|x) if we substitute the obtained estimators θ̂n and
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Algorithm 3

Assume that we have θ̂n obtained from Algorithm 1.

Steps 1 and 2. Generate (δ
(j)
1i , δ

(j)
2i ) from φi(δ1, δ2|Oi; θ̂n), for i = 1, 2, . . . , n and j =

1, 2, . . . , J∗.

Step 3. For j = 1, 2, . . . , J∗, obtain the vector Ỹ(j) with the ith element being Ỹ
(j)
i =

log(L∗i + S̃
(j)
i ).

• Step 3(i). For j = 1, . . . , J∗, compute the bandwidth d(j) with {Ỹ (j)
i , i = 1, . . . , n}

using the GCV function in (3.5). Compute the vector ˘̃Y
(j)

d(j) = (I −Hd(j))Ỹ(j) ,

where the smoothing matrix Hd(j) is obtained using the selected bandwidth d(j).

• Step 3(ii). The estimator β̂†n can be approximated by β̂†n,J∗ =
∑J∗

j=1

((X̆†
′

d(j)X̆
†
d(j))

−1X̆†
′

d(j)

˘̃Y(j))/J∗, and ĥ0n(·) is approximated by ĥ0n,J∗(x
‡) =

(1/J∗)
∑J∗

j=1

∑n
i=1Kd(j)(x‡ −X‡i )(Ỹ

(j)
i −X†

′

i β̂
†
n,J∗)/

∑n
i=1Kd(j)(x‡ −X‡i ).

ĥ(·) into F̃n(t|x;θ, h(·)). The estimator involves the double integral presented in

(3.1). We can compute this numerically as
∑J∗

j=1G(eζ+h(Xi)−L∗i |Bi,Xi, δ
(j)
1i , δ

(j)
2i ;

ν, σ,γ)/J∗. Here, (δ
(j)
1i , δ

(j)
2i ) are obtained from Step 1 of Algorithms 2 and 3, for

i = 1, . . . , n and j = 1, . . . , J∗.

3.1.3. Asymptotic properties

This section studies the asymptotic properties of the proposed estimators

and presents a variance estimator. The derivation of the asymptotic properties

is outlined in Section 1 of the Supplementary Material.

We use θ0 and β0 to represent the true values of the parameters θ and β,

respectively, under the model LRM-Indpt (2.5). The proposed estimators θ̂n, β̂n
and the estimator for the conditional probability using these estimators, F̂n(t|x),

have the following asymptotic properties.

Theorem 1. Under Assumptions 1–2 and conditions (C1)–(C7) in the Appendix,

θ̂n and β̂n have the following properties:

(i) Strong Consistency: ||θ̂n−θ0|| → 0, ||β̂n−β0|| → 0 almost surely as n→∞.

(ii) Asymptotic Normality:
√
n(θ̂n − θ0)

d→ N(0, AV (θ0)) and
√
n(β̂n − β0)

d→
N(0, AV (β0)), where the asymptotic variances are given by

AV (θ0) = Π−1(θ0)Σ(θ0)Π−1(θ0), and

AV (β0) = E−1[XiX
′
i]Var

(
Xi
(
E[logLi|Oi;θ0]− X′iβ0

))
E−1[XiX

′
i], (3.6)

with Π(θ) = E[−∂loi(θ)
/
∂θ], Σ(θ) = Var(∂loi(θ)

/
∂θ).
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Note that the robust sandwich variance estimator of θ̂n is V (θ̂n), where

V (θ) =

(
−∂

2ln(θ)

∂θ2

)−1([
∂ln(θ)

∂θ

] [
∂ln(θ)

∂θ

]′)(
−∂

2ln(θ)

∂θ2

)−1

.

The variance estimator of β̂n is

V (β̂n) =

(
n∑
i=1

XiX
′
i

)−1

Var

(
n∑
i=1

Xi(E[logLi|Oi; θ̂n]− X′iβ̂n)

)(
n∑
i=1

XiX
′
i

)−1

.

As presented in Algorithm 2, we impute possible values for the duration by gen-

erating the reporting delay Si, for i = 1, . . . , n, from the IG distribution using

the estimated parameters from Algorithm 1 and generating δ1i and δ2i from the

conditional distribution. Each imputed data set yields a least squares estimator

for β. Following Goetghebeur and Ryan (2000), we can estimate the variance of

β̂n using a weighted sum of the empirical variance of the imputation estimates

and the mean of the imputation variances. The weights are 1 + 1/J∗ and 1,

respectively, where J∗ is the number of imputations used in Algorithm 2 and

Algorithm 3. The estimated variance of β̂n is(
1 +

1

J∗

)
1

J∗ − 1

J∗∑
j=1

(β̂(j) − β̂n)2 +
1

J∗

J∗∑
j=1

V̂ar(β̂(j)), (3.7)

where β̂(j) = (X′X)−1X′Ỹ(j) is the least squares estimator, and V̂ar(β̂(j)) is the

estimated variance of β̂(j) with the jth imputed data set. In our algorithm, we

set J∗ = 200.

Further, the proposed estimator F̂n(t|x) = F̃ε,n(log t − x′β; θ̂n, β̂n) has the

following asymptotic property.

Theorem 2. Under Assumptions 1–2 and conditions (C1)–(C7) for the log-

likelihood function in (3.3), F̂n(t|x) has the following properties, with fixed x:

(i) Strong Consistency: supt∈[0,τ ] |F̂n(t|x)− F (t|x)| a.s.→ 0 as n→∞.

