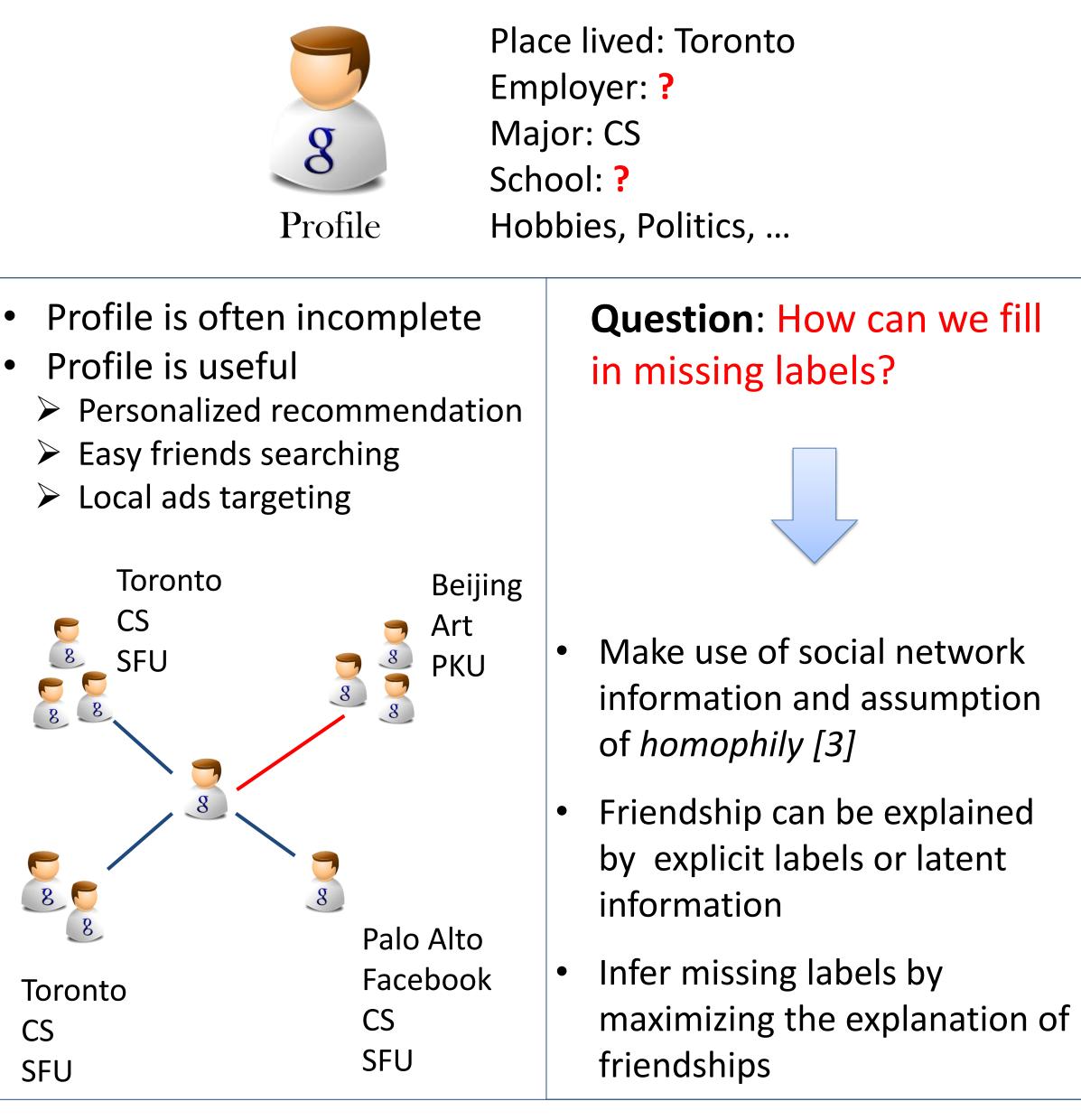
Latent Information Aware Social Network Labeling Li Xiong, Tong He

Motivation



Problem Formulation

Given a graph g = (V, E, T), where $T = \{t_1, t_2, \dots, t_k\}$ is a set of label types, V is a set of vertices, and $E = \{(u, v) \mid u, v \in V\}$. L(t) denotes a set of labels w.r.t. label type t. Each vertex has a set of labels either fully labeled or partially labeled.

For a user u, define f_{utl} as the a probability distribution on label l with label type t.

For an edge (u, v), define $r(u, v) = \sum_t f_{ut} \cdot f_{vt}$ as the similarity of labels and C(u, v) as the explanation from latent information.

References

[1] Joint Inference of Multiple Label Types in Large Networks. ICML 2014

[2] Learning from labeled and unlabeled data with label propagation. Technical Report CMU 2002.

[3] What is Twitter, a social network or a news media?. 2010

Proposed Model

Key ideas:

- Explain friendship with both explicit labels and latent information
- Try to explain as many friendships as possible

Model Specification

Find optimal *f* to maximize

 $DegreeExplanation(f_u, f_v, C(u, v))$

Explain all friendship

- C(u, v): explanation for edge (u, v) from latent information
- $DegreeExplanation(f_u, f_v, C(u, v))$ $= \sigma(a \cdot is_reason(\boldsymbol{f}_u, \boldsymbol{f}_v) + is_reason(C(u, v))$
- $is_reason(f_u, f_v) = r(u, v)$
- $\sigma(x) = 1/(1 + \exp(-x))$
- *a* is the coefficient which indicates to what extent this edge can be explained by shared explicit labels

Is (u, v) explained by explicit sharing labels or latent information?

