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ABSTRACT
Moran’s I statistic [Moran, (1950), ‘Notes on Continuous Stochastic
Phenomena’, Biometrika, 37, 17–23] has been widely used to eval-
uate spatial autocorrelation. This paper is concerned with Moran’s I-
induced testing procedure in residual analysis.Webeginwith explor-
ing the Moran’s I statistic in both its original and extended forms
analytically and numerically. We demonstrate that the magnitude of
the statistic in general depends not only on the underlying corre-
lation but also on certain heterogeneity in the individual observa-
tions. One should exercise caution when interpreting the outcome
on correlation by the Moran’s I-induced procedure. On the other
hand, the effect on the Moran’s I due to heterogeneity in the obser-
vations enables a regression model checking procedure with the
residuals. This novel application of Moran’s I is justified by simula-
tion and illustrated by an analysis of wildfire records from Alberta,
Canada.

ARTICLE HISTORY
Received 26 October 2017
Accepted 14 November 2018

KEYWORDS
Heterogeneity; model
checking; regression
residuals; spatio-temporal
correlation; validity of
assumption

AMS SUBJECT
CLASSIFICATIONS
46N30; 67H11; 67K70

1. Introduction

The Moran’s I statistic (Moran 1950) is commonly used to measure global spa-
tial autocorrelation. With a collection of observations {Zi : i = 1, . . . , n} from n indi-
vidual units and a set of corresponding weights {wij : i = 1, . . . , n; j = 1, . . . , n}, the
statistic is

I =
n

∑n
i=1

∑n
j=1 wij(Zi − Z̄)(Zj − Z̄)

W0
∑n

i=1(Zi − Z̄)2
= 1

W0σ̂ 2

n∑
i=1

n∑
j=1

wij(Zi − Z̄)(Zj − Z̄),

where Z̄ is the sample mean
∑n

i=1 Zi/n, σ̂
2 = ∑n

i=1(Zi − Z̄)2/n = (n − 1)S2/n with S2
the sample variance, W0 = ∑n

i=1
∑n

j=1 wij is the sum of the weights. With wii = 0, the
original definition for the weights is wij = 1 for i �= j if units i and j are in the same
‘neighbourhood’; otherwise, wij = 0. Geary’s C statistic (Geary 1954), another popular
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autocorrelation measure, is inversely related to the Moran’s I as

C = 1
2W0S2

n∑
i=1

n∑
j=1

wij(Zi − Zj)2 = σ̂ 2
w
S2

− n − 1
n

I,

where σ̂ 2
w = ∑n

i=1 wi.(Zi − Z̄)2/W0 is the weighted sample variance with wi. =
∑n

j=1 wij.
Recent applications of the Moran’s I range over a variety of fields, including real
estate (Dubé and Legros 2012), public health (Jones et al. 2008; Helbich, Leitner, and
Kapusta 2012), forest fires (Martell and Sun 2008), and disease mapping (Oden 1995).

The testing procedure based on theMoran’s I is arguably themost widely used statistical
method for testing spatial independence. Concerns have been raised about performing the
Moran’s I test with observations that depart from the conventional assumption of regional
homogeneity. Alternative methods to accommodate heterogeneity in the data have been
proposed (Oden 1995; Assunção and Reis 1999; Zhang and Lin 2016). In particular, Li,
Calder, and Cressie (2007) emphasise the need to understand the limitations of theMoran’s
I when applying it to regression residuals to assess the model fit. Many practitioners, how-
ever, still take the Moran’s I as an indicator of spatial autocorrelation regardless of whether
the data satisfy the assumption of regional homogeneity. In addition, although several
excellent exceptions exist (e.g. Dubé and Legros 2012), relatively little research has focused
on the validity of applying the Moran’s I test to spatial data collected over time.

Xiong (2015) presents a regression analysis of forest-fire records to explore how for-
est fires are related to ecological/environmental factors. The model checking with the
regression residuals in Xiong (2015) adapts naturally theMoran’s I-based procedure to test
whether there is spatio-temporal correlation among the fires. The heterogeneity underly-
ing the residuals, such as their different means or variances, appears to contribute a great
deal to the Moran’s I statistic. Misspecification of the regression model and the difference
between the targeted and fitted models combine to contribute to the heterogeneity. It is
thus unclear what causes the discrepancy between the resulting value of the Moran’s I and
the expected value under the null hypothesis.

This research explores the Moran’s I statistic in several situations, both analytically and
numerically. We pay particular attention to the performance of the Moran’s I testing pro-
cedure in situations where the usual assumption of regional or temporal homogeneity is
violated. We focus on two types of weights used to define the statistic: a natural adapta-
tion of the weights originally proposed by Moran (1950) for spatio-temporal data, and an
extended version of theweights considered inDubé and Legros (2012).We observe that the
magnitude of the Moran’s I in general depends not only on the underlying correlation but
also on certain heterogeneity in the individual observations. This suggests that one should
exercise caution when interpreting the outcome of a test for correlation by the Moran’s I.
On the other hand, the effect on the Moran’s I of heterogeneity in the individual observa-
tionsmakes it possible to conduct model diagnosis in regression analysis with the residuals
via an inferential procedure based on the Moran’s I.

The rest of this paper is organised as follows. Section 2 presents some theoretical prelim-
inaries on the Moran’s I. Section 3 examines the performance of the procedure for testing
spatio-temporal correlation firstly with generated spatio-temporal data and then with sim-
ulated regression residuals. Section 4 discusses an application of theMoran’s I based on the
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findings in Sections 2 and 3 using the records for the wildfires in Alberta, Canada in 2006.
Section 5 provides concluding remarks.