(ii) Weak Convergence: For t ∈ [0, τ ], as n → ∞,
√
n(F̂n(t|x) − F (t|x)) con-

verges weakly in `∞([0, τ ]) to a tight, mean-zero Gaussian process G, with

covariance Cov(G(t|x),G(s|x)) given by
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E
{
M(t, L∗i , Bi,Xi; x,θ0, β0)M(s, L∗i , Bi,Xi; x,θ0, β0)

}
−F (t|x)F (s|x) t 6= s,

E
{
M(t, L∗i , Bi,Xi; x,θ0, β0)2

}
− F 2(t|x)

+Eθ0,β0

[
∂M(t,L∗i ,Bi,Xi;x,θ,β)

∂θ

]′
AV
(
θ0

)
Eθ0,β0

[
∂M(t,L∗i ,Bi,Xi;x,θ,β)

∂θ

]
+Eθ0,β0

[
∂M(t,L∗i ,Bi,Xi;x,θ,β)

∂β

]′
AV
(
β0

)
Eθ0,β0

[
∂M(t,L∗i ,Bi,Xi;x,θ,β)

∂β

]
t = s,

(3.8)

where M(t, L∗i , Bi,Xi; x,θ, β) is∫∫
G
(
te−x

′β1+X′iβ1 − L∗i |Bi,Xi, δ1, δ2; ν, σ,γ
)
φ1(δ1|Oi;θ)φ2(δ2|Oi;θ)dδ1dδ2.

Note that E{M(t, L∗i , Bi,Xi; x,θ0, β0)2} can be approximated by the average∑n
i=1[
∑J∗

j=1G(te−xβ+Xiβ−L∗i |Bi,Xi, δ
(j)
1i , δ

(j)
2i ; ν̂n, σ̂n, γ̂n)

/
J∗]2

/
n, with (δ

(j)
1i , δ

(j)
2i )

obtained from Step 1 of Algorithm 2 for j = 1, . . . , J∗. This strategy can be used

to approximate Eθ0,β0
[∂M(t, L∗i , Bi,Xi; x,θ, β)

/
∂θ] and Eθ0,β0

[∂M(t, L∗i , Bi,Xi;

x,θ, β)
/
∂β].

The proposed estimator of β† in the PLRM-Indpt (2.6) with kernel smoothing

has the following asymptotic properties.

Theorem 3. Under Assumptions 1–2 and conditions (C8)–(C10) in the Ap-

pendix, β̂†n has the following properties:

(i) Strong Consistency: ||β̂†n − β†0|| → 0 almost surely as n→∞.

(ii) Asymptotic Normality:
√
n(β̂†n−β†0)

d→ N(0, AV (β†
0)), where the asymptotic

variances is given by

AV (β†0) = σ2
εΩ
−1ΞΩ−1, (3.9)

with Ω=(X̆†′X̆†)−1, Ξ= X̆†′(I−Hd)(I−Hd)′X̆†, and σ2
ε = Var(E[logLi|Oi]

−X†iβ
† − h0(X‡i )).

Using Algorithm 3, we can also estimate the variance of β̂†n using equation

(3.7). Here, β̂(j) = (X̆†
′

d(j)X̆†d(j))
−1X̆†

′

d(j)

˘̃Y(j), V̂ar(β̂(j)) = σ̃(j)
ε
2
Ω−1ΞΩ−1, and

σ̃(j)
ε
2

= Var(Ỹ
(j)
i −X†i β̂

(j) − h0(X‡i )).

3.2. Estimation with spatially correlated study units

The estimation procedures (Section 3.1) for both the conditional distribution

and the regression parameters can be extended to accommodate spatial correla-
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tion in the data. In addition to Assumption 2 given in Section 3.1, we make the

following assumption throughout this section:

Assumption 3. Let X = (X1, . . . ,Xn)′. Conditional on (δ1, δ2,X ), assume

that (TRi, TFi, Bi, Di) is independent of (TRj , TFj , Bj , Dj), for i, j = 1, . . . , n and

i 6= j.

Assumption 3 implies that realizations are independent, conditional on the

covariates and the random effects. This is plausible, because we use corre-

lated random effects to accommodate the spatial correlation. From model (2.4),

the conditional distribution function F (t|x) = P (Li ≤ t|Xi) can be written

as
∫∫

Fε

(
log t −

(
h(x, δ1, δ2)

))
φ1(δ1;ψ1)φ2(δ2;ψ2)dδ1dδ2. Here, φ1(·;ψ1) and

φ2(·;ψ2) are density functions of the marginal distributions of δ1i and δ2i, respec-

tively, for i = 1, . . . , n, that is, the density functions for N(0, ψ2
1) and N(0, ψ2

2),

respectively.

We employ the techniques of Section 3.1.1 and estimate Fε(ζ) by F̃ε,n(ζ;θ,

h(·)) = n−1
∑n

i=1 P (Si ≤ eζ+h(Xi,δ1,δ2) − L∗i |Oi), with P (Si ≤ eζ+h(Xi,δ1,δ2) −
L∗i |Oi) being

∫∫
G(eζ+h(Xi,δ1,δ2)−L∗i |Bi,Xi, δ1, δ2; ν, σ,γ)φ1(δ1|Oi;θ)φ2(δ2|Oi;θ)

dδ1dδ2, with θ = (ν, σ,γ, ψ1, ρ1, ψ2, ρ2) and h(·) specified in LRM-Corrltd (2.7)

and PLRM-Corrltd (2.8). This estimator F̃ε,n(·;θ, h(·)) can then be used to es-

timate the conditional distribution. Denote the resulting estimator by F̃n
(
t|x;θ,

h(·)
)
. Using the estimators of θ and h(·), we can obtain the applicable estimator,

denoted by F̂n(t|x), using F̂n(t|x) = F̃n(t|x; θ̂, ĥ(·)).
Under Assumptions 3 and 2, the log-likelihood function with observed data

conditional on X is logLobs|X (θ) = log
∫∫
{Lobs|δ1,δ2,X (ν, σ,γ)}d[δ1, δ2], with

Lobs|δ1,δ2,X =
∏n
i=1

∫∞
0

{
Lobs|S,δ1i,δ2i,Xi

}
d[Si|δ1i, δ2i,Xi] and Lobs|S,δ1i,δ2i,Xi

being

the product of the two densities [Di|Bi, L∗i , δ1i, δ2i,Xi] and [Bi|Si, δ1i, δ2i,Xi].

The MCEM algorithm can be employed to compute the MLE of θ.