Why we need C(u, v):

60% edges on Google+ dataset share no explicit label

> One way to explain such edges is using latent information

Learning and Inference

Optimization objective:

$$\arg\max_{f} \prod_{u \sim v} \sigma(a \cdot r(u, v) + C(u, v))$$

Take Neg. log

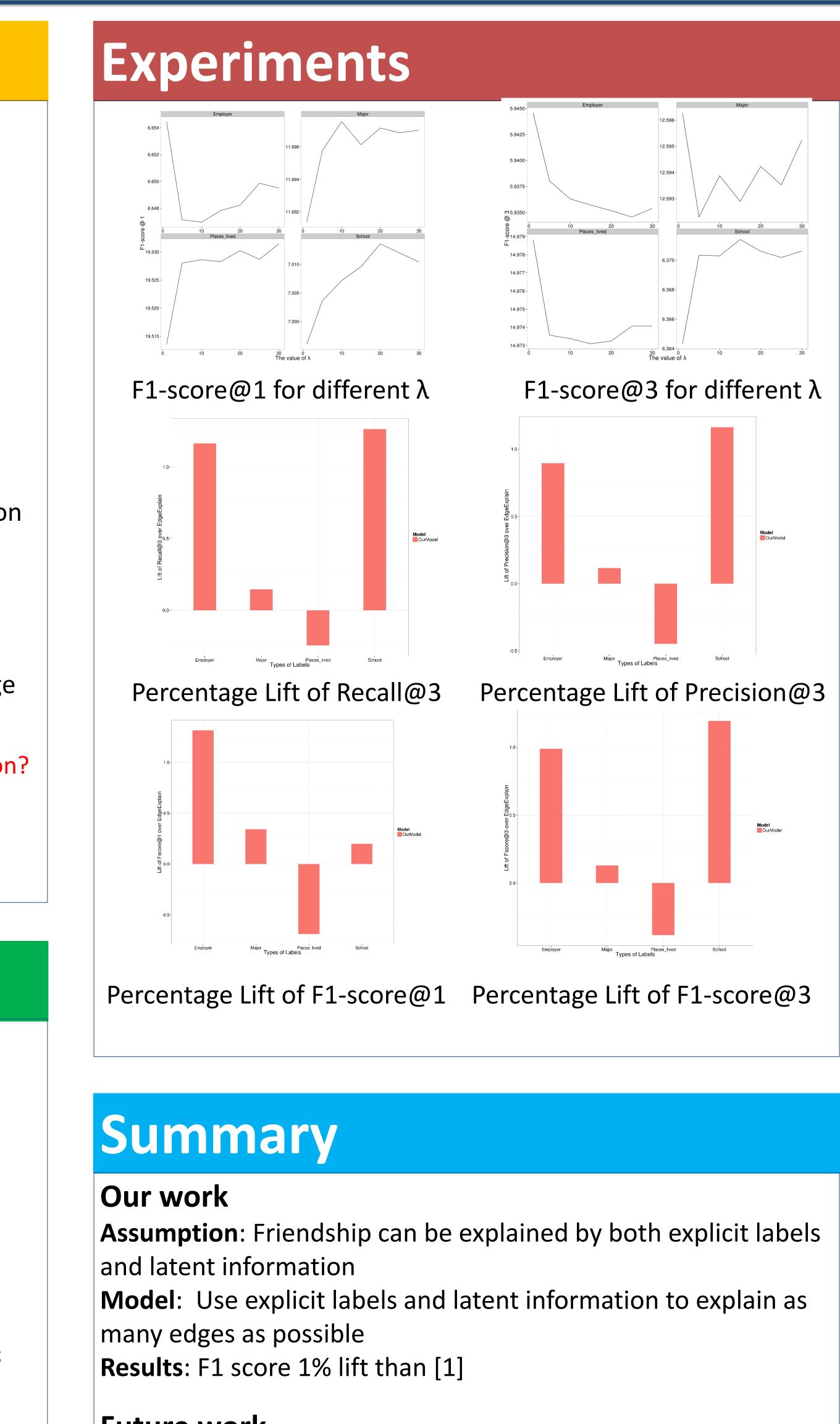
$$argmin_{f} - \sum_{u \sim v} \log\{\sigma(a \cdot r(u, v) + C(u, v))\}$$

Add l_2 -regularization on C(u, v):

$$argmin_{f} - \sum_{u \sim v} \log\{\sigma(a \cdot r(u, v) + C(u, v))\} + \frac{\lambda}{2} \|C\|$$

EM based learning algorithm:

- Update C(u, v) and **f** alternatively until converge 1. Update C(u, v) by setting $\partial L / \partial C(u, v) = 0$
- 2. Update *f* using proximal gradient ascent



Future work

- Try other bigger social network datasets
- Introduce correlation among label types
- Introduce different weights for label types

2