2. Preliminaries onMoran’s I statistic

2.1. Weights inMoran’s I with spatio-temporal observations

Using appropriate weights in theMoran’s I can be critical in several regards. For a collection
of spatio-temporal observations {Zi : i = 1, . . . , n}, denote the time and location specified
by its longitude and latitude associated with observation Zi by ti and si = (s1i, s2i)′, respec-
tively. This paper focuses on symmetric weights. Particularly, we consider the following
two types of weights in the numerical studies.

Adaptation of original Moran’s I weights. We adapt the weights originally proposed in
Moran (1950) and specify the neighbourhood as follows. Individuals i and j are viewed as
‘ neighbours’ if the distance between their locations si and sj is within a prespecified limit
d and their associated times ti and tj differ by at most a prespecified value τ . Thus, when
i �= j, weight wij indicates whether i and j are neighbours in space and time. We denote the
resulting Moran’s I by I(d, τ), a spatio-temporal extension of the original Moran’s I; the
latter can be viewed as I(d,∞) in our notation.

Dubé–Legros weights. The weights proposed by Dubé and Legros (2012) include the
magnitudes of the location and time differences between observations. In our notation,
wii = 0 and for i �= j the weight is

wij =
{ ‖si − sj‖−γ |ti − tj|−α , if ‖si − sj‖ < d, |ti − tj| < τ

0, otherwise, (1)

where ‖a − b‖ is the Euclidean distance between locations a and b, d, τ , γ ,α are prespeci-
fied nonnegative constants, and the convention 0−α ≡ 1 is taken. We denote the Moran’s I
with the Dubé–Legros weights by I∗(d, τ ; γ ,α) or simply I∗(d, τ)with γ and α suppressed
in the remainder of this paper, where the values of γ and α are clear from the context.

One may choose to use the values of d and τ that are practically meaningful in the
application. We suggest to evaluate the Moran’s I with multiple combinations of d and τ

when conducting residual analysis for model diagnosis. This is illustrated via simulation
and real data analysis in Sections 3 and 4.

In practical situations with a large difference between the magnitudes of the location
distance and the time lag, we suggest to consider scaled location distance and/or time lag.
This is exemplified in the simulation. One may choose to use different values of γ and α,
to check whether the conclusion is robust.

2.2. Moran’s I-based hypothesis testing

For a collection of observations {Zi : i = 1, . . . , n}, the Moran’s I procedure for testing cor-
relation may be presented as a test with the null hypothesis H0: ‘Zi’s are independent’ and
the test statistic as the standardised Moran’s I under H0 given the assumption of homo-
geneity E(Zi) = μ and Var(Zi) = σ 2 for i = 1, . . . , n. For large sample size n, the rejection
region of the testing procedure with an approximate type-I error rate of α is{

a : a > E(I | H0) + z1−α/2
√
Var(I | H0) or a < E(I | H0) + zα/2

√
Var(I | H0)

}
(2)
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with observed Moran’s I, where zp is the 100p percentile of the standard normal dis-
tribution. Its theoretical justification is the asymptotic normality of the test statistic
under H0: U = {I − E(I | H0)}/

√
Var(I | H0) → N(0, 1) in distribution as n → ∞, pro-

vided the population distribution has the first and second moments (Cliff and Ord 1981).
Here the expectation E(I | H0) = −1/(n − 1).

Assume that the weights wij are determined by (si, ti), which are the locations and
times associated with the individual observations; see, for example, the two sets of
weights in Section 2.1. Since E[I | (si, ti), i = 1, 2, . . . , n] = E[I | wij, i = 1, 2, . . . , n, j =
1, 2, . . . , n] ≡ −1/(n − 1), the variance Var(I | H0) = E{Var[I | H0; (si, ti)′s]}. In general,
onemay calculate the variance using E[I2 | (si, ti), i = 1, 2, . . . , n] = E{ER(I2) | (si, ti), i =
1, 2, . . . , n} when n is large, where ER(I2) is the second moment of I under the set of
random permutations among the n location-time pairs, conditional on the observations
{Zi : i = 1, . . . , n}. If the population distribution is normal,

E[I2 | (si, ti), i = 1, 2, . . . , n] = (
n2W1 − nW2 + 3W2

0
)
/
{
(n − 1)(n + 1)W2

0
}

with W0 = ∑n
i=1

∑n
j=1 wij, W1 = 1

2
∑n

i=1
∑n

j=1(wij + wji)
2, and W2 = ∑n

i=1(
∑n

j=1 wij

+ ∑n
j=1 wji)

2 = ∑n
i=1(wi. + w.i)

2. This gives

Var[I | H0; (si, ti)′s]
} = n2W1 − nW2

(n2 − 1)W2
0

+ 2n − 4
(n2 − 1)(n − 1)

. (3)

To explore the performance of the Moran’s I test procedure, we derive the test statistic’s
expectations in the following settings, which differ from the one underH0 combined with
its assumed homogeneity of the observations. The difference between the expectation in
each of the settings and the expectation underH0 may reveal whether the testing procedure
with data from the population can adequately detect the corresponding setting from the
one under H0. Let the Moran’s I statistic be I = IN/ID with IN = ∑

i,j wij(Zi − Z̄)(Zj −
Z̄)/W0 and ID = ∑n

i=1(Zi − Z̄)2/n = σ̂ 2.

2.2.1. Expectation of Moran’s I underHa
When the Moran’s I test is applied, the alternative hypothesis is often implicitly taken
as Ha : ‘H0 is not true’. The following verifies the usefulness of the Moran’s I proce-
dure with the observations satisfying the homogeneity assumption for testing correlation
specified as

Ha: ‘Zi’s are correlated with cov(Zi,Zj) = ρij �≡ 0 for i �= j’.