We now consider the full data set, which is the observed data (2.1) aug-

mented by S = {Si, i = 1, 2, . . . , n}, δ1 = {δ1i, i = 1, 2, . . . , n}, and δ2 = {δ2i, i =

1, 2, . . . , n}. The full-data log-conditional likelihood function is l∗F (θ|O, S, δ1, δ2) =

l∗F1
(ν, σ,γ|S, δ1, δ2) + l∗F2

(θ;S, δ1, δ2), where l∗F1
is the same as lF1

under the

independence assumption, and l∗F2
(θ;S, δ) =

∑n
i=1 log[Si|δ1i, δ2i,Xi] − 1/2

log |Σ(ψ1, ρ1)| − 1/2δ1
′Σ−1(ψ1, ρ1)δ1 − 1/2 log |Σ(ψ2, ρ2)| − 1/2δ2

′Σ−1(ψ2, ρ2)δ2.

The algorithm is similar to Algorithm 1 in Section 3.1.2; the main difference is

the generation of δ
(j)
1 and δ

(j)
2 for the E-step. We generate the random vector

(δ
(j)
11 , . . . , δ

(j)
1n , δ

(j)
21 , . . . , δ

(j)
2n ), for j = 1, . . . , J , from φ(m+1)(δ1, δ2|O;θ(m)), which

is the conditional distribution of δ1 and δ2 given the observed data with θ(m),

and can be expressed as
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Lobs|δ1,δ2,X (ν(m), σ(m),γ(m); δ1, δ2)φ1(δ1;ψ
(m)
1 , ρ

(m)
1 )φ2(δ2;ψ

(m)
2 , ρ

(m)
2 )∫∫

Lobs|δ1,δ2,X (ν(m), σ(m),γ(m); δ1, δ2)φ1(δ1;ψ
(m)
1 , ρ

(m)
1 )φ2(δ2;ψ

(m)
2 , ρ

(m)
2 )dδ1dδ2

,

(3.10)

where φ1(·, ψ1, ρ1),φ2(·, ψ2, ρ2) are the density functions of multivariate normal

distributions with the covariance functions specified in (2.3). The Metropolis–

Hastings algorithm can be used to generate (δ
(j)
11 , . . . , δ

(j)
1n , δ

(j)
21 , . . . , δ

(j)
2n ).

We use the regression model (2.4) to adjust for spatial correlation. Algo-

rithms 2 and 3 can be applied to estimate the regression function h(·) with models

LRM-Corrltd (2.7) and PLRM-Corrltd (2.8). The shared random effects can be

predicted using the conditional distribution φ(δ1, δ2|O; θ̂), with θ̂ obtained using

the MCEM algorithm.

The robust sandwich variance estimator given in Theorem 1 can be used

to estimate the variances of θ̂n. For the variance estimation of the regression

parameters in models LRM-Corrltd (2.7) and PLRM-Corrltd (2.8), we apply the

imputation methods described in Section 3.1.3.

4. Analysis of Alberta Wildfire Data

In this section, we conduct a regression analysis of Alberta wildfire data to

demonstrate the proposed approach. The duration of interest is the ISA duration.

The goal is to study the association between the ISA duration and a list of risk

factors, and then to consider prediction based on this. The time of initial attack

is when the first fire-fighting resource arrives to prevent further growth of the

wildfire. It is believed that fires with a longer ISA duration may require more

effort to suppress, so this interval is valuable information for fire management

agencies. Xiong, Braun and Hu (2021) estimated the distribution of the ISA

duration separately for fires from the northern and southern regions of Alberta,

finding that the distribution depends on the region. To quantify the association

of the ISA duration with the risk factors, we conduct a regression analysis.

The data set includes data on 603 fires caused by lightning in Alberta in

2004 during the fire season, May to August. There are six risk factors, region

(upper or lower) and fuel type (C1, C2, M2, Others), and three weather variables,

temperature, relative humidity, and wind speed. All of the weather variables

are recorded on the reported times of the fires. See Tables S1 and S2 in the

Supplementary Material for the summary statistics. The upper region covers

Fort McMurray, High Level, Lac La Biche, Peace River, and Slave Lake; the

lower region covers Calgary, Edson, Grande Prairie, Rocky Mountain House, and

Whitecourt. The three most common fuel types are C1 (Spruce-lichen woodland),
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C2 (boreal spruce), and M2 (boreal mixedwood–green). The remaining fuel types

are categorized into Other Types. For detailed characteristics and photographs of

these fuel types, see Forestry Canada Fire Danger Group (1992). Fires that were

large at the report time occurred more frequently in the upper region, and there

were multiple large fires close to each other (see Figure S1 in the Supplementary

Material for a map of the fires in the data set).

There appears to be a strong correlation between each pair of weather vari-

ables. In addition, temperature and relative humidity are closely associated with

region; see the pairwise correlation plot in Figure S2 of the Supplementary Ma-

terial, for example. Based on these findings, we select potential covariates via

forward selection using the Akaike information criterion (AIC). As potential co-

variates, we consider region, fuel type and wind speed. The baseline category for

Region is the lower region, and the baseline for Fuel type is other types.

We consider two cases of random drift νi in the longitudinal model (2.2): (1)

with a random intercept νi = νeX
′
iγ+δ1i , for i = 1, . . . , n; and (2) with the mixed

effect νi = νeX
′
iγ+X∗iδ2i+δ1i , where X∗ denotes the factor Region. We estimate θ

and all parameters for model (2.2), assuming first that study units are indepen-

dent, and then that they are spatially correlated. Table 1 presents the estimates

for θ. The standard errors are estimated using the sandwich variance estimator,

and the significant effects are presented in boldface. For the mixed effects, the

estimates of ψ1 and ψ2 indicate considerable variation among fires; the variation

also depends on the region. The estimated standard errors of the parameters

for the spatially correlated case are smaller than those for the independent case,

although the parameter estimates themselves are close.