With ρii = σ 2, denote
∑n

j=1 ρji = ∑n
j=1 ρij by ρi.. Provided the homogeneity assump-

tion (the observations have the samemean and variance), which is often implicitly assumed
in practice, the expectations of IN and ID are

E(IN | Ha) = 1
W0

∑
i,j

wijρij − 1
nW0

∑
i

(wi. + w.i)ρi. + σ 2

n
+ 1

n2
∑
i�=j

ρij
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and

E(ID | Ha) =
(
1 − 1

n

)
σ 2 − 1

n2
∑
i�=j

ρij.

In the situations with symmetric weights wij and ρij = ρwij for i �= j, E(IN | Ha)

reduces to

−1
n
σ 2 + ρ

W0

⎧⎨
⎩

∑
i,j

w2
ij −

2
n

∑
i
w2
i.

⎫⎬
⎭ + W0ρ

n2

and E(ID | Ha) is approximate to (1 − 1/n)σ 2 − (1/n2)W0ρ.
Consider a simple set of weights:

wij =
{

1, if |i − j| = 1 or n − 1
0, otherwise. (4)

Here we view that units 1 and n are also ‘ neighbours’. Then W0 = 2n,W1 = 4n,W2 =
16n. The expectation of the Moran’s I under the alternative hypothesis E(I | Ha) is now
approximate to

− 1
n − 1

+ (n − 4)ρ
(n − 1)σ 2 − 2ρ

.

With E(I | H0) = −1/(n − 1) and Var(I | H0) = n(n − 3)/[(n + 1)(n − 1)2] from
Equation (3), theMoran’s I test statisticU ≈ √

2nρ/σ 2 differing from 0 significantly when
n is sufficiently large. In particular, we see that the power to detect the correlation by the
Moran’s I test increases as |ρ|/σ 2 increases as well as the sample size n increases.

2.2.2. Expectations of Moran’s I without assumed homogeneity
We now explore the robustness of the Moran’s I test to the violation of the homogene-
ity assumption: E(Zi) = μ and Var(Zi) = σ 2 for i = 1, . . . , n. In particular, we examine
the expectations of the Moran’s I statistic under H0 in the following two situations with
observation heterogeneity:

Heterogeneity 1: E(Zi) = μ and Var(Zi) = σ 2
i �≡ σ 2.

Heterogeneity 2: E(Zi) = μi �≡ μ and Var(Zi) = σ 2.

Under H0 with Heterogeneity 1: Denote
∑n

i=1 σ 2
i /n by σ̄ 2. The expectations of IN and

ID with Heterogeneity 1 are

− 1
nW0

n∑
i=1

(
wi. + w.i

)
σ 2
i + 1

n
σ̄ 2 and

(
1 − 1

n

)
σ̄ 2,

respectively.When theweights are symmetricwithwij = wji, the expectation of theMoran’s
I is close to

− 1
n − 1

+ 2
n − 1

(
1 − 1

W0σ̄ 2

n∑
i=1

wi.σ
2
i

)
.

The second term above is small when wi. do not vary much. That is, the expectation of the
Moran’s I is now close to the expectation of I underH0 with the observation homogeneity
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assumption, E(I | H0) = −1/(n − 1). The Moran’s I test procedure for observation corre-
lation can thus be rather robust to the heterogeneity in the variance. This analytical finding
is verified by the simulation reported in Section 3.

Consider the special case with an even number of sample size n, and σ 2
i = σ 2

A if i ≤
n/2 and σ 2

i = σ 2
B if i > n/2 with σ 2

A �= σ 2
B . Using the set of weights given in Equation (4),

I/E(I | H0) → 1 almost surely as n → ∞ andV(I | H0) = O(n−1). This indicates that the
type I error of the test can be rather small in the situation.

UnderH0 withHeterogeneity 2: When there is heterogeneity in the mean, the test based
on theMoran’s I is less robust, compared to it in situations withHeterogeneity 1. To see this,
denote

∑n
i=1 μi/n by μ̄. The expectations of IN and ID are now

−σ 2

n
+

∑
i,j

wi,j

W0
(μi − μ̄)(μj − μ̄) and

(
1 − 1

n

)
σ 2 + 1

n

n∑
i=1

(μi − μ̄)2,

respectively. We see that the expectation of the Moran’s I is close to

− 1
n − 1

+ 1
1 + σ̃ 2/σ 2

{ σ̃ 2

(n − 1)σ 2 + n
(n − 1)W0σ 2

∑
i,j

wij(μi − μ̄)(μj − μ̄)
}

with σ̃ 2 = ∑n
i=1(μi − μ̄)2/(n − 1). While the first term in the curly brackets above can

be small if n is large, the second is unlikely to be close to zero, especially if the products
(μi − μ̄)(μj − μ̄)with i,j in the same neighbourhood have the same sign. Thus, even when
the observations are truly independent, the procedure may rejectH0 withHeterogeneity 2.

Consider the special case with an even number of sample size n, andμi = μA if i ≤ n/2
and μi = μB if i > n/2 with μA �= μB. Using the set of weights given in Equation (4),
the standardised Moran’s I statistic U is now asymptotically equivalent to

√
2n(μA −

μB)
2/{(μA − μB)

2 + 4σ 2}. Thus the test rejectsH0 with a high probability when n is large
and/or (μA − μB)

2 is not small compared to σ 2. That is, the type I error can be rather high
in those situations.

The finding that the Moran’s I test is not robust to Heterogeneity 2 may be used to
diagnose a regression model. We elaborate this in the context of the application of the
Moran’s I statistic with regression residuals (Section 2.3), in the second simulation study
(Section 3.2), and in the analysis of real data (Section 4).

2.3. Moran’s I with regression residuals

Consider a response variable Y that follows Y = f (x) + ε, where x includes all the iden-
tified explanatory variables and the random error ε satisfies E(ε) = 0, Var(ε) = σ 2. Let
{(si, ti) : i = 1, . . . , n} be the set of locations and times associated with a collection of
spatio-temporal observations {Yi : i = 1, . . . , n}. Suppose that xi is a function of the
location si and time ti, and that xi and εi = Yi − f (xi) are independent.

The spatio-temporal correlation underlying the εi’s can often be of interest. Since the
εi’s are unobservable in reality, model checking often uses the regression residuals, which
are ei = yi − ĝ(xi) with ĝ(·) the fitted model under the assumed regression model Y =
g(x) + ε.
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Note that

ei = εi +
[
f (xi) − g(xi)

] + [
g(xi) − ĝ(xi)

]
,

which is a combination of the random fluctuation, the difference of the assumed model
from the truemodel, and the difference of the fittedmodel from the assumedmodel. Thus,
the Moran’s I with the residuals ei’s may reveal the correlation combined with the hetero-
geneity in the residuals as a result of model misspecification together with the estimation
precision. When the estimation procedure is unbiased [E{ĝ(x) | x} = g(x)], the Moran’s I
test may be used for checking the model assumption that f (·) = g(·) and the εi’s are i.i.d.
This use of the Moran’s I is investigated by simulation in Section 3 and exemplified by real
data in Section 4.

3. Simulation study

We conducted two simulation studies to examine the performance of the Moran’s I test in
various settings. The first study, which used spatio-temporal observations generated from
normal distributions, is intended to verify our analytical findings presented in Section 2.
The second study explores the performance of the test with regression residuals.

3.1. Simulation A:Moran’s I hypothesis test

We simulated spatio-temporal observations {zi : i = 1, . . .} as follows.

Step 1. Generate independently n locations si with each of the two location indices
s1i and s2i from Unif (0, 1), the uniform distribution over (0, 1). Generate also the
associated times ti ∼ Unif (0, 1).
Step 2. Conditional on the generated {(si, ti) : i = 1, . . . , n}, generate the n-
dimensional vector z = (z1, . . . , zn)′ from the multivariate normal distribution
N(μ,�). To simulate different observations, we considered six combinations of the
mean vector μ = E(Z) and the covariance matrix � = Var(Z), denoted by Case
A(a,b) with a=0,1 for the two types of μ and b=0,1,2 for the three types of �.
(a) Two types of μ. Type 0: μi = E(Zi) = 0 for all i = 1, . . . , n; Type 1: μi is

defined according to the location si via μi = −3,−0.5, 1.0, 2.5 for si ∈ (0, 0.5) ×
(0, 0.5), (0, 0.5) × [0.5, 1), [0.5, 1) × (0, 0.5), [0.5, 1) × [0.5, 1), respectively.

(b) Three types of �. Type 0: � = σ 2I with σ 2 = 22 and I the n × n identity
matrix; Type 1: � the diagonal matrix with the elements on the diagonal σ 2

i
defined as σ 2

i = 0.12, 1.72, 2.62, 3.52 for si ∈ (0, 0.5) × (0, 0.5), (0, 0.5) × [0.5, 1),
[0.5, 1) × (0, 0.5), [0.5, 1) × [0.5, 1), respectively; Type 2:� = (σij)n×nwithσij =
22 exp{−0.1(|si − sj| + |ti − tj|)} for i, j = 1, . . . , n.

Note that Cases A(0,0), A(0,1), A(1,0), A(1,1), A(0,2), and A(1,2) yield observations
under H0 with observation homogeneity, H0 with observation Heterogeneity 1, H0 with
observation Heterogeneity 2, H0 with both Heterogeneity 1 and 2, Ha with observation
homogeneity, and Ha with observation Heterogeneity 2, respectively.
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We evaluated the Moran’s I in the form of I(d, τ), using the data generated in the above
cases with the sample size n=50, 200, or 400, neighbourhood distance limit d=0.3, 0.6,
or 1.0, and largest time lag τ = 0.1, 0.5, 1, or ∞.

Table 1 presents the sample means and standard deviations based on 1000 evaluations
in each of the simulation settings with τ = 0.5. For comparison, we include (i) the con-
ditional mean and variance of I(d, τ), where E(I) = −1/(n − 1) and Var{I | (si, ti)′s} was
calculated following Equation (3) given a set of generated locations and times {(si, ti) : i =
1, . . . , n}, and (ii) the marginal mean and variance of I(d, τ), where E(I) = −1/(n − 1)
and Var(I) was approximated by the sample mean of the evaluations of Var{I | (si, ti)′s}
with 1000 sets of generated locations and times.

The simulation results verify our findings from the analytical study presented in
Section 2.2. The sample means and standard deviations of I(d, τ) in Case A(0,0), which
generates i.i.d. normal observations, are rather close to the corresponding conditional
or marginal means and standard deviations under H0. Although the sample standard

Table 1. Summary statistics based on 1000 evaluations of Moran’s I(d, 0.5) in Simulation A.
cSimulation cases

aMarginal
(under H0)

bConditional
on s, t

(under H0) A(0,0) A(0,1) A(1,0) A(1,1) A(0,2) A(1,2)

d= 0.3
n= 50

dMean −0.02041 −0.02041 −0.02197 −0.01955 0.29727 0.39553 0.42298 0.66373
dStd. dev 0.06305 0.05884 0.07055 0.06750 0.08820 0.15773 0.06826 0.04524

n= 200
Mean −0.00503 −0.00503 −0.00499 −0.00603 0.36072 0.47351 0.40885 0.67432
Std. dev 0.01580 0.01383 0.01686 0.01806 0.03796 0.03088 0.13111 0.03778

n= 400
Mean −0.00251 −0.00251 −0.00239 −0.00227 0.36950 0.49771 0.43506 0.70559
Std. dev 0.006266 0.00703 0.00871 0.01053 0.02738 0.02323 0.13392 0.03748
d= 0.6