The estimates of γ can be used to describe the effect of the risk factors on

the burnt area process. The analysis that assumes spatial correlation indicates

that fires in the upper region or those reported on days with a higher wind speed

tend to have a larger drift and may grow faster. Furthermore, fires with M2 fuels

tend to have a smaller drift than do fires with C1, C2, or Others. This finding

agrees with prior analyses of the differences in burn rates among the fuel types

of Alberta (Cumming (2001); Tremblay, Duchesne and Cumming (2018)).

We consider LRMs and PLRMs with assumed independent and correlated

study units. For the PLRMs, the covariates in the parametric component X†

are the variables Region and Fuel type, and a smooth function of Wind speed

is included. We use kernel smoothing and natural cubic splines to estimate the

nonparametric term. Tables 2 and 3 present the estimates of the regression pa-

rameters in the LRMs and PLRMs with kernel smoothing. We also estimate the

LRM parameters using two conventional approaches. The first uses L∗ for the
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Table 1. Estimates of the parameters in the longitudinal model (2.2).

ν σ ψ2
1 ρ1 ψ2

2 ρ2 γ§Region:upper γWindSpeed γ§Fuel:C1 γ§Fuel:C2 γ§Fuel:M2

Independent Units

Random Est. 0.036 1.272 0.020 0.225 2.878 0.528 0.252 -0.370

Intercept SE 0.024 0.026 0.011 0.173 0.521 0.399 0.309 0.434

AIC 2,887.758

Mixed Est. 0.044 1.270 0.008 0.011 0.378 3.231 0.300 0.417 -0.025

Effect SE 0.022 0.026 0.003 0.005 0.148 0.507 0.435 0.331 0.462

AIC 1,343.669

Correlated Units

Random Est. 0.041 1.272 0.015 0.017 0.294 2.830 0.536 0.065 0.306

Intercept SE 0.025 0.026 0.007 0.008 0.141 0.422 0.274 0.298 0.424

AIC 1,353.652

Mixed Est. 0.043 1.272 0.019 2.927 0.010 0.011 0.786 3.844 -0.006 0.138 -0.751

Effect SE 0.024 0.026 0.006 0.038 0.005 0.006 0.133 0.479 0.426 0.316 0.346

AIC 1,329.088

γ§
Region:northern: coefficient for categorical variable Region and baseline category is southern region.

γ§
Fuel:C1,γ

§
Fuel:C2,γ

§
Fuel:M2: coefficients for categorical variable Fuel type and baseline category is other

fuel types.

regression analysis, and the second treats the fire data as interval-censored, that

is, Li ∈ [L∗i , L
∗
i + Rmax], with Rmax being the longest reporting delay. We set

Rmax = 12, 48 hours. In the interval-censored case, we use the R package smooth-

surv (Komárek and Komárek (2015)) to estimate β. For the correlated units,

we use the regression model given in PLRM-Corrltd (2.8) with two conventional

approaches, where (δ1i, δ2i) can be obtained as a realization from the last itera-

tion of the MCEM algorithm in Section 3.1.2. The results for both the LRM and

the PLRM indicate that region is a significant predictor of ISA duration, whereas

the two conventional approaches do not reveal this significant association. The

positive estimate of βregion suggests that fires occurring in the northern region

tend to have a longer ISA duration, which is contrary to the estimates based on

the observed ISA duration. The wildfire areas in the southern region are closer

to Edmonton and Calgary, which are Alberta’s two metropolitan areas with pop-

ulations exceeding one million. These regions have more infrastructure to get fire

crews and other resources to suppress fires quickly. Hence, the ISA durations are

expected to be shorter. On the other hand, fires in the upper region are harder

to get to and are not detected as readily, leading to longer ISA durations. Similar

conclusions can be drawn from Table S3 in the Supplementary Material for the

estimates of the PLRMs with natural cubic splines.

Under the LRM, the ISA duration is not significantly associated with the

explanatory variables wind speed and fuel type. This may be caused by the



EVENT DURATIONS WITH MISSING ORIGINS 2449

Table 2. Estimates of the parameters in the models LRM-Indpt (2.5) and LRM-Crrltd
(2.7).

β0 β§Region:upper βWindSpeed β§Fuel:C1 β§Fuel:C2 β§Fuel:M2 βδ1 βδ2

Independent Units

Observed Est. 0.014 -0.097 -0.405 -0.499 -0.341 -0.186

duration SE 0.281 0.147 0.521 0.372 0.267 0.327

Rmax = 12 Est. 2.013 0.092 -0.437 -0.030 -0.001 0.012

Interval- Rmax = 12 SE 0.199 0.109 0.447 0.261 0.181 0.235

-censored Rmax = 48 Est. 3.446 0.041 0.211 0.026 -0.023 -0.260

Rmax = 48 SE 0.101 0.063 0.187 0.131 0.092 0.243

Proposed Random Est. 0.981 0.341 -0.230 -0.231 -0.097 -0.446

intercept SE 0.323 0.175 0.600 0.425 0.308 0.377

Mixed Est. 0.967 0.292 -0.287 -0.183 -0.046 -0.406

Effect SE 0.325 0.124 0.612 0.434 0.306 0.379

Correlated Units

Observed Est. 0.012 -0.112 -0.344 -0.520 -0.349 -0.166 -0.978 -0.514

duration SE 0.281 0.147 0.523 0.372 0.267 0.327 0.734 0.709

Rmax = 12 Est. 2.026 0.087 -0.465 -0.037 0.001 0.007 -0.214 0.066

Interval- Rmax = 12 SE 0.201 0.105 0.433 0.254 0.184 0.237 0.574 0.532

-censored Rmax = 48 Est. 3.445 0.043 0.208 0.030 -0.022 -0.261 0.033 -0.168

Rmax = 48 SE 0.102 0.060 0.191 0.125 0.088 0.238 0.330 0.305

Proposed Random Est. 0.987 0.382 -0.294 -0.238 -0.076 -0.446 -0.486

intercept SE 0.322 0.172 0.602 0.446 0.332 0.383 0.575

Mixed Est. 0.880 0.387 -0.248 -0.087 0.053 -0.256 -0.862 -0.603

Effect SE 0.319 0.179 0.600 0.417 0.317 0.376 0.339 0.371

β§
Region:northern: regression coefficient for categorical variable Region and baseline category is southern

region.

β§
Fuel:C1,β

§
Fuel:C2,β

§
Fuel:M2: regression coefficients for categorical variable Fuel type and baseline cat-

egory is other fuel types.

correlation between these two independent variables; our simulation confirms

this finding. On the other hand, the estimate βM2 is significantly different from

zero in the PLRMs with spatial correlation. This indicates that the ISA duration

is shorter for fires with M2 fuel than it is for fires with other fuel types. We plot

the estimated nonparametric function h0(·) of Wind speed in Figure 2 for models

PLRM-Indpt (2.6) and PLRM-Corrltd (2.8). For comparison, a reference line

at y = 0 is overlaid, together with pointwise 95% confidence intervals (CIs) of

ĥ0(·), obtained from the 2.5% and 97.5% quantiles of the realizations of ĥ0 using

a bootstrap procedure (described below) with a resample size of 1,000.
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Table 3. Estimates of the parameters in the models PLRM-Indpt (2.6) and PLRM-Crrltd
(2.8), with h0 estimated using kernel smoothing.

β0 β†Region:Northeast β†Fuel:C1 β†Fuel:C2 β†Fuel:M2 β†δ1 β†δ2
Model (2.6), Independent Units

Random Est. 0.929 0.382 -0.231 -0.097 -0.435

Intercept SE 0.325 0.193 0.471 0.341 0.416

Mixed Est. 0.902 0.393 -0.182 -0.046 -0.393

Effect SE 0.327 0.192 0.479 0.339 0.418

Model (2.8), Correlated Units

Random Est. 0.920 0.383 -0.238 -0.076 -0.432 -0.477

Intercept SE 0.328 0.188 0.468 0.352 0.402 0.534

Mixed Est. 0.924 0.386 -0.172 -0.071 -0.409 -0.848 -0.540

Effect SE 0.329 0.189 0.475 0.335 0.382 0.433 0.557

(a) Model PLRM-Indpt (2.6) (b) Model PLRM-Crrltd (2.8)

Figure 2. Plots of estimated nonparametric function h0(·) of wind speed. The shaded
area represents the 95% pointwise confidence intervals, which are approximated by the
2.5% and 97.5% quantiles of the realizations of ĥ0(·) using a bootstrap with resample
size 1,000.

Bootstrap Procedure.

Steps 1. and 2. Follow Steps 1 and 2 of Algorithm 3 to generate (δ
(j)
1i , δ

(j)
2i ), and

S
(j)
i , for i = 1, . . . , n and j = 1, . . . , J∗.

Steps 3. Draw a sample of n observations with equal weight and with replacement

from {(Oi, S
(j)
i , δ

(j)
1i , δ

(j)
2i ), i = 1, . . . , n; j = 1, . . . , J∗}. Denote this sample

{(O(a)
i , S

(j,a)
i , δ

(j,a)
1i , δ

(j,a)
2i ), i = 1, . . . , n; j = 1, . . . , J∗}.

Steps 4. For j = 1, 2, . . . , J∗, obtain the vector Ỹ(j,a) with the ith element being

Ỹ
(j,a)
i = log(L∗i + S̃

(j,a)
i ). Follow Step 3 of Algorithm 3 to compute the



EVENT DURATIONS WITH MISSING ORIGINS 2451

estimators β̂†n and ĥ0n(·) with Ỹ
(j,a)
i and (Oi, S

(j)
i , δ

(j)
1i , δ

(j)
2i ), for i = 1, . . . , n

and j = 1, . . . , J∗. Denote the resulting estimators β̂
†(a)
n,J∗ and ĥ

(a)
0n,J∗(·).

Steps 5. Repeat Steps 3 and 4 A times to obtain A sets of estimators.

The two nonparametric estimates by kernel smoothing and natural cubic

splines under the two models are clearly different from zero. Thus we need to use

an unspecified function to capture the true association of the ISA duration with

the wind speed. When the wind speed is low, it is not significantly associated

with the ISA duration; the association strengthens as the speed increases.

We present the distribution estimates for the models LRM-Indpt (2.5) and

LRM-Corrltd (2.7) in Figure 3. For fixed values of Wind Speed, we evaluate the

estimator F̂n(t|x) in (3.2). The 95% pointwise CIs are also provided. The CIs are

calculated using the estimated asymptotic variance given in (3.8) for the analysis

in the independent case, and are obtained using the bootstrap variance in the

correlated case. In each plot, we overlay estimated distribution curves with two

conventional LRM approaches: they use the observed portion of the ISA duration

and the interval-censored ISA duration. The distribution curves estimated by

these approaches are similar for different subgroups of fires. However, the curves

of the proposed estimator show that fires from the northern region are likely to

have a longer ISA duration for fixed fuel type and wind speed. Moreover, M2

fires tend to have a shorter ISA duration. This shows that caution is required

when dealing with durations with missing origins.

Following Xiong et al. (2019), we apply a spatio-temporal extension of Moran’s

I test to check the validity of models (2.5), (2.6), (2.7), and (2.8). For each model,

we compute one set of the residuals using e
(j)
i = log(L∗i +S̃

(j)
i )−Ŷi for i = 1, . . . , n,

where S̃
(j)
i is the imputed reporting delay based on Step 2 of Algorithms 2 and 3,

and Ŷi is the fitted value obtained by each model. To construct the Moran’s I test

statistic, we define fire neighbors to be any two fires from the same management

area, and with the time lag between their report times bounded by a predeter-

mined τ . The plots of Figure 4 compare Moran’s I, evaluated at different values

of τ , with the LRM and PLRM. For independent units, Figure 4a shows that for

the PLRM the Moran’s I is covered by the 95% acceptance regions when τ ≥ 25.