n= 50
Mean −0.02041 −0.02041 −0.02098 −0.02074 0.09681 0.14235 0.18101 0.23494
Std. dev 0.02760 0.02407 0.03101 0.02695 0.04048 0.03317 0.10851 0.03335
n= 200
Mean −0.00503 −0.00503 −0.00509 −0.00519 0.15839 0.20919 0.19987 0.29862
Std. dev 0.00690 0.00610 0.00719 0.00700 0.02067 0.01752 0.09435 0.02558

n= 400
Mean −0.00251 −0.00251 −0.00251 −0.00248 0.16854 0.22721 0.22819 0.32290
Std. dev 0.002742 0.00338 0.00374 0.00420 0.01499 0.01405 0.10231 0.02770
d= 1.0

n= 50
Mean −0.02041 −0.02041 −0.01998 −0.02132 −0.00710 −0.00151 0.06351 0.01585
Std. dev 0.01518 0.01370 0.01597 0.01317 0.01571 0.01205 0.08851 0.02019

n= 200
Mean −0.00503 −0.00503 −0.00477 −0.00497 0.00330 0.00566 0.04929 0.01691
Std. dev 0.00381 0.00360 0.00441 0.00401 0.00337 0.00271 0.04258 0.01167

n= 400
Mean −0.00251 −0.00251 −0.00259 −0.00243 0.01111 0.01558 0.06387 0.03032
Std. dev 0.001511 0.00192 0.00212 0.00219 0.00253 0.00228 0.04491 0.01244
aE(I | H0) = −1/(n − 1) and Var{I | (si , ti)′s}.
bE(I | H0) = −1/(n − 1) and the sample mean of 1000 evaluations of Var{I | (si , ti)′s}.
cSimulation settings: Case A(a,b) with a= 0,1 for Types 0,1 ofμ and b= 0,1,2 for Types 0,1,2 of�.
dSample mean and sample standard deviation.
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Figure 1. Histogram of Moran’s I(d, τ) with d= 0.3,0.6,1.0 and τ = 0.5 when n= 200. The solid line
represents the mean under the null hypothesis. The dashed lines define 95% acceptance region. The
bars in the acceptance region are shaded lightly; in rejection region, darkly. (a) Histogram of I(0.3, 0.5),
(b)Histogram of I(0.6, 0.5) and (c) Histogram of I(1.0, 0.5).
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Figure 1. Continued.

deviations of I(d, τ) in Case A(0,1) are larger, the sample means are similar to those
from Case A(0,0). This confirms that the Moran’s I test for correlation can be rather
robust to varying variances of the individual observations. The results from Cases A(1,0)
and A(1,1), however, verify that the Moran’s I test for correlation may be violated as a
result of heterogeneity in the expectations of the observations. Regardless of the inde-
pendent observations, the test likely rejects H0 with a commonly used type-I error rate
in each of the settings of Cases A(1,0) and A(1,1). On the other hand, this suggests a
new application of the Moran’s I test: model checking with the residuals in regression
analysis.

The simulation results for Cases A(0,2) and A(1,2) are also as expected. They are illus-
trated by the histograms of theMoran’s I evaluations in the settingswith sample sizen=200
in Figure 1. Each histogram includes the evaluations of the rejection region with the type-I
error rate 0.05 given by Equation (2) for its lower and upper limits.

Figure 2 presents the empirical rejection rates of the Moran’s I test for all simulation
settings. The rejection rates with d=1.0 in Cases A(1,0), A(1,1), A(0,2), and A(1,2) are
not as high as those with d=0.3 or 0.6 when the sample sizes are not large (i.e. n=50
and 200). This is because the Moran’s I is a weighted average over the global surface. With
larger neighbourhoods, individual contributions can be averaged out, making the test less
efficient. For comparison, we also evaluated the Moran’s I with the Dubé–Legros weights,
I∗(d, τ ; γ ,α)with γ = 0.5,α = 0.5. Based on Equation (1), we used the standardised form
‖si − sj‖/

√
2 instead of ‖si − sj‖ to limit the distance between any pair of individuals to

the range [0, 1] so that it is comparable to the time difference.
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Figure 2. Rejection rate of Moran’s I(d, τ)with d= 0.3,0.6,1.0, τ = 0.5, sample size n= 50,200,400. (a)
Rejection rate of I(0.3, 0.5), (b)Rejection rate of I(0.6, 0.5) and (c) Rejection rate of I(1.0, 0.5).

Wealso examined the histograms of the evaluations of the twoMoran’s I statistics I(d, τ)

and I∗(d, τ) in Case A(1,2). I∗(d, τ) appears to have a larger variation than I(d, τ). The two
types of weights yield results that are consistent with each other.

In summary, this simulation study confirms that themagnitude of theMoran’s I depends
on the heterogeneity in the expectations of the observations and on the underlying spatio-
temporal correlation.

3.2. Simulation B: Moran’s I in analysis of residuals

To investigate the test procedure applied to regression residuals, we simulated data in the
followingway. The outcomeY was generated asY = f (x) + ε, where ε is the random error,
x = (s, t,w), and

f (x) =
{
sin(2s21) − sin(2s2) − 0.5w, if 0 < t < 0.5
sin(2s21) + sin(2s2)t − 0.5w, if 0.5 ≤ t < 1,

(5)
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where s is the location index with the two components s1 and s2, and t and w are the time
and additional predictor, respectively. Observations on Y together with x were generated
as follows:

Step 1. Generate the n locations si and times ti as for Simulation A. In addition,
independently generate observations on the additional predictor wi ∼ N(0, 1).
Step 2. Conditional on the generated {(si, ti) : i = 1, . . . , n}, generate the n-
dimensional vector ε = (ε1, . . . , εn)′ from the multivariate normal distribution
N(0,�). Here 0 is the zero vector and � is either Type 0: � = 0.52I, where I is the
n × n identitymatrix; or Type 1:� = (σij)n×n, whereσij = 0.52 exp{−0.1(‖si − sj‖ +
|ti − tj|)} for i, j = 1, . . . , n.
Step 3.Obtain the response yi’s as f (xi) + εi, where f (xi) is the function in Equation (5)
evaluated at (si, ti,wi) generated by Step 1.

We conducted regression analyses with the observations generated above under various
models in the form Yi = g(xi) + ζi, where ζi ∼ N(0, σ 2) independently. Specifically, we
took g(·) to be one of the following functions:

Type 1. Ordinary Linear Regression Model

g(x) = β0 + β1w + β2t + β3s1 + β4s2; (6)

Type 2. General Linear Regression Model

g(x) = β0 + β1w + β2t + β3s1 + β4s2 + β5s21 + β6s22; (7)

Table 2. Summary statistics based on 200 evaluations of Moran’s I(0.6, 0.5) and I∗(0.6, 0.5) in
Simulation B.

cSimulation cases

(independent random errors) (correlated random errors)

aMarginal
(under H0)

bConditional
on s, t

(under H0) B(0,1) B(0,2) B(0,3) B(0,4) B(1,1) B(1,2) B(1,3) B(1,4)

n= 200
I(0.6, 0.5)

dMean −0.00503 −0.00503 0.24041 0.13889 −0.00638 −0.00111 0.28117 0.19205 0.03125 0.05350
dStd. dev 0.00690 0.00619 0.00455 0.00327 0.00506 0.00631 0.09210 0.05516 0.00592 0.01030

I∗(0.6, 0.5)
Mean −0.00503 −0.00503 0.11008 0.03632 −0.00656 0.00639 0.28389 0.19274 0.09381 0.11113
Std. dev 0.00832 0.00767 0.00496 0.00405 0.00580 0.00644 0.09025 0.05087 0.00700 0.00960
n= 400

I(0.6, 0.5)
Mean −0.00251 −0.00251 0.29364 0.13808 −0.00107 −0.00297 0.26938 0.13360 0.01401 0.03994
Std. dev 0.00344 0.00343 0.00305 0.00200 0.00211 0.00454 0.09835 0.03732 0.00248 0.00624

I∗(0.6, 0.5)
Mean −0.00251 −0.00251 0.14449 0.02997 −0.00056 −0.00539 0.27355 0.13952 0.04240 0.05155
Std. dev 0.00416 0.00414 0.00333 0.00264 0.00324 0.00411 0.09775 0.03879 0.00370 0.00651
aE(I | H0) = −1/(n − 1) and V{I | (si , ti)′s}.
bE(I | H0) = −1/(n − 1) and the sample mean of 1000 evaluations of V{I | (si , ti)′s}.
cSimulation settings: Case B(a,b) with a= 0,1 for� Types 0, 1 and b= 1,2,3,4 for Types 1,2,3,4 of the specified g(·).
dSample mean and sample standard deviation.
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Figure 3. Histograms of I(d, τ) and I∗(d, τ) with independent data, n= 200. (a) N= 200, I(d, τ) with
independent data and (b) N= 200, I∗(d, τ)with independent data.
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Type 3. Partial Linear Regression Model

g(x) = h(s, t) + β1w with unspecified function h(·); (8)

Type 4. Nonparametric Regression Model

g(x) = h(s, t,w) with unspecified function h(·). (9)

Under each of the above models, residuals were calculated via ei = yi − ĝ(xi) for i =
1, . . . , n, where ĝ(·) is the fitted model in the regression analysis with the generated data
(yi, xi). Here, the parameters in the first two models (linear models) were estimated by
least-squares estimation (LSE) procedures. Estimates of the partial linear regressionmodels
were obtained by LSE integrated with local linear estimation. For nonparametric regres-
sion, the unspecified functions were estimated by kernel smoothing methods using the
Gaussian kernels, as implemented in the R package np (Hayfield and Racine 2008). We
used the GCV (generalised cross validation) approach to choose the bandwidths in the
estimation. We evaluated the Moran’s I with two sets of weights, I(d, τ) with the origi-
nal weights and I∗(d, τ ; γ ,α) with the Dubé–Legros weights given in Equation (1), and
the simulated residuals. We set γ = 0.5,α = 0.5 to control the Dubé–Legros weights and
‖si − sj‖ is standardised as ‖si − sj‖/

√
2.

Table 2 presents the sample means and standard deviations of I(0.6, 0.5) and I∗(0.6, 0.5)
based on 500 repetitions in the simulation settingsCases B(a,b), where a=0, 1 forVar(ε) =
� specified by types 0, 1 and b=1, 2, 3, 4 for g(·) given in Equations (6)–(9) specified by
types 1–4, respectively. The table also presents the conditional and marginal means and
standard deviations of the two Moran’s I statistics, calculated in the same manner as those
presented in Table 2.

The histograms of the evaluations of I(d, τ) and I∗(d, τ) with the regression residuals
when n=200 for the cases with correlated random errors (i.e. Cases B(1,b) for b=1,2,3,4)
indicate that all the tests reject H0 with a type-I error rate of 0.05, regardless of the regres-
sion model. Figure 3 presents histograms of the evaluations of I(d, τ) and I∗(d, τ) with

Figure 4. Empirical rejection rates of I(0.6, 0.5) and I∗(0.6, 0.5) based on regression residuals under
models (6), (7), (8), and (9) with independent random errors, sample size n= 200,400. (a) Rejection rate
of I(0.6, 0.5) and (b) Rejection rate of I∗(0.6, 0.5).
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Figure 5. Scatterplots of residuals vs. generated random errors, sample size n= 200. (a) with indepen-
dent data and (b) with correlated data.
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Figure 6. Scatterplots of residuals vs. times in the generated observations, sample size n= 200. (a) with
independent data and (b) with correlated data.
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the regression residuals when n=200 for the cases with independent random errors. We
see that, as expected, the variation associated with I(d, τ) is generally smaller than that
associated with I∗(d, τ). However, the tests based on the two Moran’s I statistics reject H0
for Cases B(0,1) and B(0,2), where the random errors are i.i.d. and the residuals are under
misspecified regression models.