As observed by Xiong et al. (2019), this suggests that the PLRM captures the

nonlinear spatial pattern, and appears to be more appropriate than the LRM. For

correlated units, Figure 4b shows that for both models, the Moran’s I is within

the acceptance region. This indicates that spatial correlation is the main cause

of the discrepancy between the value of Moran’s I and the expected value under

the null hypothesis.
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Figure 3. Estimated F (t|x) with wind speed = 7.75 km/h.
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(b) Models LRM-Crrltd (2.7) and PLRM-
Crrltd (2.8), with correlated units

Figure 4. Model diagnosis by Moran’s I using residuals from different regression models.

Residual plots also support the Moran’s I results. The residuals from the

PLRM are near zero for both independent and correlated units; see the scatter-

plots of the residuals versus wind speed and report time in Figures S3 and S4,

respectively, in the Supplementary Material. These findings suggest that models

PLRM-Indpt (2.6) and PLRM-Corrltd(2.8) adequately capture the associations

between the ISA duration and the risk factors.

5. Simulation Studies

We carried out simulation studies to examine the finite-sample performance

of our approach and to verify the findings of the real-data analysis. In Simula-

tion A, we generated longitudinal measurements from the Wiener process model

to verify the consistency and efficiency of our approach. In Simulation B, the

covariates are related by a latent variable, and Simulation C assesses the impact

of missing covariates.

5.1. Simulation A: Study to verify consistency and efficiency

To mimic the fire data, we simulated a data set with n = 500 fires, as follows:

Settings for Simulation A.

1. Let Xi = (X1i, X2i) and X1i ∼ Unif(0, 1), X2i ∼ B(1, 0.6), for i = 1, . . . , n.

2. Generate independently n locations ωi with each of the two location indices

ω1i and ω2i from Unif(0, 1).
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3. Generate the burnt area processAi(t), t ∈ [0, 2500], for i = 1, . . . , n, based on

the model Ai(t) = νit+σWi(t), where νi = ν exp{X1iγ1+X2i(γ2+δ2i)+δ1i}.
Let δ1 = (δ11, . . . , δ1n)′ and δ2 = (δ21, . . . , δ2n)′. Generate δ1 and δ2 from

MVN(0,Σ1) and MVN(0,Σ2), respectively. To simulate different types of

study units, we consider two types of covariance matrices Σ1 and Σ2:

Type 1. (independent): Σ1 = ψ2
1I and Σ2 = ψ2

2I with I the n× n identity

matrix.

Type 2. (spatially correlated): The (i, j)th elements of Σ1 and Σ2 are given

by (Σ1)ij = ψ2
1 exp{−||ωi − ωj ||

/
ρ1} and (Σ2)ij = ψ2

2 exp{−||ωi −
ωj ||

/
ρ2}, respectively.

4. Let µB(Xi) = 0.8 + 2.5X1i − X2i. Generate the size at the report time

Bi ∼ logNormal(µB(Xi), 0.6
2).

5. Determine the reporting delay as Si = max{t|t ∈ [0, 2500], Ai(t) ≤ Bi}.

6. Generate L∗i ∼ Exp(λi), where λi = exp
(
0.1δ1i+X1i− (0.2+ δ2i)X2i−0.6

)
.

7. Obtain Li = Si + L∗i , Ai(Li), and Di = Ai(Li)−Bi.

When ψ2 = 0, only the random intercept term δ1i is included in νi. We

consider the following four scenarios:

(A1.1) ψ1 = 0.25, ψ2 = 0, and a Type 1 covariance matrix.

(A1.2) ψ1 = 0.25, ψ2 = 0.15, and a Type 1 covariance matrix.

(A2.1) ψ1 = 0.25, ψ2 = 0, ρ1 = 0.3, ρ2 = 0, and a Type 2 covariance matrix.

(A2.2) ψ1 = 0.25, ψ2 = 0.15, ρ1 = 0.3, ρ2 = 0.1, and a Type 2 covariance matrix.

We set ν = 3.5, σ = 0.8, γ1 = 0.2, and γ2 = 0.15 in all the scenarios. For each

generated data set, we consider the models LRM-Indpt (2.5) and LRM-Corrltd

(2.7), and evaluate the estimators for independent and correlated study units.

We calculate the estimated standard errors (SEs) of the estimates of θ using

the robust sandwich variance estimator, and estimate the SE of the estimates

of β using (3.7). We also evaluate the least-squares estimator of β using L

and the observed L∗, as well as the interval-censored observations with Li ∈
[L∗i , L

∗
i + Rmax], where Rmax is the third quantile of S for each generated data

set.

In each scenario, we repeated the simulation 400 times. The sample means of

the estimates under a correctly specified νi are close to the true parameter values.
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For example, the true specification of νi in Scenario (A1.2) is νi = ν exp{δ1i +

X1iγ1 +X2iγ2}. The sample means of the estimates from our approaches for both

independent and correlated study units are close to the true parameter values.

This provides empirical evidence for the consistency of our estimator. On the

other hand, the estimate of β from the näıve approach using L∗i has a large bias,

and is in the opposite direction to that based on the true ISA duration and that

from our approach. Thus, inference by approaches that use only the observed

or interval-censored ISA duration could be misleading. See Tables S4–S7 in the

Supplementary Material for the parameter estimates based on the 400 simulation

repetitions in the four scenarios.

We also examine the performance of the SE estimators. The sample means

of the estimated SEs under the true settings agree well with the empirical SEs,

that is, the sample SEs. For correlated data, both the sample SEs and the

sample means of the estimated SEs under the independence assumption are larger

than the values that account for the correlation. This suggests that failing to

accommodate for correlation may lead to inefficient estimators.

In Scenario (A2.2), we estimated the distribution curves by our approach

with correlation, and obtained the estimates by the empirical distribution func-

tion of the residuals from the regression model with the true (complete) ISA

duration, the observed ISA duration, and interval-censored ISA duration. The

sample means of the conditional distribution estimates using our approach are

close to the empirical distribution function estimates using the complete ISA

duration. We observe that fires with X2 = 0 are likely to have a longer ISA

duration. In sharp contrast, the estimates from the two conventional approaches

show the opposite behavior. This suggests that a reporting delay affects the

association of the ISA duration with the covariates, and should be accounted

for. We also evaluated the distribution estimator by our approach under the

independence assumption in the scenarios (A2.2) with correlated units. The es-

timated conditional distribution curve by our approach shows similar behavior,

but with a wider 95% confidence interval than the one with correlation. This

indicates that considering the correlation yields a more efficient distribution esti-

mator. The estimated distribution curves are presented in Figures S5 and S6 of

the Supplementary Material.

5.2. Simulation B: Study to examine the impact of correlated covari-

ates

In this study, we generated covariatesX1 andX2 that depend on a latent vari-

able M . We first simulated Mi ∼ B(1, 0.7), for i = 1, . . . , n, and then generated
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Xi1 ∼ Unif(0, a1 +Mib1) and Xi2 ∼ B(1, exp(a2 +Mib2)/(1 + exp(a2 +Mib2))),

for i = 1, 2, . . . , n. We used (a1, b1, a2, b2) = (0.9, 0.1, 4,−2) to simulate X1 and

X2, with a Pearson correlation coefficient of −0.65. Here, νi’s includes only the

random intercept term, and the covariance matrix is Type 2. All the other vari-

ables are as in Simulation A. We evaluated the parameter estimators using the

simulated data.

The sample means of the estimates for θ under the correct specification of νi
based on 400 repetitions with the model including both X1 and X2 as covariates

are close to the true values. In addition, the estimates of γ1 and γ2 suggest

that X1 and X2 are both significantly associated with the longitudinal process.

However, β appears to be underestimated. Only X2 is identified as a significant

predictor for the ISA duration. This finding corroborates the observation from the

real-data analysis that the ISA duration is not significantly associated with wind

speed and fuel type, even though these factors are associated with the burnt area

process, and were therefore expected to be important for the ISA duration. The

simulation outcomes are presented in Table S8 of the Supplementary Material.

We also examined the parameter estimates for the model including only X1 or

X2, which are shown in Tables S9 and S10 of the Supplementary Material. These

results show that X1 and X2 are significant predictors when only one of them is

included in the model. This suggests that the aforementioned under-estimation

of β may be caused by the strong correlation of X1 and X2. Further investigation

of the variable selection or a stratified data analysis would be desirable.

5.3. Simulation C: Study to examine the impact of missing covariates

This simulation examines the impact of missing covariates under two sce-

narios: (C.1) a missing covariate in the longitudinal process and the regression

model, and (C.2) a missing covariate in the spatial correlation function.

For Scenario (C.1), we generated the longitudinal measures from model (2.2),

with νi = ν exp{Xi1γ1+Xi2γ2+Xi3γ3} and Xi3 ∼ B(1, 0.2). We chose γ3 = −0.4,

and generated other variables in the same way as in Simulation A. We analyzed

the data by assuming study units are spatially correlated with the full set of

covariates, that is, X1, X2, and X3, and the partial set of covariates, that is, X1

and X2. Table S11 in the Supplementary Material presents a summary of the

estimates. When only X1 and X2 are included in the model, the estimates for

γ1 and γ2 are still close to the true values. We can also identify X1 and X2 as

significant predictors for the duration from the estimates for β1 and β2. These

results suggest that the missing covariate does not change the effects of the other

covariates on the longitudinal process and the duration.
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In Scenario (C.2), we generated spatially correlated units with a covariate-

dependent correlation function. We first simulated Zi ∼ B(1, 0.8) and considered

the longitudinal model with νi = ν exp{Xi1γ1 + Xi2γ2}, that is, ψ2 = 0, ρ2 = 0.

Here, δ1 = (δ11, . . . , δ1n) were generated from MVN(0,Σ∗1), with the (i, j)th

element in Σ∗1 being ψ2
1 exp{−|ωi−ωj |

/
(ρ(Zi)ρ(Zj))} and logit[ρ(Zi)] = log(49)−

3Zi. We chose ψ1 = 0.25, and analyzed the correlated data with the spatial

correlation structure given in (2.3) and with the true spatial correlation function

Σ∗1. To make a comparison, we also approximate the value of ρ1 in the misspecified

correlation function given in (2.3) by ρ1 = E[ρ(Zi)ρ(Zj)]. Table S12 in the

Supplementary Material summarizes the estimates with the simulated data. With

the true spatial correlation function, we assume the coefficients associated with

ρ(·) are known, and only estimate ψ1. Although the misspecified correlation

structure leads to biased estimates for the parameters ψ1 and ρ1, we observe that

the sample means of the estimates for ν and γ are close to the true values. The

estimates for β with this misspecified structure are also similar to those with

the true correlation function, and close to the estimates with the complete ISA

duration. These results suggest that the reported analysis of the real data can

still be meaningful and interpretable, even if an important covariate is missing

from the correlation structure.

6. Conclusion

We have considered a regression analysis of event durations with missing

origins under the semiparametric AFT model. This is an extension of the work

by Xiong, Braun and Hu (2021) to the regression setting. Motivated by records

of wildfires, we extended the procedure to account for spatial correlation. We

used our approach to estimate the distribution of the ISA duration, given a set

of covariates for wildfires caused by lightning, and validated our results using a

simulation study. Both our real-data analysis and our simulation studies indicate

that an inference based on conventional approaches could give misleading results.

This confirms the importance of dealing with the missing time origins. The

proof of the asymptotic properties of the estimators with spatially correlated

units remains an open problem, but our simulation results appear to support the

asymptotic validity of our approach.

Our approach not only evaluates the association of the ISA duration with

the risk factors, but also provides a distribution estimator. Given the covariates

at the report time, our distribution estimator can be used to predict the full

ISA duration. In the presence of spatial correlation, it can straightforwardly be
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extended to estimate the joint density, which will improve the deployment of

wildfire suppression resources. In addition, although we assume the two random

effects are independent of each other, our approach can be readily adapted by

specifying the correlation between the two random effects.