Figure 4 shows the empirical rejection rates with the two testing procedures for Cases
B(0,1) and B(0,2). This confirms the suggestion in Section 2.3 that the testing procedure
based on the Moran’s I can be used as a tool for checking regression models. Case B(0,3)
simulates the situation of the null hypothesis H0. The empirical rates of H0 rejection for
both testing procedures are around the nominal type-I error rate of 0.05. However, the
empirical rates of rejection for Case B(0,4) associated with the two procedures based on
I(d, τ) and I∗(d, τ) indicate uncertain outcomes. This is likely because a satisfactory fitting
by nonparametric regression usually requires a large collection of observations.

The commonly used residual plots can show in detail the performance of the testing
procedures in the simulated regression analyses. As an example, Figure 5 presents the scat-
ter plots of the residuals ei vs. the random errors εi for one generated data set (n=200)
together with the local regression curves produced by the R function LOESS and confi-
dence intervals of approximately 95%. We see that the residuals from each regression are
near zero but apparently differ from the corresponding random errors εi. The differences
are especially large in the cases with misspecified regression models for both independent
and correlated observations. The scatter plots of the residuals ei vs. the generated times ti
displayed in Figure 6 show that the regression analyses with the two misspecified models
can not adequately capture the generated temporal correlation. Those for nonparametric
regression reveal an unsatisfactory model fit near t=0.5, where the underlying regres-
sion function changes unsmoothly. This may explain the behaviour of the two tests in the
associated cases.

The Moran’s I test with the regression residuals generally performs well in detect-
ing model misspecification with the functional form of the mean function and with
the spatio-temporal pattern underlying the random errors. In particular, we conclude
that the regression model is appropriate for the current data if no significant evidence
exists that counters the null hypothesis based on the Moran’s I test with the regression
residuals.

4. Example with real data

Wildfire records constitute typical spatio-temporal data. Many researchers have studied
the relationship between wildfires and associated ecological factors together with the spa-
tial and temporal characteristics of the fires (Martell and Sun 2008; Podur 2001). The sizes
of fires adjacent to each other in time and/or location are likely correlated. Xiong (2015)
explores the spatio-temporal correlation of wildfires via regression analysis using the
Moran’s I test with regression residuals as a tool to diagnose models. The difficulty she
encountered when interpreting the test outcomes was a motivation for our research. To
illustrate our findings about the usefulness of the Moran’s I, we analyse the records from
10 wildfire-management areas of Alberta, Canada of the 746 lightning-caused wildfires
in 2006.
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4.1. Data description and regressionmodelling

Figure 7(a) summarises the fire sizes based on the information associated with the variable
‘ex_hectares’ in the data, which records the area (in hectares) that each fire has burnt when
it is extinguished. Because its distribution appears quite skewed, we took a base-10-log
transformation of the variable, which is referred to as the fire size in the rest of this paper.
Figure 7(b) shows the wildfires across Alberta in the months of the fire season: May to
September. Most large fires occurred in the High Level and Slave Lake areas, which are in
the northeastern part of the province. The size distribution varies; most large fires occurred
in June and July.

We considered a general regression model with the log-transformed fire size as the
response variable:

Yi = μ(si, ti; zi) + εi, i = 1, 2, . . . , n, (10)

where Yi is the log-transformed burn area (i.e. wildfire size) of wildfire i, si is the loca-
tion (i.e. the vector of latitude and longitude) of wildfire i, ti is the starting time of wildfire
i, zi is the additional vector of environmental exposures, and εi is the random error.
Here μ(si, ti; zi) = E[Yi | si, ti, zi], and the random errors are assumed to be i.i.d. with
E[εi | si, ti, zi] = 0 andVar[εi | si, ti, zi] = σ 2. Following the Canadian Forest FireWeather
Index System, the variables daily temperature, relative humidity, and wind speed were used
as explanatory variables in addition to the fire location and time.

We conducted analyses under the following two specifications of Equation (10) (one is
the ordinary linear regression model and the other is a partial linear regression model) for
i = 1, . . . , 746:

μi(si, ti; zi) = β0 + α′si + γh(ti) + β ′zi, (11a)

μi(si, ti; zi) = gh(ti)(si) + β ′zi, (11b)

where h(ti) is a factor with four levels for May, June, July, and August/September, and gj(·)
is an unspecified function corresponding to fire month j.

4.2. Analysis outcome andmodel diagnosis

The parameters in model (11a) were estimated by LSE, and the unspecified functions and
regression parameters in model (11b) were estimated by kernel smoothing integrated with
LSE. The parameter estimates under both models (11a) and (11b) are listed in Table 3. The
variables relative humidity and wind speed were identified as significant predictors for fire
size by both analyses, but the effect of the third environmental variable temperature did not
appear significant in either analysis.

Figure 8 presents the contours of the estimated spatio-temporal surfaces ĝj(s) under
model (11b).We also checked the corresponding perspective plots of ĝj(s) togetherwith the
corresponding planes under the ordinary linear regression model (11a) β̂0 + α̂

′si + γ̂h(ti).
The summarised spatio-temporal patterns under the two models are similar in the central
area of Alberta but differ in the northeastern and southwestern areas. The plots indicate
graphically that the partial linear regressionmodel is more appropriate for the wildfire data
than the ordinary linear model.
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(a)

(b)

Figure 7. Distribution of sizes and occurrences: Albertawildfires in 2006. (a) Distribution ofwildfire sizes
and (b) distribution of wildfire occurrences.
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Table 3. Regression parameter estimates for the records of Alberta wildfires in 2006.