Several future investigations are worthwhile. First, our approach finds no as-

sociation between the ISA duration and the covariates wind speed and fuel type,

which are believed to play important roles in the development of a fire. This

unexpected finding may be due to their strong association with the covariate

region. A stratified data analysis may help to reveal the true effects of wind

speed and fuel type. Although the application presented here does not involve

high-dimensional data, it would be of both scientific and statistical interest to

account for high-dimensional variable selection when applying this approach to

other situations. Second, the environmental factors are often time-varying. Thus,

we could extend the model to dynamically predict the ISA duration. For exam-

ple, we may consider linear transformation models, and adapt our approach to

approximate the start time and the inherent missing segment of the time-varying

covariate. Further, the estimation based on spatially correlated data can be com-

putationally intensive; feasible methods based on the composite likelihood (e.g.,

Paik and Ying (2012)) may reduce this burden. It would also be worth making

the current spatial covariance functions depend on directional variables. Follow-

ing Neto, Schmidt and Guttorp (2014), we can extend the proposed procedure to

incorporate directional variables in the spatial covariance function. Finally, our

approach is applicable to many practical situations with missing time origins.

Examples include predicting the time from HIV infection to an AIDS diagnosis

(Doksum and Normand (1995)), and studying the gap times of the labor process

for pregnant women with an unknown start time of the dilation process (Ma and

Sundaram (2018)). A recent example is COVID-19 with asymptomatic infection

and transmission. One can estimate the distribution of the incubation period

with our approach by using longitudinal viral load measures.

Supplementary Material

The derivation of the asymptotic properties in Section 3.1.3, and additional

tables and figures for the real-data analysis in Section 4 and the simulation studies

in Section 5, together with sample code are provided in the online Supplementary

Material.
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Komárek, A. and Komárek, M. A. (2015). Package ‘smoothsurv’.

Lee, M.-L. T. and Whitmore, G. A. (2006). Threshold regression for survival analysis: Modeling

event times by a stochastic process reaching a boundary. Statistical Science 21, 501–513.

Li, Y. and Ryan, L. (2002). Modeling spatial survival data using semiparametric frailty models.

Biometrics 58, 287–297.

Loader, C. R. (1999). Bandwidth selection: Classical or plug-in? The Annals of Statistics 27,

415–438.

Ma, L. and Sundaram, R. (2018). Analysis of gap times based on panel count data with in-

formative observation times and unknown start time. Journal of the American Statistical

Association 113, 294–305.

Martell, D. L. (2007). Forest fire management. In Handbook of Operations Research in Natural

Resources (Edited by A. Weintraub, C. Romero, T. Bjørndal, R. Epstein and J. Miranda),

489–509. Springer, New York.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E. (1953). Equa-

tion of state calculations by fast computing machines. The Journal of Chemical Physics

21, 1087–1092.



2460 XIONG ET AL.

Morin, A. A. (2014). A Spatial Analysis of Forest Fire Survival and a Marked Cluster Process for

Simulating Fire Load. MSc Thesis. The University of Western Ontario, London, Ontario.

Motarjem, K., Mohammadzadeh, M. and Abyar, A. (2020). Geostatistical survival model with

Gaussian random effect. Statistical Papers 61, 85–107.

Neto, J. H. V., Schmidt, A. M. and Guttorp, P. (2014). Accounting for spatially varying di-

rectional effects in spatial covariance structures. Journal of the Royal Statistical Society:

Series C (Applied Statistics) 63, 103–122.

Ning, J., Qin, J. and Shen, Y. (2011). Buckley-james-type estimator with right-censored and

length-biased data. Biometrics 67, 1369–1378.

Paik, J. and Ying, Z. (2012). A composite likelihood approach for spatially correlated survival

data. Computational Statistics & Data Analysis 56, 209–216.

Papageorgiou, G., Mauff, K., Tomer, A. and Rizopoulos, D. (2019). An overview of joint mod-

eling of time-to-event and longitudinal outcomes. Annual Review of Statistics and its Ap-

plication.

Qin, J., You, C., Lin, Q., Hu, T., Yu, S. and Zhou, X.-H. (2020). Estimation of incubation

period distribution of covid-19 using disease onset forward time: A novel cross-sectional

and forward follow-up study. Science Advances 6, eabc1202.

Speckman, P. (1988) Kernel smoothing in partial linear models. Journal of the Royal Statistical

Society. Series B (Methodological) 50, 413–416.

Tremblay, P.-O., Duchesne, T. and Cumming, S. G. (2018). Survival analysis and classification

methods for forest fire size. PloS One 13, e0189860.

Tseng, Y.-K., Hsieh, F. and Wang, J.-L. (2005). Joint modelling of accelerated failure time and

longitudinal data. Biometrika 92, 587–603.

Wu, L., Liu, W. and Hu, X. J. (2010). Joint inference on HIV viral dynamics and immune

suppression in presence of measurement errors. Biometrics 66, 327–335.

Wulfsohn, M. S. and Tsiatis, A. A. (1997). A joint model for survival and longitudinal data

measured with error. Biometrics 53, 330–339.

Xiong, Y., Bingham, D., Braun, W. J. and Hu, X. J. (2019). Moran’s I statistic-based nonpara-

metric test with spatio-temporal observations. Journal of Nonparametric Statistics 31, 244–

267.

Xiong, Y., Braun, W. J. and Hu, X. J. (2021). Estimating duration distribution aided by auxil-

iary longitudinal measures in presence of missing time origin. Lifetime Data Analysis 27,

388–412.

Yi Xiong

Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC V5A

1S6, Canada.

Biostatistics Program, Fred Hutchinson Cancer Center, Seattle, WA 98109-1024, USA.

E-mail: yxiong@fredhutch.org

W. John Braun

Department of Computer Science, Mathematics, Physics and Statistics, University of British

Columbia-Okanagan, Kelowna, BC V1V 1V7, Canada.

E-mail: john.braun@ubc.ca

mailto:yxiong@fredhutch.org
mailto:john.braun@ubc.ca


EVENT DURATIONS WITH MISSING ORIGINS 2461

Thierry Duchesne
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