Estimate aSt. err bTest statistic bp-value

Under Model 10(a)
(Intercept) −1.02618 0.31416 −3.26643 .00114
relative_humidity −0.00872 0.00268 −3.35450 .00084
wind_speed 0.04711 0.00596 8.24128 < .0001
temperature 0.01173 0.00970 1.24153 .21480
longitude (standardised) 0.11433 0.04660 2.45328 .01439
latitude (standardised) 0.31688 0.04988 6.35291 < .0001
June vs. May 0.01513 0.17853 0.08475 .93249
July vs. May −0.01145 0.15954 −0.07174 .94283
AugSep vs. May −0.09221 0.18941 −0.48683 .62652

Under Model 10(b)
relative_humidity −0.00795 0.00260 −2.96443 .00152
wind_speed 0.05153 0.00572 8.63991 < .0001
temperature 0.00775 0.00945 0.79879 .21221
a Estimated standard errors.
bRatio of the estimate of β to the estimated standard error, and p-value of the t-test for H0: β = 0.

We evaluated the Moran’s I statistic with four different sets of weights with the regres-
sion residuals under models (11a) and (11b). The first three sets are the original weights
corresponding to the three definitions of neighbourhood: two fires are neighbours if the
time lag between them is bounded by a predetermined τ and (i) they are from the same
fire management area, (ii) they are detected by the same fire station, or (iii) the distance
between their locations is bounded by a predetermined d.

Figures 9 and 10 show the three Moran’s I statistics with the regression residuals under
models (11b) and (11a). We used different combinations of d and τ in Figure 9(a) with
type (i) weights; in Figure 9(b), type (ii) weights; in Figure 10, type (iii) weights. In each
plot, we also include the nominal value of the Moran’s I under H0 of i.i.d. random errors
with mean zero and the rejection region with a type-I error rate of .05. We also considered
a fourth type of weights (type (iv)), the Dubé–Legros weights given in Equation (1). The
plots of the evaluations of the Moran’s I with the weights are similar to those in Figure 10.

The conclusions based on the Moran’s I tests with all four sets of weights for model
checking are consistent with each other. The partial linear regression model (11b) appears
quite appropriate for the wildfire data whereas the ordinary linear regression model (11a)
does not. This indicates that a nonlinear spatio-temporal pattern exists in the wildfire sizes.

5. Concluding remarks

This paper explores analytically and numerically the Moran’s I statistic with the weights
originally proposed by Moran (1950) and the Dubé–Legros weights. In particular, we find
that the test procedure based on the Moran’s I with regression residuals can be a nonpara-
metric tool for diagnosing regression models, including both the functional form of the
mean function and the assumption regarding random errors.When the goal is to detect the
underlying spatio-temporal correlation, the test is rather robust to varying variance among
the individual units but can be misled by heterogeneity in the means. On the other hand,
when checking for a regression model, the test with the regression residuals can be rather
sensitive to the bias caused by either the procedure for estimating the regression parameter
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Figure 8. Contour plots for spatio-temporal characteristics of fire size.

or the underlying correlation in the random errors. The usefulness of these general find-
ings is illustrated by a regression analysis of real wildfire data. This novel application of the
Moran’s I provides an inferential procedure for model checking with regression residuals.
We could potentially extend this to checking for regression models with respect to gen-
eral explanatory variables if the neighbourhood used to determine the weights is defined
accordingly.

The simulation results show that the Moran’s I with different weights may cause the
test to draw different conclusions. For example, the original weights with a larger upper
bound for the location distance for the neighbourhood may have a lower power against
the null hypothesis. Other types of weights are worth exploring. One choice is the type of
weights account for population density (Oden 1995). Another consideration is to choose
a different measure of distance between two locations in the Dubé–Legros weights, not
necessarily the Euclidean distance, to accommodate certain geographic environment. The
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development of a systematic procedure for choosing an appropriate set of weights is an
interesting but challenging problem.

We plan to explore different ways to implement the Moran’s I based testing procedure.
One may consider, for example, to implement it via randomly permute the observations
Zi’s to the associated times and locations. As suggested by one of the referees, we can also
conduct the test via a bootstrap procedure. By either of the two approaches, one may easily
obtain estimates for the mean and variance of the Moran’s I under the current population.
Some preliminary analysis of the real data by the bootstrap approach agrees to what is
presented on the model checking in this paper.

Several other investigations would be worthwhile. We may follow Li et al. (2007) and
explore the Moran’s I with a collection of observations that are generated from a partic-
ular stochastic process or random field. Another avenue of research is to follow the work
reported in Zhang and Lin (2016) to examine the asymptotic distributions of the Moran’s I

Figure 9. Moran’s Iwith residuals from the ordinary/partial linear regression analysis. The solid lines are
the observed Moran’s I values; the dashed lines are E[I | H0]; and the shaded areas are the 95% accep-
tance regions. (a) Moran’s I with type (i) weights: Neighbors are from the same wildfire management
areas with time lags ≤ τ and (b) Moran’s I with type (ii) weights: Neighbors are detected by the same
wildfire watch stations with time lags≤ τ .
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Figure 10. Moran’s I(d, τ) with type (iii) weights. The solid lines are the observed Moran’s I values; the
dashed lines are E[I | H0]; and the shaded areas are the 95% acceptance regions. (a) Moran’s Iwith resid-
uals from the ordinary linear regression analysis (b) Moran’s I with residuals from the partially linear
regression analysis.
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under various types of heterogeneity in the situations with the normally distributed obser-
vations or conditional on the current set of observations. This may help us further assess
performance of the Moran’s I test procedure. A third possibility is to extend the Moran’s I
to accommodate data with a complex structure, such as censored data. Last but not least,
we plan to develop a software package to make this research accessible to practitioners.
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